Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

Toxoplasmosis is a cosmopolitan infectious disease in warm-blooded mammals that poses a serious worldwide threat due to the lack of effective medications and vaccines.

Aims

The purpose of this study was to design a multi-epitope vaccine using several bioinformatics approaches against the antigens of ().

Methods

Three proteins of , including ROP18, MIC4, and SAG1 were analyzed to predict the most dominant B- and T-cell epitopes. Finally, we designed a chimeric immunogen RMS (ROP18, MIC4, and SAG1) using some domains of ROP18 (N377-E546), MIC4 (D302-G471), and SAG1 (T130-L299) linked by rigid linker A (EAAAK) A. Physicochemical properties, secondary and tertiary structure, antigenicity, and allergenicity of RMS were predicted utilizing immunoinformatic tools and servers.

Results

RMS protein had 545 amino acids with a molecular weight (MW) of 58,833.46 Da and a theoretical isoelectric point (IP) of 6.47. The secondary structure of RMS protein contained 21.28% alpha-helix, 24.59% extended strand, and 54.13% random coil. In addition, evaluation of antigenicity and allergenicity showed the protein to be an immunogen and non-allergen. The results of the Ramachandran plot indicated that 76.4%, 12.9%, and 10.7% of amino acid residues were incorporated in the favored, allowed, and outlier regions respectively. ΔG of the best-predicted mRNA secondary structure was −593.80 kcal/mol which indicates a stable loop is not formed at the 5′ end. .

Conclusion

Finally, the accuracy and precision of the analysis must be confirmed by successful heterologous expression and experimental studies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265332103240911113422
2024-09-30
2025-04-15
Loading full text...

Full text loading...

References

  1. TanT.G. MuiE. CongH. Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans.Vaccine201028233977398910.1016/j.vaccine.2010.03.028 20347630
    [Google Scholar]
  2. WangH. HeS. YaoY. Toxoplasma gondii: Protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice.Exp. Parasitol.2009122322623210.1016/j.exppara.2009.04.002 19366622
    [Google Scholar]
  3. FerreiraM.S. BorgesA.S. Some aspects of protozoan infections in immunocompromised patients- a review.Mem. Inst. Oswaldo Cruz200297444345710.1590/S0074‑02762002000400001 12118272
    [Google Scholar]
  4. Bosch-DriessenL.H. VerbraakF.D. Suttorp-SchultenM.S.A. A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosisAm. J. Ophthalmol.20021341344010.1016/S0002‑9394(02)01537‑4 12095805
    [Google Scholar]
  5. BuxtonD. ThomsonK. MaleyS. WrightS. BosH. Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant.Vet. Rec.19911295899310.1136/vr.129.5.89 1926725
    [Google Scholar]
  6. ZhangN.Z. WangM. XuY. PetersenE. ZhuX.Q. Recent advances in developing vaccines against Toxoplasma gondii: An update.Expert Rev. Vaccines201514121609162110.1586/14760584.2015.1098539 26467840
    [Google Scholar]
  7. LourençoE.V. BernardesE.S. SilvaN.M. MineoJ.R. Panunto-CasteloA. Roque-BarreiraM.C. Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii.Microbes Infect.2006851244125110.1016/j.micinf.2005.11.013 16616574
    [Google Scholar]
  8. LiuS. ShiL. ChengY. FanG. RenH. YuanY. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice.Parasitol. Res.2009105126727410.1007/s00436‑009‑1393‑1 19288132
    [Google Scholar]
  9. CongH. GuQ.M. YinH.E. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii.Vaccine200826313913392110.1016/j.vaccine.2008.04.046 18555564
    [Google Scholar]
  10. LekutisC. FergusonD.J.P. GriggM.E. CampsM. BoothroydJ.C. Surface antigens of Toxoplasma gondii: Variations on a theme.Int. J. Parasitol.200131121285129210.1016/S0020‑7519(01)00261‑2 11566296
    [Google Scholar]
  11. QuD. HanJ. DuA. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re.Exp. Parasitol.2013135223423910.1016/j.exppara.2013.07.013 23896123
    [Google Scholar]
  12. ForoutanM. GhaffarifarF. SharifiZ. DalimiA. PirestaniM. Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii.Infect. Genet. Evol.20186219320410.1016/j.meegid.2018.04.033 29705360
    [Google Scholar]
  13. DodangehS. Fasihi-RamandiM. DaryaniA. ValadanR. SarviS. In silico analysis and expression of a novel chimeric antigen as a vaccine candidate against Toxoplasma gondii.Microb. Pathog.201913227528110.1016/j.micpath.2019.05.013 31078709
    [Google Scholar]
  14. GhaffariA.D. DalimiA. GhaffarifarF. PirestaniM. Structural predication and antigenic analysis of ROP16 protein utilizing immunoinformatics methods in order to identification of a vaccine against Toxoplasma gondii: An in silico approach.Microb. Pathog.202014210407910.1016/j.micpath.2020.104079 32084578
    [Google Scholar]
  15. María RAR, Arturo CVJ, Alicia JA, Paulina MLG, Gerardo AO. The impact of bioinformatics on vaccine design and development.Vaccines (Basel)201723610.5772/intechopen.69273
    [Google Scholar]
  16. GarnierJ. GibratJ.F. RobsonB. GOR method for predicting protein secondary structure from amino acid sequence.Methods Enzymol199626654055310.1016/S0076‑6879(96)66034‑0 8743705
    [Google Scholar]
  17. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174-8110.1093/nar/gkv342 25883148
    [Google Scholar]
  18. NarulaA. PandeyR.K. KhatoonN. MishraA. PrajapatiV.K. Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection.Infect. Genet. Evol.20186141510.1016/j.meegid.2018.03.007 29535024
    [Google Scholar]
  19. DoytchinovaI.A. FlowerD.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics200781410.1186/1471‑2105‑8‑4 17207271
    [Google Scholar]
  20. SahaS RaghavaGPS AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes.Nucleic Acids Res 200634Web ServerW202910.1093/nar/gkl34316844994
    [Google Scholar]
  21. MagnanC.N. RandallA. BaldiP. SOLpro: Accurate sequence-based prediction of protein solubility.Bioinformatics200925172200220710.1093/bioinformatics/btp386 19549632
    [Google Scholar]
  22. GasteigerE. HooglandC. GattikerA. Protein identification and analysis tools on the ExPASy server.The proteomics protocols handbook.ChamSpringer200557160710.1385/1‑59259‑890‑0:571
    [Google Scholar]
  23. GroteA HillerK ScheerM. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host.Nucleic Acids Res200533Web Server issueW5263110.1093/nar/gki376
    [Google Scholar]
  24. HuangS.Y. JensenM.R. RosenbergC.A. ZhuX.Q. PetersenE. Vorup-JensenT. In silico and in vivo analysis of Toxoplasma gondii epitopes by correlating survival data with peptide–MHC-I binding affinities.Int. J. Infect. Dis.201648141910.1016/j.ijid.2016.04.014 27109108
    [Google Scholar]
  25. MbabaziP. HopkinsH. OsiloE. KalunguM. Byakika-KibwikaP. KamyaM.R. Accuracy of two malaria rapid diagnostic tests (RDTS) for initial diagnosis and treatment monitoring in a high transmission setting in Uganda.Am. J. Trop. Med. Hyg.201592353053610.4269/ajtmh.14‑0180 25624399
    [Google Scholar]
  26. BuxtonD. InnesE.A. A commercial vaccine for ovine toxoplasmosis.Parasitology1995110S1S11S1610.1017/S003118200000144X 7784124
    [Google Scholar]
  27. WangY. WangG. CaiJ. YinH. Review on the identification and role of Toxoplasma gondii antigenic epitopes.Parasitol. Res.2016115245946810.1007/s00436‑015‑4824‑1 26581372
    [Google Scholar]
  28. HajissaK. ZakariaR. SuppianR. MohamedZ. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review.J. Adv. Vet. Anim. Res.20196217418210.5455/javar.2019.f329 31453188
    [Google Scholar]
  29. ForoutanM. GhaffarifarF. SharifiZ. DalimiA. JorjaniO. Rhoptry antigens as Toxoplasma gondii vaccine target.Clin. Exp. Vaccine Res.20198142610.7774/cevr.2019.8.1.4 30775347
    [Google Scholar]
  30. RomanoP. GiugnoR. PulvirentiA. Tools and collaborative environments for bioinformatics research.Brief. Bioinform.201112654956110.1093/bib/bbr055 21984743
    [Google Scholar]
  31. FlowerDR MacdonaldIK RamakrishnanK DaviesMN DoytchinovaIA Computer aided selection of candidate vaccine antigens.Immunome Res20106Suppl 2)(Suppl. 2S110.1186/1745‑7580‑6‑S2‑S1 21067543
    [Google Scholar]
  32. FachadoA. RodriguezA. AngelS.O. Protective effect of a naked DNA vaccine cocktail against lethal toxoplasmosis in mice.Vaccine20032113-141327133510.1016/S0264‑410X(02)00692‑8 12615427
    [Google Scholar]
  33. JongertE. RobertsC.W. GarganoN. Fِrster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii: Challenges and opportunities.Mem. Inst. Oswaldo Cruz2009104225226610.1590/S0074‑02762009000200019 19430651
    [Google Scholar]
  34. ChenX. ZaroJ.L. ShenW.C. Fusion protein linkers: Property, design and functionality.Adv. Drug Deliv. Rev.201365101357136910.1016/j.addr.2012.09.039 23026637
    [Google Scholar]
  35. ZhaoH.L. YaoX.Q. XueC. WangY. XiongX.H. LiuZ.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering.Protein Expr. Purif.2008611737710.1016/j.pep.2008.04.013 18541441
    [Google Scholar]
  36. AmetN. LeeH.F. ShenW.C. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins.Pharm. Res.200926352352810.1007/s11095‑008‑9767‑0 19002568
    [Google Scholar]
  37. BaiY. ShenW.C. Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization.Pharm. Res.20062392116212110.1007/s11095‑006‑9059‑5 16952003
    [Google Scholar]
  38. ZhouJ. WangW. SongP. Structural predication and antigenic analysis of Toxoplasma gondii ROP20.Acta Parasitol.201863224425110.1515/ap‑2018‑0028 29654679
    [Google Scholar]
  39. CaiH. LiY. ZhangH. FengF. Effects of gene design on recombinant protein expression: A review.Sheng Wu Gong Cheng Xue Bao201329912011213 24409684
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265332103240911113422
Loading
/content/journals/iddt/10.2174/0118715265332103240911113422
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): in silico; MIC4; ROP18; SAG1; Toxoplasma gondii; vaccine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test