Skip to content
2000
image of Exploration of Phytochemicals as Anti-biofilm Agents Against Pathogenic Bacteria: Their Potential and Challenges

Abstract

Multicellular surface-attached populations of bacteria embedded in the extracellular matrix are known as biofilms. Bacteria generally preferred to grow as biofilms. Quorum sensing (QS), detection of density of cell population through gene regulation, has been found to play an important role in the production of biofilms. Biofilm formation can increase the severity of infections that can lead to morbidity or mortality. Bacteria living within biofilms have a higher pattern of adaptive resistance to antibiotics. Antibiotic resistance is a barrier in the treatment of biofilms-induced acute to chronic infections such as post-surgery infections, surgery-associated wound infections, endocarditis, joint infections, burn-related wound infections occurred, ventilator-associated pneumonia, etc. So it is urgent to discover or find out potent new drugs in fight against infectious diseases such as biofilms-associated infections. Medicinal plants or herbs are a rich source for fighting with biofilms-mediated infections. Phytochemicals have exhibited significant effects in the prevention of biofilms formation against different bacteria that are causing infections. Purified compounds such as berberine, tetrandrine, embelin, xanthorrhizol, bakuchiol, ., exhibited promising biofilm inhibition actions against different pathogenic bacteria. Plant extracts that contain several phytochemicals are evaluated for its biofilm’s inhibition property, and have shown significant potential in biofilm formation. Antibiofilm agents act by distinct mechanisms such as inhibiting the adherence of biofilms in a surface, preventing the biofilm formations, disrupting the matured biofilms, etc. This study is intended to reiterate about possibilities of plant extracts and purified compounds in the treatment of the prevention of bacterial biofilms-related infections.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265324950241204182204
2024-12-30
2025-01-19
Loading full text...

Full text loading...

References

  1. Toyofuku M. Inaba T. Kiyokawa T. Obana N. Yawata Y. Nomura N. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 2016 80 1 7 12 10.1080/09168451.2015.1058701 26103134
    [Google Scholar]
  2. Hall C.W. Mah T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017 41 3 276 301 10.1093/femsre/fux010 28369412
    [Google Scholar]
  3. Costerton J.W. Geesey G.G. Cheng K.J. How bacteria stick. Sci. Am. 1978 238 1 86 95 10.1038/scientificamerican0178‑86 635520
    [Google Scholar]
  4. Wimpenny J. Manz W. Szewzyk U. Heterogeneity in biofilms: Table 1. FEMS Microbiol. Rev. 2000 24 5 661 671 10.1111/j.1574‑6976.2000.tb00565.x 11077157
    [Google Scholar]
  5. Teschler J.K. Zamorano-Sánchez D. Utada A.S. Warner C.J.A. Wong G.C.L. Linington R.G. Yildiz F.H. Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 2015 13 5 255 268 10.1038/nrmicro3433 25895940
    [Google Scholar]
  6. Uruén C. Chopo-Escuin G. Tommassen J. Mainar-Jaime R.C. Arenas J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2020 10 1 3 10.3390/antibiotics10010003 33374551
    [Google Scholar]
  7. O’Toole G. Kaplan H.B. Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000 54 1 49 79 10.1146/annurev.micro.54.1.49 11018124
    [Google Scholar]
  8. Sauer K. Camper A.K. Ehrlich G.D. Costerton J.W. Davies D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 2002 184 4 1140 1154 10.1128/jb.184.4.1140‑1154.2002 11807075
    [Google Scholar]
  9. Southey-Pillig C.J. Davies D.G. Sauer K. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 2005 187 23 8114 8126 10.1128/JB.187.23.8114‑8126.2005 16291684
    [Google Scholar]
  10. Otto M. Staphylococcal Biofilms. Curr. Top. Microbiol. Immunol. 2008 322 207 228 10.1007/978‑3‑540‑75418‑3_10 18453278
    [Google Scholar]
  11. Monds R.D. O’Toole G.A. The developmental model of microbial biofilms: Ten years of a paradigm up for review. Trends Microbiol. 2009 17 2 73 87 10.1016/j.tim.2008.11.001 19162483
    [Google Scholar]
  12. López D. Vlamakis H. Kolter R. Biofilms. Cold Spring Harb. Perspect. Biol. 2010 2 7 a000398 10.1101/cshperspect.a000398 20519345
    [Google Scholar]
  13. Ceri H. Olson M.E. Stremick C. Read R.R. Morck D. Buret A. The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999 37 6 1771 1776 10.1128/JCM.37.6.1771‑1776.1999 10325322
    [Google Scholar]
  14. Yassien M. Khardori N. Ahmedy A. Toama M. Modulation of biofilms of Pseudomonas aeruginosa by quinolones. Antimicrob. Agents Chemother. 1995 39 10 2262 2268 10.1128/AAC.39.10.2262 8619580
    [Google Scholar]
  15. Morck D.W. Lam K. McKay S.G. Olson M.E. Prosser B. Ellis B.D. Cleeland R. Costerton J.W. Comparative evaluation of fleroxacin, ampicillin, trimethoprimsulfamethoxazole, and gentamicin as treatments of catheter-associated urinary tract infection in a rabbit model. Int. J. Antimicrob. Agents 1994 4 Suppl. 2 S21 S27 10.1016/0924‑8579(94)90018‑3 18611629
    [Google Scholar]
  16. Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003 2 2 114 122 10.1038/nrd1008 12563302
    [Google Scholar]
  17. Jamal M. Ahmad W. Andleeb S. Jalil F. Imran M. Nawaz M.A. Hussain T. Ali M. Rafiq M. Kamil M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018 81 1 7 11 10.1016/j.jcma.2017.07.012 29042186
    [Google Scholar]
  18. Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015 34 5 877 886 10.1007/s10096‑015‑2323‑z 25630538
    [Google Scholar]
  19. Maurice N.M. Bedi B. Sadikot R.T. Pseudomonas aeruginosa Biofilms: Host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 2018 58 4 428 439 10.1165/rcmb.2017‑0321TR 29372812
    [Google Scholar]
  20. Gedefie A. Demsiss W. Belete M.A. Kassa Y. Tesfaye M. Tilahun M. Bisetegn H. Sahle Z. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review. Infect. Drug Resist. 2021 14 3711 3719 10.2147/IDR.S332051 34531666
    [Google Scholar]
  21. Moreau-Marquis S. Stanton B.A. O’Toole G.A. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 2008 21 4 595 599 10.1016/j.pupt.2007.12.001 18234534
    [Google Scholar]
  22. Høiby N. Bjarnsholt T. Givskov M. Molin S. Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010 35 4 322 332 10.1016/j.ijantimicag.2009.12.011 20149602
    [Google Scholar]
  23. Gilbert P. Maira-Litran T. McBain A.J. Rickard A.H. Whyte F.W. The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol. 2002 46 203 256 10.1016/S0065‑2911(02)46005‑5 12073654
    [Google Scholar]
  24. Rahimkhani M. Nikfallah A. Saberian M. Urinary tract infection in spinal cord injuries. Asian J. Pharm. Clin. Res. 2014 7 2 178 182
    [Google Scholar]
  25. Rahimkhani M. Ghofrani H. Helicobacter pylori and peptic ulcer in cirrhotic patients. Pak. J. Med. Sci. 2008 24 6 849 852
    [Google Scholar]
  26. Khan J Tarar SM Gul I Nawaz U Arshad M Challenges of antibiotic resistance biofilms and potential combating strategies: A review Biotech 2021 11 4 169 10.1007/s13205‑021‑02707‑w
    [Google Scholar]
  27. Sharma S. Mohler J. Mahajan S.D. Schwartz S.A. Bruggemann L. Aalinkeel R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023 11 6 1614 10.3390/microorganisms11061614 37375116
    [Google Scholar]
  28. Ito A. Taniuchi A. May T. Kawata K. Okabe S. Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl. Environ. Microbiol. 2009 75 12 4093 4100 10.1128/AEM.02949‑08 19376922
    [Google Scholar]
  29. Alhede M. Kragh K.N. Qvortrup K. Allesen-Holm M. van Gennip M. Christensen L.D. Jensen P.Ø. Nielsen A.K. Parsek M. Wozniak D. Molin S. Tolker-Nielsen T. Høiby N. Givskov M. Bjarnsholt T. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 2011 6 11 e27943 10.1371/journal.pone.0027943 22132176
    [Google Scholar]
  30. Bowler L.L. Zhanel G.G. Ball T.B. Saward L.L. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob. Agents Chemother. 2012 56 9 4976 4979 10.1128/AAC.00650‑12 22777043
    [Google Scholar]
  31. Haaber J. Cohn M.T. Frees D. Andersen T.J. Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 2012 7 7 e41075 10.1371/journal.pone.0041075 22815921
    [Google Scholar]
  32. Stewart P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002 292 2 107 113 10.1078/1438‑4221‑00196 12195733
    [Google Scholar]
  33. Appelbaum P.C. 2012 and beyond: Potential for the start of a second pre-antibiotic era? J. Antimicrob. Chemother. 2012 67 9 2062 2068 10.1093/jac/dks213 22687888
    [Google Scholar]
  34. Harbarth S. Balkhy H. H. Goossens H. World healthcare-associated infections resistance forum participants. Antimicrobial resistance: One world, one fight! Antimicrob Resist Infect Cont. 2015 4 49 10.1186/s13756‑015‑0091‑2
    [Google Scholar]
  35. Romulo A. Zuhud E.A.M. Rondevaldova J. Kokoska L. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine. Pharm. Biol. 2018 56 1 287 293 10.1080/13880209.2018.1462834 29656672
    [Google Scholar]
  36. Ogbole O.O. Segun P.A. Fasinu P.S. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts. S. Afr. J. Bot. 2018 117 240 246 10.1016/j.sajb.2018.05.028
    [Google Scholar]
  37. Cragg G.M. Newman D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 3670 3695 10.1016/j.bbagen.2013.02.008
    [Google Scholar]
  38. Cushnie T.P.T. Taylor P.W. Nagaoka Y. Uesato S. Hara Y. Lamb A.J. Investigation of the antibacterial activity of 3- O -octanoyl-(-)-epicatechin. J. Appl. Microbiol. 2008 105 5 1461 1469 10.1111/j.1365‑2672.2008.03881.x 18795977
    [Google Scholar]
  39. Barbieri R. Coppo E. Marchese A. Daglia M. Sobarzo-Sánchez E. Nabavi S.F. Nabavi S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  40. Jarriyawattanachaikul W. Chaveerach P. Chokesajjawatee N. Antimicrobial activity of thai-herbal plants against food-borne pathogens E. coli, S. aureus and C. jejuni. Agric. Agric. Sci. Procedia 2016 11 20 24 10.1016/j.aaspro.2016.12.004
    [Google Scholar]
  41. Siriwatanametanon N. Dodgson W. Dodgson J. Investigation of antimicrobial activity of 13 Thai medicinal plants against bacteria and fungi. J. Pure Appl. Microbiol. 2017 11 3 1351 1356 10.22207/JPAM.11.3.15
    [Google Scholar]
  42. Phalanisong P. Vichitphan K. Han J. Vichitphan S. High antioxidant and phenolic contents related to antibacterial activity against gastrointestinal pathogenic bacteria of some Thai medicinal plants. Pharmacogn. J. 2018 10 2 341 348 10.5530/pj.2018.2.58
    [Google Scholar]
  43. Gibot S. Fighting the enemy properly? Crit. Care Med. 2004 32 5 1223 1224 10.1097/01.CCM.0000125515.37781.9D 15190976
    [Google Scholar]
  44. Lee J.H. Kim Y.G. Cho H.S. Ryu S.Y. Cho M.H. Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine 2014 21 8-9 1037 1042 10.1016/j.phymed.2014.04.008 24837471
    [Google Scholar]
  45. Almeida F.A. Vargas E.L.G. Carneiro D.G. Pinto U.M. Vanetti M.C.D. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella. Microb. Pathog. 2018 121 369 388 10.1016/j.micpath.2018.05.014 29763730
    [Google Scholar]
  46. Bouyahya A. Dakka N. Et-Touys A. Abrini J. Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med. 2017 10 8 729 743 10.1016/j.apjtm.2017.07.021 28942821
    [Google Scholar]
  47. Bodede O. Shaik S. Chenia H. Singh P. Moodley R. Quorum sensing inhibitory potential and in silico molecular docking of flavonoids and novel terpenoids from Senegalia nigrescens. J. Ethnopharmacol. 2018 216 134 146 10.1016/j.jep.2018.01.031 29408657
    [Google Scholar]
  48. Fratianni F. Nazzaro F. Marandino A. Fusco M.R. Coppola R. De Feo V. De Martino L. Biochemical composition, antimicrobial activities,and anti-quorum-sensing activities of ethanol and ethyl acetate extracts from Hypericum connatum Lam. (Guttiferae). J. Med. Food 2013 16 5 454 459 10.1089/jmf.2012.0197 23631492
    [Google Scholar]
  49. Teanpaisan R. Kawsud P. Pahumunto N. Puripattanavong J. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Complement. Med. 2017 7 2 172 177 10.1016/j.jtcme.2016.06.007 28417087
    [Google Scholar]
  50. Vattem D.A. Mihalik K. Crixell S.H. McLean R.J.C. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 2007 78 4 302 310 10.1016/j.fitote.2007.03.009 17499938
    [Google Scholar]
  51. Omwenga E.O. Hensel A. Pereira S. Shitandi A.A. Goycoolea F.M. Antiquorum sensing, antibiofilm formation and cytotoxicity activity of commonly used medicinal plants by inhabitants of Borabu sub-county, Nyamira County, Kenya. PLoS One 2017 12 11 e0185722 10.1371/journal.pone.0185722 29091715
    [Google Scholar]
  52. Uzor P.F. Alkaloids from plants with antimalarial activity: A review of recent studies. Evid Based Complement Alternat Med. 2020 2020 8749083 10.1155/2020/8749083
    [Google Scholar]
  53. Mishra R. Panda A.K. De Mandal S. Shakeel M. Bisht S.S. Khan J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020 11 566325 10.3389/fmicb.2020.566325 33193155
    [Google Scholar]
  54. Rutherford S.T. Bassler B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2012 2 11 a012427 10.1101/cshperspect.a012427 23125205
    [Google Scholar]
  55. Chadha J. Harjai K. Chhibber S. Repurposing phytochemicals as anti‐virulent agents to attenuate quorum sensing‐regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb. Biotechnol. 2022 15 6 1695 1718 10.1111/1751‑7915.13981 34843159
    [Google Scholar]
  56. Luo J. Dong B. Wang K. Cai S. Liu T. Cheng X. Lei D. Chen Y. Li Y. Kong J. Chen Y. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 2017 12 4 e0176883 10.1371/journal.pone.0176883 28453568
    [Google Scholar]
  57. Kumar L. Patel S.K.S. Kharga K. Kumar R. Kumar P. Pandohee J. Kulshresha S. Harjai K. Chhibber S. Molecular mechanisms and applications of N-Acyl homoserine lactone-mediated quorum sensing in bacteria. Molecules 2022 27 21 7584 10.3390/molecules27217584 36364411
    [Google Scholar]
  58. Lu L. Wang J. Qin T. Chen K. Xie J. Xi B. Carvacrol inhibits quorum sensing in opportunistic bacterium Aeromonas hydrophila. Microorganisms 2023 11 8 2027 10.3390/microorganisms11082027 37630587
    [Google Scholar]
  59. Roy R. Tiwari M. Donelli G. Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018 9 1 522 554 10.1080/21505594.2017.1313372 28362216
    [Google Scholar]
  60. Bhatwalkar S.B. Mondal R. Krishna S.B.N. Adam J.K. Govender P. Anupam R. Antibacterial properties of organosulfur compounds of Garlic (Allium sativum). Front. Microbiol. 2021 12 613077 10.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  61. Adnan M. Patel M. Deshpande S. Alreshidi M. Siddiqui A.J. Reddy M.N. Emira N. De Feo V. Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach. Front. Microbiol. 2020 11 823 10.3389/fmicb.2020.00823 32477292
    [Google Scholar]
  62. Limoli DH Jones CJ Wozniak DJ Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 2015 3 3 10.1128 10.1128/9781555817466.ch11
    [Google Scholar]
  63. Breslawec A.P. Wang S. Monahan K.N. Barry L.L. Poulin M.B. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly‐β‐(1→6)‐ N ‐acetylglucosamine. FEBS J. 2023 290 4 1049 1059 10.1111/febs.16624 36083143
    [Google Scholar]
  64. Qian W. Zhang J. Wang W. Liu M. Fu Y. Li X. Wang T. Li Y. RETRACTED: Efficacy of Chelerythrine against mono- and dual-species biofilms of Candida albicans and Staphylococcus aureus and Its properties of inducing hypha-to-yeast transition of C. albicans. J. Fungi 2020 6 2 45 10.3390/jof6020045 32252437
    [Google Scholar]
  65. Rahimkhani M. Mordadi A. Kazemian K. Khalili H. Comparison of Helicobacter pylori detection methods: It’s association with leukocytosis and monocytosis. Infect. Disord. Drug Targets 2021 20 6 920 924 10.2174/1871526520666200707113955 32634084
    [Google Scholar]
  66. Ray V.A. Hill P.J. Stover C.K. Roy S. Sen C.K. Yu L. Wozniak D.J. DiGiandomenico A. Anti-Psl targeting of Pseudomonas aeruginosa biofilms for neutrophil-mediated disruption. Sci. Rep. 2017 7 1 16065 10.1038/s41598‑017‑16215‑6 29167572
    [Google Scholar]
  67. Raorane C.J. Lee J.H. Kim Y.G. Rajasekharan S.K. García-Contreras R. Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 2019 10 990 10.3389/fmicb.2019.00990 31134028
    [Google Scholar]
  68. AlMatar M. Var I. Kayar B. Eker E. Kafkas E. Zarifikhosroshahi M. Köksal F. Evaluation of polyphenolic profile and antibacterial activity of pomegranate juice in combination with Rifampin (R) against MDR-TB clinical isolates. Curr. Pharm. Biotechnol. 2019 20 4 317 326 10.2174/1389201020666190308130343 30854955
    [Google Scholar]
  69. AlMatar M. Makky E.A. Mahmood M.H. Wen K.X. Qi T.B.G. In vitro antioxidant and antimicrobial studies of ethanolic plant extracts of P. granatum, O. stamineus, A. bilimbi, M. nigra, and E. longifolia. Curr. Pharm. Biotechnol. 2022 23 10 1284 1312 10.2174/1389201022666210615113854 34132178
    [Google Scholar]
  70. Song X. Xia Y.X. He Z.D. Zhang H.J. A review of natural products with anti-biofilm activity. Curr. Org. Chem. 2018 22 8 789 817 10.2174/1385272821666170620110041
    [Google Scholar]
  71. Meng F.C. Wu Z.F. Yin Z.Q. Lin L.G. Wang R. Zhang Q.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018 13 1 13 10.1186/s13020‑018‑0171‑3 29541156
    [Google Scholar]
  72. Thawabteh A. Juma S. Bader M. Karaman D. Scrano L. Bufo S. Karaman R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 2019 11 11 656 10.3390/toxins11110656 31717922
    [Google Scholar]
  73. Kuang Z.Q. Zhang X.H. Ma J.J. Li J.L. Zhou L.J. Effects of Coptis chinensis Franch alkaloids on plants and microorganisms: A Review. Allelopathy J. 2018 43 2 139 157 10.26651/allelo.j./2018‑43‑2‑1137
    [Google Scholar]
  74. Liu Y. Cui Y. Lu L. Gong Y. Han W. Piao G. Natural indole‐containing alkaloids and their antibacterial activities. Arch. Pharm. (Weinheim) 2020 353 10 2000120 10.1002/ardp.202000120 32557757
    [Google Scholar]
  75. Xie Q. Johnson B.R. Wenckus C.S. Fayad M.I. Wu C.D. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model. J. Endod. 2012 38 8 1114 1117 10.1016/j.joen.2012.04.023 22794217
    [Google Scholar]
  76. Zhao L.X. Li D.D. Hu D.D. Hu G.H. Yan L. Wang Y. Jiang Y.Y. Effect of tetrandrine against Candida albicans biofilms. PLoS One 2013 8 11 e79671 10.1371/journal.pone.0079671 24260276
    [Google Scholar]
  77. Dwivedi D. Singh V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med. 2016 6 1 57 61 10.1016/j.jtcme.2014.11.025 26870681
    [Google Scholar]
  78. Othman L. Sleiman A. Abdel-Massih R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019 10 911 10.3389/fmicb.2019.00911 31156565
    [Google Scholar]
  79. Rahimkhani M. Mordadi A.R. Survey of the lethal effect of ciprofloxacin and supernatant isolated from Staphylococcus aureus under the stress of ciprofloxacin on methicillin-resistant Staphylococcus aureus strains isolated from clinical specimens. Journal of Payavard Salamat 2022 15 6 578 584
    [Google Scholar]
  80. Rahimkhani M. Rajabi Z. MRSA and VRSA isolated from patients hospitalized in the ICU, NICU and surgical departments of hospitals. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2024 94 3 653 657 10.1007/s40011‑024‑01558‑8
    [Google Scholar]
  81. Kumar L. Chhibber S. Harjai K. Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 2013 90 73 78 10.1016/j.fitote.2013.06.017 23831483
    [Google Scholar]
  82. Slobodníková L. Fialová S. Rendeková K. Kováč J. Mučaji P. Antibiofilm activity of plant polyphenols. Molecules 2016 21 12 1717 10.3390/molecules21121717 27983597
    [Google Scholar]
  83. Bolat E. Sarıtaş S. Duman H. Eker F. Akdaşçi E. Karav S. Witkowska A.M. Polyphenols: Secondary metabolites with a biological impression. Nutrients 2024 16 15 2550 10.3390/nu16152550 39125431
    [Google Scholar]
  84. Antimicrobial activity of artocarpesin from Artocarpus heterophyllus Lam. against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Plant Res. 2012 6 4879 4882 10.5897/JMPR12.699
    [Google Scholar]
  85. Eve A. Aliero A.A. Nalubiri D. Adeyemo R.O. Akinola S.A. Pius T. Nabaasa S. Nabukeera S. Alkali B. Ntulume I. In vitro antibacterial activity of crude extracts of Artocarpus heterophyllus seeds against selected diarrhoea-causing superbug bacteria. J. Sci. World 2020 2020 9813970 10.1155/2020/9813970
    [Google Scholar]
  86. Al-Dhabi N.A. Balachandran C. Raj M.K. Duraipandiyan V. Muthukumar C. Ignacimuthu S. Khan I.A. Rajput V.S. Antimicrobial, antimycobacterial and antibiofilm properties of Couroupita guianensis Aubl. fruit extract. BMC Complement. Altern. Med. 2012 12 1 242 10.1186/1472‑6882‑12‑242 23206492
    [Google Scholar]
  87. Prabu G.R. Gnanamani A. Sadulla S. Guaijaverin a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol. 2006 101 2 487 495 10.1111/j.1365‑2672.2006.02912.x 16882158
    [Google Scholar]
  88. Choi M.A. Kim S.H. Chung W.Y. Hwang J.K. Park K.K. Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochem. Biophys. Res. Commun. 2004 326 1 210 217 10.1016/j.bbrc.2004.11.020 15567173
    [Google Scholar]
  89. Rukayadi Y. Hwang J.K. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett. Appl. Microbiol. 2006 42 4 400 404 10.1111/j.1472‑765X.2006.01876.x 16599995
    [Google Scholar]
  90. Cox-Georgian D Ramadoss N Dona C Basu C Therapeutic and medicinal uses of terpenes. Medicinal Plants Springer 2019 333 359 10.1007/978‑3‑030‑31269‑5_15
    [Google Scholar]
  91. Mahizan N.A. Yang S.K. Moo C.L. Song A.A.L. Chong C.M. Chong C.W. Abushelaibi A. Lim S.H.E. Lai K.S. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019 24 14 2631 10.3390/molecules24142631 31330955
    [Google Scholar]
  92. Liu X.T. Pan Q. Shi Y. Williams I.D. Sung H.H.Y. Zhang Q. Liang J.Y. Ip N.Y. Min Z.D. ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens. J. Nat. Prod. 2006 69 2 255 260 10.1021/np050479e 16499326
    [Google Scholar]
  93. Katsura H. Tsukiyama R.I. Suzuki A. Kobayashi M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob. Agents Chemother. 2001 45 11 3009 3013 10.1128/AAC.45.11.3009‑3013.2001 11600349
    [Google Scholar]
  94. Kubo M. Dohi T. Odani T. Tanaka H. Iwamura J. Cytotoxicity of Corylifoliae fructus. I. Isolation of the effective compound and the cytotoxicity. Yakugaku Zasshi 1989 109 12 926 931 10.1248/yakushi1947.109.12_926 2630635
    [Google Scholar]
  95. Favre-Godal Q Queiroz EF Dorsaz S Ebrahim SN Marcourt L Gindro K HPLC antifungal activity-based profiling of Swartzia simplex and targeted MPLC isolation of its antifungal diterpenes Planta Medica 2014 80 16 7610 10.1055/s‑0034‑1394733
    [Google Scholar]
  96. Jeon J.G. Pandit S. Xiao J. Gregoire S. Falsetta M.L. Klein M.I. Koo H. Influences of trans‐trans farnesol, a membrane‐targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed‐species oral biofilms. Int. J. Oral Sci. 2011 3 2 98 106 10.4248/IJOS11038 21485314
    [Google Scholar]
  97. Claffey N. Essential oil mouthwashes: A key component in oral health management. J. Clin. Periodontol. 2003 30 s5 Suppl. 5 22 24 10.1034/j.1600‑051X.30.s5.8.x 12787200
    [Google Scholar]
  98. Takarada K. Kimizuka R. Takahashi N. Honma K. Okuda K. Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol. Immunol. 2004 19 1 61 64 10.1046/j.0902‑0055.2003.00111.x 14678476
    [Google Scholar]
  99. Cha J.D. Jeong M.R. Choi H.J. Jeong S.I. Moon S.E. Yun S.I. Kim Y.H. Kil B.S. Song Y.H. Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia. Planta Med. 2005 71 6 575 577 10.1055/s‑2005‑864164 15971134
    [Google Scholar]
  100. Cha J.D. Jeong M.R. Jeong S.I. Moon S.E. Kil B.S. Yun S.I. Lee K.Y. Song Y.H. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytother. Res. 2007 21 3 295 299 10.1002/ptr.1864 17236183
    [Google Scholar]
  101. Chemsa A.E. Erol E. Öztürk M. Zellagui A. Özgür C. Gherraf N. Duru M.E. Chemical constituents of essential oil of endemic Rhanterium suaveolens Desf. growing in Algerian Sahara with antibiofilm, antioxidant and anticholinesterase activities. Nat. Prod. Res. 2016 30 18 2120 2124 10.1080/14786419.2015.1110705 26564377
    [Google Scholar]
  102. Silva R.C. Costa J.S. Figueiredo R.O. Setzer W.N. Silva J.K.R. Maia J.G.S. Figueiredo P.L.B. Monoterpenes and sesquiterpenes of essential oils from Psidium species and their biological properties. Molecules 2021 26 4 965 10.3390/molecules26040965 33673039
    [Google Scholar]
  103. Swolana D. Kępa M. Kabała-Dzik A. Dzik R. Wojtyczka R.D. Sensitivity of Staphylococcal biofilm to selected compounds of plant origin. Antibiotics 2021 10 5 607 10.3390/antibiotics10050607 34065384
    [Google Scholar]
  104. Sankar Ganesh P. Rai Vittal R. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO 2 method against Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2015 29 24 2295 2298 10.1080/14786419.2015.1004673 25635569
    [Google Scholar]
  105. Shamim A. Ali A. Iqbal Z. Mirza M.A. Aqil M. Kawish S.M. Siddiqui A. Kumar V. Naseef P.P. Alshadidi A.A.F. Saheer Kuruniyan M. Natural medicine a promising candidate in combating microbial biofilm. Antibiotics 2023 12 2 299 10.3390/antibiotics12020299 36830210
    [Google Scholar]
  106. Koo H. Nino de Guzman P. Schobel B.D. Vacca Smith A.V. Bowen W.H. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res. 2006 40 1 20 27 10.1159/000088901 16352876
    [Google Scholar]
  107. Rahim Z.H.A. Khan H.B.S.G. Comparative studies on the effect of crude aqueous (CA) and solvent (CM) extracts of clove on the cariogenic properties of Streptococcus mutans. J. Oral Sci. 2006 48 3 117 123 10.2334/josnusd.48.117 17023743
    [Google Scholar]
  108. Steinberg D. Feldman M. Ofek I. Weiss E.I. Cranberry high molecular weight constituents promote Streptococcus sobrinus desorption from artificial biofilm. Int. J. Antimicrob. Agents 2005 25 3 247 251 10.1016/j.ijantimicag.2004.10.014 15737520
    [Google Scholar]
  109. Makarewicz M. Drożdż I. Tarko T. Duda-Chodak A. The interactions between polyphenols and microorganisms, especially gut microbiota Antioxidants 2021 10 2 188 10.3390/antiox10020188
    [Google Scholar]
  110. Veloz J.J. Saavedra N. Lillo A. Alvear M. Barrientos L. Salazar L.A. Antibiofilm activity of Chilean propolis on Streptococcus mutans is influenced by the year of collection. BioMed Res. Int. 2015 2015 1 6 10.1155/2015/291351 26247015
    [Google Scholar]
  111. Brambilla L.Z.S. Endo E.H. Cortez D.A.G. Dias Filho B.P. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii. Rev. Bras. Farmacogn. 2017 27 1 112 117 10.1016/j.bjp.2016.08.008
    [Google Scholar]
  112. Subramaniam G. Khan G.Z. Sivasamugham L.A. Wong L.S. Kidd S. Yap C.K. Antimicrobial and anti-biofilm activities of plant extracts against Pseudomonas aeruginosa: A review. J. Exp. Biol. Agric. 2023 11 5 780 790 10.18006/2023.11(5).780.790
    [Google Scholar]
  113. Ulrey R.K. Barksdale S.M. Zhou W. van Hoek M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014 14 1 499 10.1186/1472‑6882‑14‑499 25511463
    [Google Scholar]
  114. Guo Y. Li Z. Chen F. Chai Y. Polyphenols in oral health: Homeostasis maintenance, disease prevention, and therapeutic applications. Nutrients 2023 15 20 4384 10.3390/nu15204384 37892459
    [Google Scholar]
  115. Ortega-Ramirez L.A. Gutiérrez-Pacheco M.M. Vargas-Arispuro I. González-Aguilar G.A. Martínez-Téllez M.A. Ayala-Zavala J.F. Inhibition of glucosyltransferase activity and glucan production as an antibiofilm mechanism of lemongrass essential oil against Escherichia coli O157:H7. Antibiotics 2020 9 3 102 10.3390/antibiotics9030102 32121319
    [Google Scholar]
  116. Palombo E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Alternat. Med. 2011 2011 1 680354 10.1093/ecam/nep067 19596745
    [Google Scholar]
  117. Veloz J.J. Saavedra N. Alvear M. Zambrano T. Barrientos L. Salazar L.A. Polyphenol-Rich extract from propolis reduces the expression and activity of Streptococcus mutans Glucosyltransferases at subinhibitory concentrations. BioMed Res. Int. 2016 2016 1 7 10.1155/2016/4302706 27110563
    [Google Scholar]
  118. Mombeshora M. Mukanganyama S. Antibacterial activities, proposed mode of action and cytotoxicity of leaf extracts from Triumfetta welwitschii against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2019 19 1 315 10.1186/s12906‑019‑2713‑3 31744500
    [Google Scholar]
  119. Mombeshora M. Chi G.F. Mukanganyama S. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem. Res. Int. 2021 2021 1 13 10.1155/2021/9946183 34221506
    [Google Scholar]
  120. Stefanović O.D. Tešić J.D. Čomić L.R. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. J. Food Drug Anal. 2015 23 3 417 424 10.1016/j.jfda.2015.01.003
    [Google Scholar]
  121. Mróz M. Kusznierewicz B. Phytochemical screening and biological evaluation of Greek sage (Salvia fruticosa Mill.) extracts. Sci. Rep. 2023 13 1 22309 10.1038/s41598‑023‑49695‑w 38102229
    [Google Scholar]
  122. de Araujo A.R. Quelemes P.V. Perfeito M.L.G. de Lima L.I. Sá M.C. Nunes P.H.M. Joanitti G.A. Eaton P. Soares M.J.S. de Souza de Almeida Leite J.R. Antibacterial, antibiofilm and cytotoxic activities of Terminalia fagifolia Mart. extract and fractions. Ann. Clin. Microbiol. Antimicrob. 2015 14 1 25 10.1186/s12941‑015‑0084‑2 25902872
    [Google Scholar]
  123. Medeiros Mazzorana D. Nicolau V. Moreira J. de Aguiar Amaral P. de Andrade V.M. Influence of Mikania laevigata extract over the genotoxicity induced by alkylating agents. ISRN Toxicol. 2013 2013 1 7 10.1155/2013/521432 23724299
    [Google Scholar]
  124. Frassinetti Stefania Gabriele Morena Moccia Eleonora Longo Vincenzo Di Gioia Diana Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.. Lebensm. Wiss. Technol. 2020 109149 109149 10.1016/j.lwt.2020.109149
    [Google Scholar]
  125. Valverde M.E. Hernández-Pérez T. Paredes-López O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015 2015 1 14 10.1155/2015/376387 25685150
    [Google Scholar]
  126. Fernandes Â. Petrović J. Stojković D. Barros L. Glamočlija J. Soković M. Martins A. Ferreira I.C.F.R. Polyporus squamosus (Huds.) Fr from different origins: Chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. Lebensm. Wiss. Technol. 2016 69 91 97 10.1016/j.lwt.2016.01.037
    [Google Scholar]
  127. Elekhnawy E. Negm W.A. El-Aasr M. Kamer A.A. Alqarni M. Batiha G.E.S. Obaidullah A.J. Fawzy H.M. Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioon spinulosum extract: In vitro and in vivo approach. Sci. Rep. 2022 12 1 180 10.1038/s41598‑021‑03953‑x 34996996
    [Google Scholar]
  128. Cui H. Zhao C. Lin L. Antibacterial activity of H elichrysum italicum oil on vegetables and its mechanism of action. J. Food Process. Preserv. 2015 39 6 2663 2672 10.1111/jfpp.12516
    [Google Scholar]
  129. Singh M. Pandey N. Agnihotri V. Singh K.K. Pandey A. Antioxidant, antimicrobial activity and bioactive compounds of Bergenia ciliata Sternb.: A valuable medicinal herb of Sikkim Himalaya. J. Tradit. Complement. Med. 2017 7 2 152 157 10.1016/j.jtcme.2016.04.002 28417084
    [Google Scholar]
  130. Alam K. Farraj D.A.A. Mah-e-Fatima S. Yameen M.A. Elshikh M.S. Alkufeidy R.M. Mustafa A.E.Z.M.A. Bhasme P. Alshammari M.K. Alkubaisi N.A. Abbasi A.M. Naqvi T.A. Anti-biofilm activity of plant derived extracts against infectious pathogen Pseudomonas aeruginosa PAO1. J. Infect. Public Health 2020 13 11 1734 1741 10.1016/j.jiph.2020.07.007 32753311
    [Google Scholar]
  131. Ertürk Ö. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia (Bratisl.) 2006 61 3 275 278 10.2478/s11756‑006‑0050‑8
    [Google Scholar]
  132. Kchaou W. Abbès F. Blecker C. Attia H. Besbes S. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind. Crops Prod. 2013 45 262 269 10.1016/j.indcrop.2012.12.028
    [Google Scholar]
  133. Saeloh D. Visutthi M. Efficacy of thai plant extracts for antibacterial and anti-biofilm activities against pathogenic bacteria. Antibiotics 2021 10 12 1470 10.3390/antibiotics10121470 34943682
    [Google Scholar]
  134. Blando F. Russo R. Negro C. De Bellis L. Frassinetti S. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode polyphenolic extracts. Antioxidants 2019 8 5 117 10.3390/antiox8050117 31052535
    [Google Scholar]
  135. Mohanta Y.K. Biswas K. Jena S.K. Hashem A. Abd Allah E.F. Mohanta T.K. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the indian medicinal plants. Front. Microbiol. 2020 11 1143 10.3389/fmicb.2020.01143 32655511
    [Google Scholar]
  136. Ali M.S. Amin M.R. Kamal C.M.I. Hossain M.A. In vitro antioxidant, cytotoxic, thrombolytic activities and phytochemical evaluation of methanol extract of the A. philippense L. leaves. Asian Pac. J. Trop. Biomed. 2013 3 6 464 469 10.1016/S2221‑1691(13)60097‑0 23730559
    [Google Scholar]
  137. Naghmouchi K. Belguesmia Y. Baah J. Teather R. Drider D. Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res. Microbiol. 2011 162 2 99 107 10.1016/j.resmic.2010.09.014 20868743
    [Google Scholar]
  138. Guimarães R. Milho C. Liberal Â. Silva J. Fonseca C. Barbosa A. Ferreira I.C.F.R. Alves M.J. Barros L. Antibiofilm potential of medicinal plants against Candida spp. oral biofilms: A review. Antibiotics 2021 10 9 1142 10.3390/antibiotics10091142 34572724
    [Google Scholar]
  139. Mahlo S.M. Chauke H.R. McGaw L. Eloff J. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr. J. Tradit. Complement. Altern. Med. 2016 13 4 216 222 10.21010/ajtcam.v13i4.28 28852739
    [Google Scholar]
  140. Kavanaugh N.L. Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 2012 78 11 4057 4061 10.1128/AEM.07499‑11 22467497
    [Google Scholar]
  141. Mirghani R. Saba T. Khaliq H. Mitchell J. Do L. Chambi L. Diaz K. Kennedy T. Alkassab K. Huynh T. Elmi M. Martinez J. Sawan S. Rijal G. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022 8 3 239 277 10.3934/microbiol.2022019 36317001
    [Google Scholar]
  142. AlSheikh H.M.A. Sultan I. Kumar V. Rather I.A. Al-Sheikh H. Tasleem Jan A. Haq Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 2020 9 8 480 10.3390/antibiotics9080480 32759771
    [Google Scholar]
  143. Chen C. Yu Z. Li Y. Fichna J. Storr M. Effects of berberine in the gastrointestinal tract: A review of actions and therapeutic implications. Am. J. Chin. Med. 2014 42 5 1053 1070 10.1142/S0192415X14500669 25183302
    [Google Scholar]
  144. Wang C. Cheng Y. Zhang Y. Jin H. Zuo Z. Wang A. Huang J. Jiang J. Kong W. Berberine and its main metabolite berberrubine inhibit platelet activation through suppressing the class I PI3Kβ/Rasa3/Rap1 pathway. Front. Pharmacol. 2021 12 734603 10.3389/fphar.2021.734603 34690771
    [Google Scholar]
  145. Lan J. Zhao Y. Dong F. Yan Z. Zheng W. Fan J. Sun G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J. Ethnopharmacol. 2015 161 69 81 10.1016/j.jep.2014.09.049 25498346
    [Google Scholar]
  146. Mujtaba M.A. Akhter M.H. Alam M.S. Ali M.D. Hussain A. An updated review on therapeutic potential and recent advances in drug delivery of Berberine: Current status and future prospect. Curr. Pharm. Biotechnol. 2022 23 1 60 71 10.2174/1389201022666210208152113 33557735
    [Google Scholar]
  147. Zolotareva D. Zazybin A. Dauletbakov A. Belyankova Y. Giner Parache B. Tursynbek S. Seilkhanov T. Kairullinova A. Morpholine, piperazine, and piperidine derivatives as antidiabetic agents. Molecules 2024 29 13 3043 10.3390/molecules29133043 38998996
    [Google Scholar]
  148. Chopra B. Dhingra A.K. Kapoor R.P. Prasad D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J. 2016 3 1 75 96 10.2174/1874842201603010075
    [Google Scholar]
  149. Frymoyer A. Shugarts S. Browne M. Wu A.H.B. Frassetto L. Benet L.Z. Effect of single-dose rifampin on the pharmacokinetics of warfarin in healthy volunteers. Clin. Pharmacol. Ther. 2010 88 4 540 547 10.1038/clpt.2010.142 20703222
    [Google Scholar]
  150. Bedada S.K. Boga P.K. The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Eur. J. Clin. Pharmacol. 2017 73 3 343 349 10.1007/s00228‑016‑2173‑3 27981349
    [Google Scholar]
  151. Dubey R.K. Leeners B. Imthurn B. Merki-Feld G.S. Rosselli M. Piperine decreases binding of drugs to human plasma and increases uptake by brain microvascular endothelial cells. Phytother. Res. 2017 31 12 1868 1874 10.1002/ptr.5929 28948673
    [Google Scholar]
  152. Septama A.W. Panichayupakaranant P. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Pharm. Biol. 2016 54 4 686 691 10.3109/13880209.2015.1072566 26427318
    [Google Scholar]
  153. Oon S.F. Nallappan M. Tee T.T. Shohaimi S. Kassim N.K. Sa’ariwijaya M.S.F. Cheah Y.H. Xanthorrhizol: A review of its pharmacological activities and anticancer properties. Cancer Cell Int. 2015 15 1 100 10.1186/s12935‑015‑0255‑4 26500452
    [Google Scholar]
  154. Nizam N.N. Mahmud S. Ark S.M.A. Kamruzzaman M. Hasan M.K. Bakuchiol, a natural constituent and its pharmacological benefits. F1000 Res. 2023 12 29 10.12688/f1000research.129072.2 38021404
    [Google Scholar]
  155. Patra S. Biswas P. Karmakar S. Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: Implications of the combination of antibiotics and phytoconstituents. Arch. Microbiol. 2024 206 7 294 10.1007/s00203‑024‑04012‑5 38850339
    [Google Scholar]
  156. Rather M.A. Gupta K. Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 2021 52 4 1701 1718 10.1007/s42770‑021‑00624‑x 34558029
    [Google Scholar]
  157. Álvarez-Martínez F.J. Barrajón-Catalán E. Herranz-López M. Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021 90 153626 10.1016/j.phymed.2021.153626 34301463
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265324950241204182204
Loading
/content/journals/iddt/10.2174/0118715265324950241204182204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test