Skip to content
2000
Volume 9, Issue 1
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Until now it is still not clear which structural elements of the prion protein (PrP) are involved in its conversion process. Characterisation of these essential regions would help to understand the conversion process itself and might help to develop specific therapeutic approaches to inhibit PrPres formation by dominant inhibitory mutations. To address this important question 33 evenly spaced insertion mutants were generated spanning the entire sequence of the murine 3F4- tagged PrP. The mutants were expressed by retroviral transduction in three different scrapie infected cell lines (ScN2a; SMB[RC040]; SMB[22F]). The convertibility was affected not only by introducing the insertion in the putatively refolded region (aa100-170), but also in the C-terminus of PrP (up to aa214). Moreover, dominant inhibitory effects on conversion were observed for PrP-mutants at four distinguished regions (aa100-112; aa130-154; aa166-172, aa196-200). Computer based structural analysis revealed that these segments were organized in two structurally clearly separated regions supporting the idea that they could function as protein-protein interaction sites which are necessary during seed formation.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/1871526510909010040
2009-02-01
2025-04-05
Loading full text...

Full text loading...

/content/journals/iddt/10.2174/1871526510909010040
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test