Skip to content
2000
image of Annual SZ: An Alternative Immunotherapy for COVID-19 and Long COVID

Abstract

Since the outbreak of coronavirus disease 2019 (COVID-19) in late 2019 and early 2020, the identification of drugs to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing focus of research. Cytokine storm and acute respiratory distress syndrome (ARDS) are the leading causes of mortality following infection. In this review, we discuss immune pathogenesis and four medications, including Remdesivir, Tocilizumab, Dexamethasone, and Annual SZ for COVID-19. A comparison of the effectiveness and therapeutic usage of drugs as reported in clinical trials and reports was made at different disease levels as well. Clinical studies indicate that Annual SZ with mild side effects was more affordable and might be more effective than other medications. Additionally, Annual SZ was capable of reducing the levels of pro-inflammatory cytokines as well as viral attachment and RNA replication.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265323116241104052004
2024-12-20
2025-01-19
Loading full text...

Full text loading...

References

  1. Hajivalili M. Hosseini M. Haji-Fatahaliha M. Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sci. 2020 257 118058 10.1016/j.lfs.2020.118058 32653518
    [Google Scholar]
  2. Lee K.-Y. Rhim J.-W. Kang J.-H. Immunopathogenesis of COVID-19 and early immunomodulators Clin Exp Pediatr 2020 63 7 239 250
    [Google Scholar]
  3. Dhand R. Li J. Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2. Am. J. Respir. Crit. Care Med. 2020 202 5 651 659 10.1164/rccm.202004‑1263PP 32543913
    [Google Scholar]
  4. Islam M.A. Kundu S. Alam S.S. Hossan T. Kamal M.A. Hassan R. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 17515 patients. PLoS One 2021 16 4 e0249788 10.1371/journal.pone.0249788 33822812
    [Google Scholar]
  5. Zhou F. Yu T. Du R. Fan G. Liu Y. Liu Z. Xiang J. Wang Y. Song B. Gu X. Guan L. Wei Y. Li H. Wu X. Xu J. Tu S. Zhang Y. Chen H. Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020 395 10229 1054 1062 10.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  6. Islam M.A. Alam S.S. Kundu S. Hossan T. Kamal M.A. Cavestro C. Prevalence of headache in patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 14,275 patients. Front. Neurol. 2020 11 562634 10.3389/fneur.2020.562634 33329305
    [Google Scholar]
  7. Saniasiaya J. Islam M.A. Abdullah B. Prevalence of olfactory dysfunction in coronavirus disease 2019 ( COVID ‐19): A meta‐analysis of 27,492 patients. Laryngoscope 2021 131 4 865 878 10.1002/lary.29286 33219539
    [Google Scholar]
  8. Saniasiaya J. Islam M.A. Abdullah B. Prevalence and characteristics of taste disorders in cases of COVID-19: A meta-analysis of 29,349 patients. Otolaryngol. Head Neck Surg. 2020 0194599820981018 33320033
    [Google Scholar]
  9. Agyeman A.A. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clinic Proceedings. Elsevier 2020 10.1016/j.mayocp.2020.05.030
    [Google Scholar]
  10. Oran D.P. Topol E.J. The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Ann. Intern. Med. 2021 174 5 655 662 10.7326/M20‑6976 33481642
    [Google Scholar]
  11. Consoli L. novel coronavirus (COVID-19) pneumonia complications: The importance of lung ultrasound. J. Ultrasound 2019 2020 1 4 32562109
    [Google Scholar]
  12. Gao Y. Ding M. Dong X. Zhang J. Kursat Azkur A. Azkur D. Gan H. Sun Y. Fu W. Li W. Liang H. Cao Y. Yan Q. Cao C. Gao H. Brüggen M.C. van de Veen W. Sokolowska M. Akdis M. Akdis C.A. Risk factors for severe and critically ill COVID‐19 patients: A review. Allergy 2021 76 2 428 455 10.1111/all.14657 33185910
    [Google Scholar]
  13. Zheng Z. Peng F. Xu B. Zhao J. Liu H. Peng J. Li Q. Jiang C. Zhou Y. Liu S. Ye C. Zhang P. Xing Y. Guo H. Tang W. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020 81 2 e16 e25 10.1016/j.jinf.2020.04.021 32335169
    [Google Scholar]
  14. Cummings M.J. Baldwin M.R. Abrams D. Jacobson S.D. Meyer B.J. Balough E.M. Aaron J.G. Claassen J. Rabbani L.E. Hastie J. Hochman B.R. Salazar-Schicchi J. Yip N.H. Brodie D. O’Donnell M.R. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020 395 10239 1763 1770 10.1016/S0140‑6736(20)31189‑2 32442528
    [Google Scholar]
  15. Wendel Garcia P.D. Fumeaux T. Guerci P. Heuberger D.M. Montomoli J. Roche-Campo F. Schuepbach R.A. Hilty M.P. Alfaro Farias M. Margarit A. Vizmanos-Lamotte G. Tschoellitsch T. Meier J. Cardona F.S. Skola J. Horakova L. Aguirre-Bermeo H. Apolo J. Novy E. Losser M-R. Jurkolow G. Delahaye G. David S. Welte T. Wengenmayer T. Staudacher D.L. Aslanidis T. Babik B. Korsos A. Gal J. Csaba H. Donati A. Carsetti A. Turrini F. Simonini M.S. Ceriani R. Murrone M. Rezoagli E. Vitale G. Fogagnolo A. Spadaro S. Wu M.A. Cogliati C. Colombo R. Catena E. Facondini F. Potalivo A. Gangitano G. Perin T. Bocci M.G. Antonelli M. Gommers D. Ince C. Mayor-Vázquez E. Cruz M. Delgado M. Garcia R.R. Gamez Zapata J. Zalba-Etayo B. Lozano-Gomez H. Castro P. Tellez A. Jacas A. Muñoz G. Andrea R. Ortiz J. Quintana E. Rovira I. Reverter E. Fernandez J. Ferrer M. Badia J.R. Lander Azcona A. Orta J.E. Bühler P. Brugger S. Hofmaenner D. Unseld S. Ruschitzka F. Moret-Bochatay M. Yuen B. Hillermann T. Ksouri H. Sridharan G.O. Ristic A. Sepulcri M. Filipovic M. Pietsch U. Salomon P. Drvaric I. Schott P. Urech S. Lambert A. Merki L. Laube M. Hillgaertner F. Sieber M. Dullenkopf A. Petersen L. Grazioli S. Rimensberger P.C. Fleisch I. Lavanchy J. Marquardt K. Shaikh K. Redecker H. Stephan M. Brem J. Rogdo B. Birkenmaier A. Meyer zu Bentrup F. Fodor P. Locher P. Camen G. Siegemund M. Zellweger N. Jeitziner M-M. Jenni-Moser B. Bürkle C. Kleger G-R. Franchitti Laurent M. Laurent J-C. Gaspert T. Jovic M. Studhalter M. Haberthuer C. Lussman R.F. Selz D. Naon D. Mauri R. Ceruti S. Marrel J. Brenni M. Ensner R. Gehring N. Heise A. Huebner T. Neff T.A. Cereghetti S. Boroli F. Pugin J. Marczin N. Wong J. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine 2020 25 100449 10.1016/j.eclinm.2020.100449 32838231
    [Google Scholar]
  16. Zavvar M. Yahyapoor A. Baghdadi H. Zargaran S. Assadiasl S. Abdolmohammadi K. Hossein Abooei A. Reza Sattarian M. JalaliFarahani M. Zarei N. Farahvash A. Fatahi Y. Deniz G. Zarebavani M. Nicknam M.H. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int. Immunopharmacol. 2022 107 108655 10.1016/j.intimp.2022.108655 35248946
    [Google Scholar]
  17. Solerte S.B. Di Sabatino A. Galli M. Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020 57 7 779 783 10.1007/s00592‑020‑01539‑z 32506195
    [Google Scholar]
  18. Ahmed M.H. Hassan A. Dexamethasone for the treatment of coronavirus disease (COVID-19): A review. SN Compr. Clin. Med. 2020 2 12 2637 2646 10.1007/s42399‑020‑00610‑8 33163859
    [Google Scholar]
  19. Hoffmann M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor Cell 2020 181 12 271 280
    [Google Scholar]
  20. Walls A.C. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020 181 2 281 292
    [Google Scholar]
  21. Gui M. Song W. Zhou H. Xu J. Chen S. Xiang Y. Wang X. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017 27 1 119 129 10.1038/cr.2016.152 28008928
    [Google Scholar]
  22. V’kovski P. Kratzel A. Steiner S. Stalder H. Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021 19 3 155 170 10.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  23. van Eijk L.E. Binkhorst M. Bourgonje A.R. Offringa A.K. Mulder D.J. Bos E.M. Kolundzic N. Abdulle A.E. van der Voort P.H.J. Olde Rikkert M.G.M. van der Hoeven J.G. den Dunnen W.F.A. Hillebrands J.L. van Goor H. COVID ‐19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol. 2021 254 4 307 331 10.1002/path.5642 33586189
    [Google Scholar]
  24. Zavvar M. Kochak H.E. Abdolmohammadi K. Rashidi N. Mokhtari M. Noorbakhsh F. Azadmanesh K. Gooshki E.S. Fatahi Y. Azad T.M. Jahangirifard A. Mousavi M.J. Masoumi E. Mirzaei H.R. Gouya M.M. Rezaei F. Nicknam M.H. Sars-cov-2 and covid-19, basic and clinical aspects of the human pandemic: A review. Iran. J. Public Health 2021 50 4 665 675 34183916
    [Google Scholar]
  25. Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. Zhang L. Fan G. Xu J. Gu X. Cheng Z. Yu T. Xia J. Wei Y. Wu W. Xie X. Yin W. Li H. Liu M. Xiao Y. Gao H. Guo L. Xie J. Wang G. Jiang R. Gao Z. Jin Q. Wang J. Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 395 10223 497 506 10.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  26. Chen G. Wu D. Guo W. Cao Y. Huang D. Wang H. Wang T. Zhang X. Chen H. Yu H. Zhang X. Zhang M. Wu S. Song J. Chen T. Han M. Li S. Luo X. Zhao J. Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020 130 5 2620 2629 10.1172/JCI137244 32217835
    [Google Scholar]
  27. Wu F. Zhao S. Yu B. Chen Y.M. Wang W. Song Z.G. Hu Y. Tao Z.W. Tian J.H. Pei Y.Y. Yuan M.L. Zhang Y.L. Dai F.H. Liu Y. Wang Q.M. Zheng J.J. Xu L. Holmes E.C. Zhang Y.Z. A new coronavirus associated with human respiratory disease in China. Nature 2020 579 7798 265 269 10.1038/s41586‑020‑2008‑3 32015508
    [Google Scholar]
  28. Ye Q. Wang B. Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020 80 6 607 613 10.1016/j.jinf.2020.03.037 32283152
    [Google Scholar]
  29. Xu Z. Shi L. Wang Y. Zhang J. Huang L. Zhang C. Liu S. Zhao P. Liu H. Zhu L. Tai Y. Bai C. Gao T. Song J. Xia P. Dong J. Zhao J. Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020 8 4 420 422 10.1016/S2213‑2600(20)30076‑X 32085846
    [Google Scholar]
  30. Post-COVID conditions 2021 Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Flong-term-effects.html
  31. Improvement N. Managing COVID-19 symptoms (including at the end of life) in the community: Summary of NICE guidelines. BMJ 2020 369 1461
    [Google Scholar]
  32. Control C.f.D. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19) Coronavirus Disease (CoVID-19) National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. 2020
    [Google Scholar]
  33. Desai A.D. Lavelle M. Boursiquot B.C. Wan E.Y. Long-term complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022 322 1 C1 C11 10.1152/ajpcell.00375.2021 34817268
    [Google Scholar]
  34. Chan Sui Ko A. Candellier A. Mercier M. Joseph C. Schmit J.L. Lanoix J.P. Andrejak C. Number of initial symptoms is more related to long COVID-19 than acute severity of infection: A prospective cohort of hospitalized patients. Int. J. Infect. Dis. 2022 118 220 223 10.1016/j.ijid.2022.03.006 35257903
    [Google Scholar]
  35. Papanikolaou V. Chrysovergis A. Ragos V. Tsiambas E. Katsinis S. Manoli A. Papouliakos S. Roukas D. Mastronikolis S. Peschos D. Batistatou A. Kyrodimos E. Mastronikolis N. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene 2022 814 146134 10.1016/j.gene.2021.146134 34990799
    [Google Scholar]
  36. Coronavirus can infect you within 5 to 50 minutes: Study 2020 Available from:https://zeenews.india.com/coronavirus-can-infect-you-within-5-to-50-minutes-study-2286097.html
  37. Where and how people are contracting the virus. 2020 Available from:https://bsi.com.au/where-and-how-people-are-contracting-the-virus/
  38. Bar-On Y.M. SARS-CoV-2 (COVID-19) by the numbers. Elife 2020 9 e57309
    [Google Scholar]
  39. Yang L. Liu S. Liu J. Zhang Z. Wan X. Huang B. Chen Y. Zhang Y. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct. Target. Ther. 2020 5 1 128 10.1038/s41392‑020‑00243‑2 32712629
    [Google Scholar]
  40. Tanaka T. Narazaki M. Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016 8 8 959 970 10.2217/imt‑2016‑0020 27381687
    [Google Scholar]
  41. Mahmoodpoor A. Hosseini M. Soltani-Zangbar S. Sanaie S. Aghebati-Maleki L. Saghaleini S.H. Ostadi Z. Hajivalili M. Bayatmakoo Z. Haji-Fatahaliha M. Babaloo Z. Farid S.S. Heris J.A. Roshangar L. Rikhtegar R. Kafil H.S. Yousefi M. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression. Mol. Immunol. 2021 138 121 127 10.1016/j.molimm.2021.06.001 34392110
    [Google Scholar]
  42. Delshad M. Tavakolinia N. Pourbagheri-Sigaroodi A. Safaroghli-Azar A. Bagheri N. Bashash D. The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19. Int. Immunopharmacol. 2021 95 107586 10.1016/j.intimp.2021.107586 33765611
    [Google Scholar]
  43. Raj R. Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochem. Biophys. Rep. 2021 25 100847 10.1016/j.bbrep.2020.100847 33364445
    [Google Scholar]
  44. Suryawanshi R.K. Dysregulation of cell signaling by SARS-CoV-2. Trends Microbiol. 2020 33451855
    [Google Scholar]
  45. Zhang S.Y. Zhang L.Y. Wen R. Yang N. Zhang T.N. Histone deacetylases and their inhibitors in inflammatory diseases. Biomed. Pharmacother. 2024 179 117295 10.1016/j.biopha.2024.117295 39146765
    [Google Scholar]
  46. Rosas-Lemus M. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. BioRxiv 2020 10.1101/2020.04.17.047498
    [Google Scholar]
  47. Goel S. Saheb Sharif-Askari F. Saheb Sharif Askari N. Madkhana B. Alwaa A.M. Mahboub B. Zakeri A.M. Ratemi E. Hamoudi R. Hamid Q. Halwani R. SARS-CoV-2 switches ‘on’ MAPK and NFκB signaling via the reduction of nuclear DUSP1 and DUSP5 expression. Front. Pharmacol. 2021 12 631879 10.3389/fphar.2021.631879 33995033
    [Google Scholar]
  48. Pan H. Peto R. Henao-Restrepo A.M. Preziosi M.P. Sathiyamoorthy V. Abdool Karim Q. Alejandria M.M. Hernández García C. Kieny M.P. Malekzadeh R. Murthy S. Reddy K.S. Roses Periago M. Abi Hanna P. Ader F. Al-Bader A.M. Alhasawi A. Allum E. Alotaibi A. Alvarez-Moreno C.A. Appadoo S. Asiri A. Aukrust P. Barratt-Due A. Bellani S. Branca M. Cappel-Porter H.B.C. Cerrato N. Chow T.S. Como N. Eustace J. García P.J. Godbole S. Gotuzzo E. Griskevicius L. Hamra R. Hassan M. Hassany M. Hutton D. Irmansyah I. Jancoriene L. Kirwan J. Kumar S. Lennon P. Lopardo G. Lydon P. Magrini N. Maguire T. Manevska S. Manuel O. McGinty S. Medina M.T. Mesa Rubio M.L. Miranda-Montoya M.C. Nel J. Nunes E.P. Perola M. Portolés A. Rasmin M.R. Raza A. Rees H. Reges P.P.S. Rogers C.A. Salami K. Salvadori M.I. Sinani N. Sterne J.A.C. Stevanovikj M. Tacconelli E. Tikkinen K.A.O. Trelle S. Zaid H. Røttingen J.A. Swaminathan S. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results. N. Engl. J. Med. 2021 384 6 497 511 10.1056/NEJMoa2023184 33264556
    [Google Scholar]
  49. Beigel J.H. Tomashek K.M. Dodd L.E. Mehta A.K. Zingman B.S. Kalil A.C. Hohmann E. Chu H.Y. Luetkemeyer A. Kline S. Lopez de Castilla D. Finberg R.W. Dierberg K. Tapson V. Hsieh L. Patterson T.F. Paredes R. Sweeney D.A. Short W.R. Touloumi G. Lye D.C. Ohmagari N. Oh M. Ruiz-Palacios G.M. Benfield T. Fätkenheuer G. Kortepeter M.G. Atmar R.L. Creech C.B. Lundgren J. Babiker A.G. Pett S. Neaton J.D. Burgess T.H. Bonnett T. Green M. Makowski M. Osinusi A. Nayak S. Lane H.C. Remdesivir for the treatment of Covid-19. N. Engl. J. Med. 2020 383 19 1813 1826 10.1056/NEJMoa2007764 32445440
    [Google Scholar]
  50. Furuta Y. Komeno T. Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2017 93 7 449 463 10.2183/pjab.93.027 28769016
    [Google Scholar]
  51. Manabe T. Kambayashi D. Akatsu H. Kudo K. Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2021 21 1 489 10.1186/s12879‑021‑06164‑x 34044777
    [Google Scholar]
  52. Judge R. Kolaski S. Qadeer F. Use of tocilizumab, remdesivir, and high-dose methylprednisolone prevents intubation in an ESRD patient with COVID-19 pneumonia. SAGE Open Med Case Rep 2022 10
    [Google Scholar]
  53. Aleem A. Kothadia J. Remdesivir. StatPearls [Internet] StatPearls Treasure Island 2021
    [Google Scholar]
  54. Aschenbrenner D.S. Remdesivir approved to treat COVID-19 amid controversy. Am. J. Nurs. 2021 121 1 22 24 10.1097/01.NAJ.0000731640.35662.2c 33350691
    [Google Scholar]
  55. Gordon C.J. Tchesnokov E.P. Feng J.Y. Porter D.P. Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020 295 15 4773 4779 10.1074/jbc.AC120.013056 32094225
    [Google Scholar]
  56. Hashemian S.M.R. Pourhanifeh M.H. Hamblin M.R. Shahrzad M.K. Mirzaei H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed. Pharmacother. 2022 146 112517 10.1016/j.biopha.2021.112517 34902743
    [Google Scholar]
  57. Picarazzi F. Vicenti I. Saladini F. Zazzi M. Mori M. Targeting the RdRp of emerging RNA viruses: The structure-based drug design challenge. Molecules 2020 25 23 5695 10.3390/molecules25235695 33287144
    [Google Scholar]
  58. Shannon A. Le N.T.T. Selisko B. Eydoux C. Alvarez K. Guillemot J.C. Decroly E. Peersen O. Ferron F. Canard B. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res. 2020 178 104793 10.1016/j.antiviral.2020.104793 32283108
    [Google Scholar]
  59. Gordon C.J. Tchesnokov E.P. Woolner E. Perry J.K. Feng J.Y. Porter D.P. Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020 295 20 6785 6797 10.1074/jbc.RA120.013679 32284326
    [Google Scholar]
  60. Humeniuk R. Mathias A. Kirby B.J. Lutz J.D. Cao H. Osinusi A. Babusis D. Porter D. Wei X. Ling J. Reddy Y.S. German P. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of Remdesivir, a SARS-CoV-2 replication inhibitor. Clin. Pharmacokinet. 2021 60 5 569 583 10.1007/s40262‑021‑00984‑5 33782830
    [Google Scholar]
  61. Hu W-J. Pharmacokinetics and tissue distribution of remdesivir and its metabolites nucleotide monophosphate, nucleotide triphosphate, and nucleoside in mice. Acta Pharmacol. Sin. 2020 ••• 1 6 33041326
    [Google Scholar]
  62. Hendaus M.A. Remdesivir in the treatment of Coronavirus Disease 2019 (COVID-19): A simplified summary. J. Biomol. Struct. Dyn. 2020 ••• 1 6 32396771
    [Google Scholar]
  63. Eroglu E. Toprak C. Overview of favipiravir and remdesivir treatment for COVID-19. Int. J. Pharm. Sci. Res. 2021 12 4 1950 1957
    [Google Scholar]
  64. Singh A.K. Singh A. Singh R. Misra A. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies. Diabetes Metab. Syndr. 2020 14 4 641 648 10.1016/j.dsx.2020.05.018 32428865
    [Google Scholar]
  65. Gubernatorova E.O. Gorshkova E.A. Polinova A.I. Drutskaya M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020 53 13 24 10.1016/j.cytogfr.2020.05.009 32475759
    [Google Scholar]
  66. Zhang C. Wu Z. Li J.W. Zhao H. Wang G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020 55 5 105954 10.1016/j.ijantimicag.2020.105954 32234467
    [Google Scholar]
  67. Aziz M. Haghbin H. Abu Sitta E. Nawras Y. Fatima R. Sharma S. Lee-Smith W. Duggan J. Kammeyer J.A. Hanrahan J. Assaly R. Efficacy of tocilizumab in COVID‐19: A systematic review and meta‐analysis. J. Med. Virol. 2021 93 3 1620 1630 10.1002/jmv.26509 32918755
    [Google Scholar]
  68. Giamarellos-Bourboulis E.J. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020 27 6 992 1000
    [Google Scholar]
  69. McGonagle D. Sharif K. O’Regan A. Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020 19 6 102537 10.1016/j.autrev.2020.102537 32251717
    [Google Scholar]
  70. Malgie J. Schoones J.W. Pijls B.G. Decreased mortality in coronavirus disease 2019 patients treated with tocilizumab: A rapid systematic review and meta-analysis of observational studies. Clin. Infect. Dis. 2021 72 11 e742 e749 10.1093/cid/ciaa1445 32964913
    [Google Scholar]
  71. Saha A. Sharma A.R. Bhattacharya M. Sharma G. Lee S.S. Chakraborty C. Tocilizumab: A therapeutic option for the treatment of cytokine storm syndrome in COVID-19. Arch. Med. Res. 2020 51 6 595 597 10.1016/j.arcmed.2020.05.009 32482373
    [Google Scholar]
  72. Akleylek C. Gür S.G. Sever I.H. Koçulu Demir S. Çevik E. Eken E. Gökkaya Z. Çağatay Y. Yilmaz N. What are the main factors affecting the outcome of tocilizumab therapy in COVID-19-induced cytokine release syndrome? Eur. J. Rheumatol. 2022 9 3 126 131 10.5152/eurjrheum.2022.21010 35156638
    [Google Scholar]
  73. Silpa-archa S. Oray M. Preble J.M. Foster C.S. Outcome of tocilizumab treatment in refractory ocular inflammatory diseases. Acta Ophthalmol. 2016 94 6 e400 e406 10.1111/aos.13015 27010181
    [Google Scholar]
  74. Barlow A. Landolf K.M. Barlow B. Yeung S.Y.A. Heavner J.J. Claassen C.W. Heavner M.S. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy 2020 40 5 416 437 10.1002/phar.2398 32259313
    [Google Scholar]
  75. Hsu J.Y. Mao Y.C. Liu P.Y. Lai K.L. Pharmacology and adverse events of emergency-use authorized medication in moderate to severe COVID-19. Pharmaceuticals 2021 14 10 955 10.3390/ph14100955 34681179
    [Google Scholar]
  76. Stone J.H. Frigault M.J. Serling-Boyd N.J. Fernandes A.D. Harvey L. Foulkes A.S. Horick N.K. Healy B.C. Shah R. Bensaci A.M. Woolley A.E. Nikiforow S. Lin N. Sagar M. Schrager H. Huckins D.S. Axelrod M. Pincus M.D. Fleisher J. Sacks C.A. Dougan M. North C.M. Halvorsen Y.D. Thurber T.K. Dagher Z. Scherer A. Wallwork R.S. Kim A.Y. Schoenfeld S. Sen P. Neilan T.G. Perugino C.A. Unizony S.H. Collier D.S. Matza M.A. Yinh J.M. Bowman K.A. Meyerowitz E. Zafar A. Drobni Z.D. Bolster M.B. Kohler M. D’Silva K.M. Dau J. Lockwood M.M. Cubbison C. Weber B.N. Mansour M.K. Efficacy of tocilizumab in patients hospitalized with Covid-19. N. Engl. J. Med. 2020 383 24 2333 2344 10.1056/NEJMoa2028836 33085857
    [Google Scholar]
  77. Tleyjeh I.M. Kashour Z. Damlaj M. Riaz M. Tlayjeh H. Altannir M. Altannir Y. Al-Tannir M. Tleyjeh R. Hassett L. Kashour T. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin. Microbiol. Infect. 2021 27 2 215 227 10.1016/j.cmi.2020.10.036 33161150
    [Google Scholar]
  78. Johnson D.B. Kelley B. Dexamethasone. StatPearls StatPearls Treasure Island 2019
    [Google Scholar]
  79. Patel S.K. Saikumar G. Rana J. Dhama J. Yatoo M.I. Tiwari R. Rodríguez-Morales A.J. Dhama K. Dexamethasone: A boon for critically ill COVID-19 patients? Travel Med. Infect. Dis. 2020 37 101844 10.1016/j.tmaid.2020.101844 32791213
    [Google Scholar]
  80. Newman S.P. Flower R.J. Croxtall J.D. Dexamethasone suppression of IL-1 β-induced cyclooxygenase 2 expression is not mediated by lipocortin-1 in A549 cells. Biochem. Biophys. Res. Commun. 1994 202 2 931 939 10.1006/bbrc.1994.2019 8048967
    [Google Scholar]
  81. Seo S. Priefer R. Dexamethasone mechanism in inflammatory immune mediated disease and its application in treating 2019 coronavirus disease (COVID-19). Med. Res. Arch. 2020 8 12 2 29 10.18103/mra.v8i12.2267
    [Google Scholar]
  82. Horby P. Lim W.S. Emberson J.R. Mafham M. Bell J.L. Linsell L. Staplin N. Brightling C. Ustianowski A. Elmahi E. Prudon B. Green C. Felton T. Chadwick D. Rege K. Fegan C. Chappell L.C. Faust S.N. Jaki T. Jeffery K. Montgomery A. Rowan K. Juszczak E. Baillie J.K. Haynes R. Landray M.J. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021 384 8 693 704 10.1056/NEJMoa2021436 32678530
    [Google Scholar]
  83. Group T.R.C. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N. Engl. J. Med. 2020
    [Google Scholar]
  84. Sharun K. Tiwari R. Dhama J. Dhama K. Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence. Int. J. Surg. 2020 82 179 181 10.1016/j.ijsu.2020.08.038 32896649
    [Google Scholar]
  85. Gong Q. Yin J. Wang M. He L. Lei F. Luo Y. Yang S. Feng Y. Li J. Du L. Comprehensive study of dexamethasone on albumin biogenesis during normal and pathological renal conditions. Pharm. Biol. 2020 58 1 1261 1271 10.1080/13880209.2020.1855214 33332210
    [Google Scholar]
  86. Diederich S. Hanke B. Oelkers W. Bähr V. Metabolism of dexamethasone in the human kidney: Nicotinamide adenine dinucleotide-dependent 11β-reduction. J. Clin. Endocrinol. Metab. 1997 82 5 1598 1602 10.1210/jcem.82.5.3936 9141556
    [Google Scholar]
  87. Czock D. Keller F. Rasche F.M. Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 2005 44 1 61 98 10.2165/00003088‑200544010‑00003 15634032
    [Google Scholar]
  88. Agrawal P. Agrawal C. Blunden G. RETRACTED: Artemisia extracts and artemisinin-based antimalarials for COVID-19 management: Could these be effective antivirals for COVID-19 treatment? Molecules 2022 27 12 3828 10.3390/molecules27123828 35744958
    [Google Scholar]
  89. Efferth T. Romero M.R. Wolf D.G. Stamminger T. Marin J.J.G. Marschall M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 2008 47 6 804 811 10.1086/591195 18699744
    [Google Scholar]
  90. Abiri R. Abdul-Hamid H. Sytar O. Abiri R. Bezerra de Almeida E. Jr Sharma S.K. Bulgakov V.P. Arroo R.R.J. Malik S. A brief overview of potential treatments for viral diseases using natural plant compounds: The case of SARS-Cov. Molecules 2021 26 13 3868 10.3390/molecules26133868 34202844
    [Google Scholar]
  91. Fuzimoto A.D. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J. Integr. Med. 2021 19 5 375 388 10.1016/j.joim.2021.07.003 34479848
    [Google Scholar]
  92. Efferth T. Oesch F. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev. 2021 41 6 3023 3061 10.1002/med.21842 34288018
    [Google Scholar]
  93. Qian R. The immunologic and antiviral effect of qinghaosu. J Tradit Chin Med 1982 2 4 271 276
    [Google Scholar]
  94. Haq F.U. Roman M. Ahmad K. Rahman S.U. Shah S.M.A. Suleman N. Ullah S. Ahmad I. Ullah W. Artemisia annua : Trials are needed for COVID ‐19. Phytother. Res. 2020 34 10 2423 2424 10.1002/ptr.6733 32424845
    [Google Scholar]
  95. Rolta R. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In Silico Approach Curr Pharmacol Rep 2020 7 4 135 149
    [Google Scholar]
  96. Aherfi S. Pradines B. Devaux C. Honore S. Colson P. Scola B.L. Raoult D. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol. 2021 16 17 1341 1370 10.2217/fmb‑2021‑0019 34755538
    [Google Scholar]
  97. Sehailia M. Chemat S. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: Potential repurposing of artenimol for COVID-19. J. Biomol. Struct. Dyn. 2020 ••• 1 11 32696720
    [Google Scholar]
  98. Beigel J.H. Tomashek K.M. Dodd L.E. Mehta A.K. Zingman B.S. Kalil A.C. Hohmann E. Chu H.Y. Luetkemeyer A. Kline S. Lopez de Castilla D. Finberg R.W. Dierberg K. Tapson V. Hsieh L. Patterson T.F. Paredes R. Sweeney D.A. Short W.R. Touloumi G. Lye D.C. Ohmagari N. Oh M. Ruiz-Palacios G.M. Benfield T. Fätkenheuer G. Kortepeter M.G. Atmar R.L. Creech C.B. Lundgren J. Babiker A.G. Pett S. Neaton J.D. Burgess T.H. Bonnett T. Green M. Makowski M. Osinusi A. Nayak S. Lane H.C. Remdesivir for the treatment of Covid-19—preliminary report. N. Engl. J. Med. 2020 383 19 1813 1826 10.1056/NEJMoa2007764 32445440
    [Google Scholar]
  99. Salama C. Han J. Yau L. Reiss W.G. Kramer B. Neidhart J.D. Criner G.J. Kaplan-Lewis E. Baden R. Pandit L. Cameron M.L. Garcia-Diaz J. Chávez V. Mekebeb-Reuter M. Lima de Menezes F. Shah R. González-Lara M.F. Assman B. Freedman J. Mohan S.V. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 2021 384 1 20 30 10.1056/NEJMoa2030340 33332779
    [Google Scholar]
  100. Selvaraj V. Khan M.S. Bavishi C. Dapaah-Afriyie K. Finn A. Lal A. Mylonakis E. Tocilizumab in hospitalized patients with COVID-19: A meta analysis of randomized controlled trials. Lung 2021 199 3 239 248 10.1007/s00408‑021‑00451‑9 34050796
    [Google Scholar]
  101. Marston J.L. Greenig M. Singh M. Bendall M.L. Duarte R.R.R. Feschotte C. Iñiguez L.P. Nixon D.F. SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear nlms. JCI Insight 2021 6 24 e147170 10.1172/jci.insight.147170 34731091
    [Google Scholar]
  102. Al-Abdouh A. Bizanti A. Barbarawi M. Jabri A. Kumar A. Fashanu O.E. Khan S.U. Zhao D. Antar A.A.R. Michos E.D. Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Contemp. Clin. Trials 2021 101 106272 10.1016/j.cct.2021.106272 33422642
    [Google Scholar]
  103. Giménez-Orenga K. Pierquin J. Brunel J. Charvet B. Martín-Martínez E. Perron H. Oltra E. HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms. Front. Immunol. 2022 13 1020064 10.3389/fimmu.2022.1020064 36389746
    [Google Scholar]
  104. Medhi B. Sarma P. Bhattacharyya A. Kaur H. Prajapat M. Prakash A. Kumar S. Bansal S. Kirubakaran R. Reddy D.H. Muktesh G. Kaushal K. Sharma S. Shekhar N. Avti P. Thota P. Efficacy and safety of steroid therapy in COVID-19: A rapid systematic review and Meta-analysis. Indian J. Pharmacol. 2020 52 6 535 550 10.4103/ijp.ijp_1146_20 33666200
    [Google Scholar]
  105. Wen B. Gorycki P. Bioactivation of herbal constituents: Mechanisms and toxicological relevance. Drug Metab. Rev. 2019 51 4 453 497 10.1080/03602532.2019.1655570 31448961
    [Google Scholar]
  106. Guo X. Zhao Y. You F. Identification and characterization of endogenous retroviruses upon SARS-CoV-2 infection. Front. Immunol. 2024 15 1294020 10.3389/fimmu.2024.1294020 38646531
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265323116241104052004
Loading
/content/journals/iddt/10.2174/0118715265323116241104052004
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Annual SZ ; immunopathology ; ARDs ; drug ; SARS-CoV-2 ; inflammation ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test