Skip to content
2000
image of A Clinical Multicenter Trial of Recombinant Human Interferon Gamma in Tuberculosis (GAM2022) Experience with the Use of Human Recombinant Interferon Gamma in TB Practice

Abstract

Background

In this article, we present the results of a multicenter clinical trial of IFN-γ in patients with drug-susceptible and drug-resistant pulmonary Tuberculosis (TB) in routine clinical practice.

Objective

This study aimed to confirm the efficacy and safety of IFN-γ administered to patients with TB.

Methods

All patients were diagnosed with TB after being tested by bacterioscopic and molecular genetic methods and had no contraindications to standard chemotherapy.

Results

Recombinant human IFN-γ proved high efficacy in multi-center clinical trials in routine TB practice.

Conclusion

The results show that IFN-γ is efficient and safe in the treatment of pulmonary tuberculosis.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265329137250102103507
2025-01-27
2025-07-04
Loading full text...

Full text loading...

References

  1. Khan T.A. Mazhar H. Saleha S. Tipu H.N. Muhammad N. Abbas M.N. Interferon-gamma improves macrophages function against M. tuberculosis in multidrug-resistant tuberculosis patients. Chemother. Res. Pract. 2016 2016 1 6 10.1155/2016/7295390 27478636
    [Google Scholar]
  2. Sharma D. Sharma S. Sharma J. Potential strategies for the management of drug-resistant tuberculosis. J. Glob. Antimicrob. Resist. 2020 22 210 214 10.1016/j.jgar.2020.02.029 32169684
    [Google Scholar]
  3. Serebryakova V.A. Reactivity of peripheral blood lymphocytes in pulmonary tuberculosis. Abstract of a thesis for a degree of candidate of medical sciences 2006
    [Google Scholar]
  4. Gorlova E.E. Immunity pathology in tuberculosis. Bull. Physiol. Pathol. Resp. 2010 35 37 44
    [Google Scholar]
  5. Maslennikov AA Obolonkova NI Efficiency of Ingaron in the treatment of patients with destructive pulmonary bacteriologically proven tuberculosis. MedPharm Ser. 2016 2 10.18413/2313‑8955‑2016‑2‑1‑10‑16
    [Google Scholar]
  6. Ghanavi J. Farnia P. Farnia P. Velayati A.A. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int. J. Mycobacteriol. 2021 10 4 349 357 10.4103/ijmy.ijmy_186_21 34916451
    [Google Scholar]
  7. Balasaniants G.S. Ruzanov D.Y. Immunotherapeutic role of interferon-γ at tuberculosis. Immunologiya 2022 43 3 343 351 [in Russian]. 10.33029/0206‑4952‑2022‑43‑3‑343‑351
    [Google Scholar]
  8. Brooks B.M. Hart C.A. Coleman J.W. Differential effects of β-lactams on human IFN-γ activity. J. Antimicrob. Chemother. 2005 56 6 1122 1125 10.1093/jac/dki373 16239287
    [Google Scholar]
  9. Perelman M.I. Phthisiology: National Guidelines. GEOTAR-Media Moscow 2007
    [Google Scholar]
  10. Behar S.M. Carpenter S.M. Booty M.G. Barber D.L. Jayaraman P. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: Immunity interruptus. Semin. Immunol. 2014 26 6 559 577 10.1016/j.smim.2014.09.003 25311810
    [Google Scholar]
  11. Manea A. Manea S.A. Gan A.M. Constantin A. Fenyo I.M. Raicu M. Muresian H. Simionescu M. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem. Biophys. Res. Commun. 2015 461 1 172 179 10.1016/j.bbrc.2015.04.021 25871798
    [Google Scholar]
  12. Barbero A.M. Trotta A. Genoula M. Del Pino R.E.H. Estermann M.A. Celano J. Fuentes F. García V.E. Balboa L. Barrionuevo P. Pasquinelli V. SLAMF1 signaling induces Mycobacterium tuberculosis uptake leading to endolysosomal maturation in human macrophages. J. Leukoc. Biol. 2021 109 1 257 273 10.1002/JLB.4MA0820‑655RR 32991756
    [Google Scholar]
  13. Nakajima M. Matsuyama M. Kawaguchi M. Kiwamoto T. Matsuno Y. Morishima Y. Yoshida K. Sherpa M. Yazaki K. Osawa H. Muratani M. Ishii Y. Hizawa N. Nrf2 regulates granuloma formation and macrophage activation during mycobacterium avium infection via mediating Nramp1 and HO-1 expressions. MBio 2021 12 1 e01947-20 10.1128/mBio.01947‑20 33563837
    [Google Scholar]
  14. Lutcky A.A. Zhirkov A.A. Lobzin D.Yu. Rao M. Alekseeva L.A. Meyrer M. Lobzin YuV. Interferon-γ: biological function and application for study of cellular immune response. Z. Infektol. 2015 7 4 10 22 10.22625/2072‑6732‑2015‑7‑4‑10‑22
    [Google Scholar]
  15. Tebruegge M. Dutta B. Donath S. Ritz N. Forbes B. Camacho-Badilla K. Clifford V. Zufferey C. Robins-Browne R. Hanekom W. Graham S.M. Connell T. Curtis N. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis. Am. J. Respir. Crit. Care Med. 2015 192 4 485 499 10.1164/rccm.201501‑0059OC 26030187
    [Google Scholar]
  16. Koval’chuk L.V. Theory of inflammation in light of new data: Development of I.I Mechnikov ideas. Zh. Mikrobiol. Epidemiol. Immunobiol. 2008 5 10 15 19004278
    [Google Scholar]
  17. Il’inskaya I.F. Topical issues of rational interferon therapy in tuberculosis. Klinicheskaya Immunologiya. Allergologiya. Infectologiya 2012 3 18 22
    [Google Scholar]
  18. Condos R. Rom W.N. Schluger N.W. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-γ via aerosol. Lancet 1997 349 9064 1513 1515 10.1016/S0140‑6736(96)12273‑X 9167461
    [Google Scholar]
  19. Suárez-Méndez R. García-García I. Fernández-Olivera N. Valdés-Quintana M. Milanés-Virelles M.T. Carbonell D. Machado-Molina D. Valenzuela-Silva C.M. López-Saura P.A. Adjuvant interferon gamma in patients with drug – Resistant pulmonary tuberculosis: A pilot study. BMC Infect. Dis. 2004 4 1 44 10.1186/1471‑2334‑4‑44 15500691
    [Google Scholar]
  20. Park S.K. Cho S. Lee I.H. Jeon D.S. Hong S.H. Smego R.A. Jr Cho S.N. Subcutaneously administered interferon-gamma for the treatment of multidrug-resistant pulmonary tuberculosis. Int. J. Infect. Dis. 2007 11 5 434 440 10.1016/j.ijid.2006.12.004 17321178
    [Google Scholar]
  21. Raad I. Hachem R. Leeds N. Sawaya R. Salem Z. Atweh S. Use of adjunctive treatment with interferon-gamma in an immunocompromised patient who had refractory multidrug-resistant tuberculosis of the brain. Clin. Infect. Dis. 1996 22 3 572 574 10.1093/clinids/22.3.572 8852983
    [Google Scholar]
  22. 2022
  23. Hortelano S. Alvarez A.M. BOSCá L.I.S.A.R.D.O. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB J. 1999 13 15 2311 2317 10.1096/fasebj.13.15.2311 10593878
    [Google Scholar]
  24. Zhang J. Sun B. Huang Y. Kouadir M. Zhou X. Wang Y. Zhao D. IFN-γpromotes THP-1 cell apoptosis during early infection with Mycobacterium bovis by activating different apoptotic signaling. FEMS Immunol. Med. Microbiol. 2010 60 3 191 198 10.1111/j.1574‑695X.2010.00732.x 20875052
    [Google Scholar]
  25. Chechushkov A.V. Zenkov N.K. Kozhin P.M. Kolpakova T.A. Menschikova E.B. Autophagy in the pathogenesis of tuberculosis. Tuber. Lung Dis. 2016 94 3 8 19
    [Google Scholar]
  26. Singh N. Kansal P. Ahmad Z. Baid N. Kushwaha H. Khatri N. Kumar A. Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 2018 14 6 1 20 10.1080/15548627.2018.1436936 29457983
    [Google Scholar]
  27. Matsuzawa T. Kim B.H. Shenoy A.R. Kamitani S. Miyake M. MacMicking J.D. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 2012 189 2 813 818 10.4049/jimmunol.1102041 22675202
    [Google Scholar]
  28. Berns SA Isakova JA Pekhtereva PI Therapeutic potential of interferon-gamma in tuberculosis. ADMET DMPK 2022 10 1 63 73 10.5599/admet.1078
    [Google Scholar]
  29. Chin K.L. Anis F.Z. Sarmiento M.E. Norazmi M.N. Acosta A. Role of interferons in the development of diagnostics, vaccines, and therapy for tuberculosis. J. Immunol. Res. 2017 2017 1 10 10.1155/2017/5212910 28713838
    [Google Scholar]
  30. Desvignes L. Wolf A.J. Ernst J.D. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol. 2012 188 12 6205 6215 10.4049/jimmunol.1200255 22566567
    [Google Scholar]
  31. Koh G.C.K.W. Schreiber M.F. Bautista R. Maude R.R. Dunachie S. Limmathurotsakul D. Day N.P.J. Dougan G. Peacock S.J. Host responses to melioidosis and tuberculosis are both dominated by interferon-mediated signaling. PLoS One 2013 8 1 e54961 10.1371/journal.pone.0054961 23383015
    [Google Scholar]
  32. Liang G. Malmuthuge N. Guan Y. Ren Y. Griebel P.J. Guan L.L. Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci. Rep. 2016 6 1 24964 10.1038/srep24964 27102525
    [Google Scholar]
  33. Liu Y. Wang X. Jiang J. Cao Z. Yang B. Cheng X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol. 2011 48 9-10 1084 1090 10.1016/j.molimm.2011.02.001 21367459
    [Google Scholar]
  34. Kim H.J. Kim I.S. Lee S.G. Kim Y.J. Silwal P. Kim J.Y. Kim J.K. Seo W. Chung C. Cho H.K. Huh H.J. Shim S.C. Park C. Jhun B.W. Jo E.K. MiR-144-3p is associated with pathological inflammation in patients infected with Mycobacteroides abscessus. Exp. Mol. Med. 2021 53 1 136 149 10.1038/s12276‑020‑00552‑0 33473145
    [Google Scholar]
  35. Vakhrusheva D.V. Krasnoborova S.Yu. Petrunina E.M. The effectiveness of interferon gamma inclusion in the tuberculosis chemotherapy: Experimental study. Immunologiya 2023 44 2 209 218 10.33029/0206‑4952‑2023‑44‑2‑209‑218
    [Google Scholar]
  36. Ahmed M. Mackenzie J. Tezera L. Krause R. Truebody B. Garay-Baquero D. Vallejo A. Govender K. Adamson J. Fisher H. Essex J.W. Mansour S. Elkington P. Steyn A.J.C. Leslie A. Mycobacterium tuberculosis senses host Interferon-γ via the membrane protein MmpL10. Commun. Biol. 2022 5 1 1317 10.1038/s42003‑022‑04265‑0 36456824
    [Google Scholar]
  37. Gao X.F. Yang Z.W. Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: A systematic review. Int. J. Infect. Dis. 2011 15 9 e594 e600 10.1016/j.ijid.2011.05.002 21715206
    [Google Scholar]
  38. Dawson R. Condos R. Tse D. Huie M.L. Ress S. Tseng C.H. Brauns C. Weiden M. Hoshino Y. Bateman E. Rom W.N. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One 2009 4 9 e6984 10.1371/journal.pone.0006984 19753300
    [Google Scholar]
  39. Shevchuk D.V. Kuznetsov O.E. Laboratory research methods in differential diagnosis of tuberculosis. Pre-analytical stage of laboratory research. (methodological recommendations for senior students and physicians). Grodno 2006
    [Google Scholar]
  40. Svirshchevskaia E.V. Mitrofanov B.C. Shenderova R.I. Chuzhova N.M. Immunity in tuberculosis and aspergillosis. Probl. Med. Mycol. 2005 7 1 3 13
    [Google Scholar]
  41. Khryanin A.A. Reshetinikov O.V. Interferon-gamma: Treatment horizons. Antibiot. Khimioter. 2016 61 35 40 29874451
    [Google Scholar]
  42. Ye Z. Hu Y. TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int. J. Mol. Med. 2021 48 1 132 10.3892/ijmm.2021.4965 34013369
    [Google Scholar]
  43. Inui N. Sakai S. Kitagawa M. Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway. Int. J. Mol. Sci. 2021 22 11 6107 10.3390/ijms22116107 34198949
    [Google Scholar]
  44. Kang H. Role of micrornas in TGF-β signaling pathway-mediated pulmonary fibrosis. Int. J. Mol. Sci. 2017 18 12 2527 10.3390/ijms18122527 29186838
    [Google Scholar]
  45. Saito A. Horie M. Nagase T. TGF-β signaling in lung health and disease. Int. J. Mol. Sci. 2018 19 8 2460 10.3390/ijms19082460 30127261
    [Google Scholar]
  46. Chanda D. Otoupalova E. Smith S.R. Volckaert T. De Langhe S.P. Thannickal V.J. Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects Med. 2019 65 56 69 10.1016/j.mam.2018.08.004 30130563
    [Google Scholar]
  47. Mily A. Rekha R.S. Kamal S.M. Arifuzzaman A.S. Rahim Z. Khan L Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: A randomized controlled trial. PLoS One 2015 10 9 e0138340
    [Google Scholar]
  48. Reichmuth M.L. Homke R. Zurcher K. Sander P. Avihingsanon A. Collantes J. Natural polymorphisms in mycobacterium tuberculosis conferring resistance to delamanid in drug-naive patients. Antimicrob Agents Chemother 2020 64 11 e00513-20
    [Google Scholar]
  49. Restrepo BI Metformin: Candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients. Tuberculosis (Edinb) 2016 101 S S69 S72
    [Google Scholar]
  50. WHO consolidated guidelines on drug-resistant tuberculosis treatment. 2019 Available from: https://iris.who.int/bitstream/handle/10665/311389/9789241550529-eng.pdf
  51. WHO Updates Definition of XDR-TB. 2021 Available from: https://www.who .int/publications/i/item/meeting-report-of-the-who-expert-consultation-on-the-definitionof-extensively-drug-resistant-tuberculosis https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis [Accessed 12 dec 2023]
  52. Paik S. Kim J.K. Chung C. Jo E.K. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence 2019 10 1 448 459
    [Google Scholar]
  53. Martinot A.J. Microbial offense vs host defense: Who controls the TB granuloma? Vet. Pathol. 2018 55 1 14 26 10.1177/0300985817705177 28749750
    [Google Scholar]
  54. Milanés-Virelles M.T. García-García I. Santos-Herrera Y. Valdés-Quintana M. Valenzuela-Silva C.M. Jiménez-Madrigal G. Ramos-Gómez T.I. Bello-Rivero I. Fernández-Olivera N. Sánchez-de la Osa R.B. Rodríguez-Acosta C. González-Méndez L. Martínez-Sánchez G. López-Saura P.A. MACGAM Study Group Adjuvant interferon gamma in patients with pulmonary atypical Mycobacteriosis: A randomized, double-blind, placebo-controlled study. BMC Infect. Dis. 2008 8 1 17 10.1186/1471‑2334‑8‑17 18267006
    [Google Scholar]
  55. Russell S. L. Lamprecht D. A. Mandizvo T. Jones T. T. Naidoo V. Addicott K. W. Compromised metabolic reprogramming is an early indicator of CD8+ T cell dysfunction during chronic mycobacterium tuberculosis infection. Cell Rep 2019 29 11 3564 3579.e5
    [Google Scholar]
  56. Park H.E. Lee W. Shin M.K. Shin S.J. Understanding the reciprocal interplay between antibiotics and host immune system: How can we improve the anti-mycobacterial activity of current drugs to better control tuberculosis? Front Immunol 2021 12 703060
    [Google Scholar]
  57. Schoenborn J.R. Wilson C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 2007 96 41 101
    [Google Scholar]
  58. Sekyere J.O. Maningi N. Fourie P.B. Mycobacterium tuberculosis, antimicrobials, immunity, and lung-gut microbiota crosstalk: Current updates and emerging advances. Ann N Y Acad Sci 2020 1467 1 21 47
    [Google Scholar]
  59. Manca C. Koo M.S. Peixoto B. Fallows D. Kaplan G. Subbian S. Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection. PLoS One 2013 8 8 e74082 10.1371/journal.pone.0074082 24015316
    [Google Scholar]
  60. Shanmuganathan G. Orujyan D. Narinyan W. Poladian N. Dhama S. Parthasarathy A. Ha A. Tran D. Velpuri P. Nguyen K.H. Venketaraman V. Role of interferons in mycobacterium tuberculosis infection. Clin Pract 2022 12 5 788 796
    [Google Scholar]
  61. Pearl J.E. Saunders B. Ehlers S. Orme I.M. Cooper A.M. Inflammation and lymphocyte activation during mycobacterial infection in the interferon-gamma-deficient mouse. Cell Immunol 2001 211 1 43 50
    [Google Scholar]
  62. MacMicking J.D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 2012 12 5 367 382 10.1038/nri3210 22531325
    [Google Scholar]
  63. Cox D.J. Coleman A.M. Gogan K.M. Phelan J.J. Ó Maoldomhnaigh C. Dunne P.J. Basdeo S.A. Keane J. Inhibiting histone deacetylases in human macrophages promotes glycolysis, IL-1β, and T helper cell responses to Mycobacterium tuberculosis. Front. Immunol. 2020 11 11 1609 10.3389/fimmu.2020.01609 32793237
    [Google Scholar]
  64. Etokebe G.E. Bulat-Kardum L. Johansen M.S. Knezevic J. Balen S. Matakovic-Mileusnic N. Matanic D. Flego V. Pavelic J. Beg-Zec Z. Dembic Z. Interferon-γ gene (T874A and G2109A) polymorphisms are associated with microscopy-positive tuberculosis. Scand. J. Immunol. 2006 63 2 136 141 10.1111/j.1365‑3083.2005.01716.x 16476013
    [Google Scholar]
  65. Drain P.K. Bajema K.L. Dowdy D. Dheda K. Naidoo K. Schumacher S.G. Ma S. Meermeier E. Lewinsohn D.M. Sherman D.R. Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin. Microbiol. Rev. 2018 31 4 e00021-18 10.1128/CMR.00021‑18 30021818
    [Google Scholar]
  66. Flynn J.L. Chan J. Triebold K.J. Dalton D.K. Stewart T.A. Bloom B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993 178 6 2249 2254 10.1084/jem.178.6.2249 7504064
    [Google Scholar]
  67. Darnell J.E. Jr Kerr M. Stark G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994 264 5164 1415 1421 10.1126/science.8197455 8197455
    [Google Scholar]
  68. Hawn T.R. Matheson A.I. Maley S.N. Vandal O. Host-directed therapeutics for tuberculosis: Can we harness the host? Microbiol. Mol. Biol. Rev. 2013 77 4 608 627 10.1128/MMBR.00032‑13 24296574
    [Google Scholar]
  69. Ehrt S. Schnappinger D. Bekiranov S. Drenkow J. Shi S. Gingeras T.R. Gaasterland T. Schoolnik G. Nathan C. Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: Signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 2001 194 8 1123 1140 10.1084/jem.194.8.1123 11602641
    [Google Scholar]
  70. Genestet C. Bernard-Barret F. Hodille E. Ginevra C. Ader F. Goutelle S. Lina G. Dumitrescu O. Antituberculous drugs modulate bacterial phagolysosome avoidance and autophagy in Mycobacterium tuberculosis-infected macrophage. Tuberculosis (Edinb.) 2018 111 67 70 10.1016/j.tube.2018.05.014 30029917
    [Google Scholar]
  71. Fortes A. Pereira K. Antas P.R.Z. Franken C.L.M.C. Dalcolmo M. Ribeiro-Carvalho M.M. Cunha K.S. Geluk A. Kritski A. Kolk A. Klatser P. Sarno E.N. Ottenhoff T.H.M. Sampaio E.P. Detection of in vitro interferon-γ and serum tumour necrosis factor-α in multidrug-resistant tuberculosis patients. Clin. Exp. Immunol. 2005 141 3 541 548 10.1111/j.1365‑2249.2005.02872.x 16045745
    [Google Scholar]
  72. Casanova J.L. Abel L. Genetic dissection of immunity to mycobacteria: The human model. Annu. Rev. Immunol. 2002 20 1 581 620 10.1146/annurev.immunol.20.081501.125851 11861613
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265329137250102103507
Loading
/content/journals/iddt/10.2174/0118715265329137250102103507
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: interferon-gamma ; Tuberculosis ; adult patients ; IFN-γ ; multicenter clinical trial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test