Skip to content
2000
image of Antioxidant Nutraceuticals: Their Adjunct Role in the Management of COVID-19 Infections and Post-COVID Syndrome

Abstract

The COVID-19 epidemic in recent years has been produced by various coronavirus strains that nearly destroyed world health policies and economics. Emerging viral strains exacerbated the pandemic. Huge investments have been made in preventative vaccines to combat the disease, but the genetic instability of these viruses has hampered their usefulness. However, in addition to traditional therapeutic approaches, nutraceuticals have been considered efficacious in preventing and or treating COVID-19 and post-COVID syndrome. In this context, nutraceuticals such as vitamins or dietary supplements including multiple vitamins and minerals and propolis have been widely studied for their significant impact on viral respiratory diseases like SARS-CoV-2 and COVID-19. Some of these nutraceuticals having antioxidant, anti-inflammatory, and immune-modulatory properties have been highly recommended for use as an adjunct option to moderate the adverse effects associated with the COVID-19 pandemic. In this review, we intend to present the recent understanding and converse scientific implications for the use of nutraceutical antioxidants such as vitamins, minerals, probiotics, and polyphenols like bee propolis, in the management of viral respiratory diseases and post-COVID-19 syndrome. Future challenges and limitations regarding the use and bioavailability of these ingredients, and dose-response studies are further emphasized.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265320091241017161919
2024-12-30
2025-01-19
Loading full text...

Full text loading...

References

  1. Ashique S. Sandhu N.K. “Ayurvedic System”: A new possible safe and effective way to get rid of this critical COVID-19 pandemic situation- A Review. Curr. Tradit. Med. 2022 8 1 e130421192818 10.2174/2215083807666210413113113
    [Google Scholar]
  2. ács N.Á. Bánhidy F. Puhó E. Czeizel A.E. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Res. A Clin. Mol. Teratol. 2005 73 12 989 996 10.1002/bdra.20195 16323157
    [Google Scholar]
  3. Al-Hariri M. Immune’s-boosting agent: Immunomodulation potentials of propolis. J. Family Community Med. 2019 26 1 57 60 10.4103/jfcm.JFCM_46_18 30697106
    [Google Scholar]
  4. Ali A.M. Kunugi H. Propolis, bee honey, and their components protect against coronavirus disease 2019 (COVID-19): A review of in silico, in vitro, and clinical studies. Molecules 2021 26 5 1232 10.3390/molecules26051232 33669054
    [Google Scholar]
  5. Teshome A. Adane A. Girma B. Mekonnen Z.A. The impact of vitamin D level on COVID-19 infection: systematic review and meta-analysis. Front. Public Health 2021 9 624559 10.3389/fpubh.2021.624559 33748066
    [Google Scholar]
  6. Dilokthornsakul W. Kosiyaporn R. Wuttipongwaragon R. Dilokthornsakul P. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies. J. Integr. Med. 2022 20 2 114 125 10.1016/j.joim.2022.01.008 35144898
    [Google Scholar]
  7. Andreyev A.Y. Kushnareva Y.E. Starkov A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.) 2005 70 2 200 214 10.1007/s10541‑005‑0102‑7 15807660
    [Google Scholar]
  8. Ansar M. Ivanciuc T. Garofalo R.P. Casola A. Increased lung catalase activity confers protection against experimental RSV infection. Sci. Rep. 2020 10 1 3653 10.1038/s41598‑020‑60443‑2 32107411
    [Google Scholar]
  9. Ashique S. Gupta K. Gupta G. Mishra N. Singh S.K. Wadhwa S. Gulati M. Dureja H. Zacconi F. Oliver B.G. Paudel K.R. Hansbro P.M. Chellappan D.K. Dua K. Vitamin D—A prominent immunomodulator to prevent COVID ‐19 infection. Int. J. Rheum. Dis. 2023 26 1 13 30 10.1111/1756‑185X.14477 36308699
    [Google Scholar]
  10. Greer R.M. McErlean P. Arden K.E. Faux C.E. Nitsche A. Lambert S.B. Nissen M.D. Sloots T.P. Mackay I.M. Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? J. Clin. Virol. 2009 45 1 10 15 10.1016/j.jcv.2009.03.008 19376742
    [Google Scholar]
  11. Arihiro S. Nakashima A. Matsuoka M. Suto S. Uchiyama K. Kato T. Mitobe J. Komoike N. Itagaki M. Miyakawa Y. Koido S. Hokari A. Saruta M. Tajiri H. Matsuura T. Urashima M. Randomized trial of vitamin D supplementation to prevent seasonal influenza and upper respiratory infection in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2019 25 6 1088 1095 10.1093/ibd/izy346 30601999
    [Google Scholar]
  12. Arreola R. Quintero-Fabián S. López-Roa R.I. Flores-Gutiérrez E.O. Reyes-Grajeda J.P. Carrera-Quintanar L. Ortuño-Sahagún D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015 2015 1 13 10.1155/2015/401630 25961060
    [Google Scholar]
  13. Wang M.Y. Zhao R. Gao L.J. Gao X.F. Wang D.P. Cao J.M. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol. 2020 10 587269 10.3389/fcimb.2020.587269 33324574
    [Google Scholar]
  14. Al-Ayed M.S. Asaad A.M. Qureshi M.A. Ameen M.S. Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction. Saudi Med. J. 2014 35 11 1348 1353 25399211
    [Google Scholar]
  15. Lau S. Yip C. Woo P. Yuen K.Y. Human rhinovirus C: A newly discovered human rhinovirus species. Emerg. Health Threats J. 2010 3 1 7106 10.3402/ehtj.v3i0.7106 22460392
    [Google Scholar]
  16. Bayan L. Koulivand P.H. Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J. Phytomed. 2014 4 1 1 14 25050296
    [Google Scholar]
  17. Morgulchik N. Athanasopoulou F. Chu E. Lam Y. Kamaly N. Potential therapeutic approaches for targeted inhibition of inflammatory cytokines following COVID-19 infection-induced cytokine storm. Interface Focus 2022 12 1 20210006 10.1098/rsfs.2021.0006 34956607
    [Google Scholar]
  18. Behbahani M. Anti-viral activity of the methanolic leaf extract of an Iranian medicinal plant “Hyssopus officinalis” against herpes simplex virus. JMPR 2009 3 1118 1125
    [Google Scholar]
  19. Busani S. Tosi M. Mighali P. Vandelli P. D’Amico R. Marietta M. Forfori F. Donati A. Cinnella G. De Monte A. Pasero D. Bellani G. Tascini C. Foti G. Ranieri M. Girardis M. Multi-centre, three arm, randomized controlled trial on the use of methylprednisolone and unfractionated heparin in critically ill ventilated patients with pneumonia from SARS-CoV-2 infection: A structured summary of a study protocol for a randomised controlled trial. Trials 2020 21 1 724 10.1186/s13063‑020‑04645‑z 32807241
    [Google Scholar]
  20. Berretta A.A Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed. Pharmacoth. 2020 131 110622
    [Google Scholar]
  21. Abubakar M.B. Usman D. El-Saber Batiha G. Cruz-Martins N. Malami I. Ibrahim K.G. Abubakar B. Bello M.B. Muhammad A. Gan S.H. Dabai A.I. Alblihed M. Ghosh A. Badr R.H. Thangadurai D. Imam M.U. Natural products modulating angiotensin converting enzyme 2 (ACE2) as potential COVID-19 therapies. Front. Pharmacol. 2021 12 629935 10.3389/fphar.2021.629935 34012391
    [Google Scholar]
  22. Cai Y. Li Y.F. Tang L.P. Tsoi B. Chen M. Chen H. Chen X.M. Tan R.R. Kurihara H. He R.R. A new mechanism of vitamin C effects on A/FM/1/47(H1N1) virus-induced pneumonia in restraint-stressed mice. BioMed Res. Int. 2015 2015 1 12 10.1155/2015/675149 25710018
    [Google Scholar]
  23. Jeffery L.E. Burke F. Mura M. Zheng Y. Qureshi O.S. Hewison M. Walker L.S.K. Lammas D.A. Raza K. Sansom D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009 183 9 5458 5467 10.4049/jimmunol.0803217 19843932
    [Google Scholar]
  24. Ashique S. Kumar S. Kumar H. Roy J. Pal S. Pal S. A brief overview of various vaccines against nCOVID19, including safety, efficacy, reported cases, clinical trials, and progress. Indian J. Heal. Sci. Biomed. Res. kleu. 2023 16 1 13 29 10.4103/kleuhsj.kleuhsj_505_22
    [Google Scholar]
  25. Cao H. Anderson R.A. Cinnamon polyphenol extract regulates tristetraprolin and related gene expression in mouse adipocytes. J. Agric. Food Chem. 2011 59 6 2739 2744 10.1021/jf103527x 21329350
    [Google Scholar]
  26. Cardwell G. Bornman J.F. James A.P. Black L.J. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018 10 10 1498 10.3390/nu10101498 30322118
    [Google Scholar]
  27. Carr A.C. Rowe S. The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients 2020 12 11 3286 10.3390/nu12113286 33121019
    [Google Scholar]
  28. Jung H.Y. Yoo D.Y. Nam S.M. Kim J.W. Choi J.H. Yoo M. Lee S. Yoon Y.S. Hwang I.K. Valerenicacidprotectsagainstphysical and psychological stress by reducing the turnover of serotonin and norepinephrine in mouse hippocampus-amygdalaregion. J. Med. Food 2015 18 12 1333 1339 10.1089/jmf.2014.3412 26177123
    [Google Scholar]
  29. Catanzaro M. Corsini E. Rosini M. Racchi M. Lanni C. Immunomodulatorsinspired by nature: areview on curcumin and echinacea. Molecules 2018 23 11 2778 10.3390/molecules23112778 30373170
    [Google Scholar]
  30. Jimeno-Almazán A. Pallarés J.G. Buendía-Romero Á. Martínez-Cava A. Franco-López F. Sánchez-Alcaraz Martínez B.J. Bernal-Morel E. Courel-Ibáñez J. Post-COVID-19 syndrome and the potential benefits of exercise. Int. J. Environ. Res. Public Health 2021 18 10 5329 10.3390/ijerph18105329 34067776
    [Google Scholar]
  31. Chakraborty S. Balan M. Flynn E. Zurakowski D. Choueiri T.K. Pal S. Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1. Oncogenesis 2019 8 2 7 10.1038/s41389‑018‑0116‑9 30647407
    [Google Scholar]
  32. Charan J. Goyal J. Saxena D. Yadav P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012 3 4 300 303 10.4103/0976‑500X.103685 23326099
    [Google Scholar]
  33. Kikuchi A.M. Tanabe A. Iwahori Y. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. J. Diet. Suppl. 2021 18 3 316 333 10.1080/19390211.2020.1746725 32272859
    [Google Scholar]
  34. Wang Y.J. Pan K.L. Hsieh T.C. Chang T.Y. Lin W.H. Hsu J.T.A. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J. Nat. Prod. 2011 74 4 580 584 10.1021/np100578u 21391660
    [Google Scholar]
  35. Chun O.K. Floegel A. Chung S.J. Chung C.E. Song W.O. Koo S.I. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J. Nutr. 2010 140 2 317 324 10.3945/jn.109.114413 20032488
    [Google Scholar]
  36. Colunga Biancatelli R.M.L. Berrill M. Catravas J.D. Marik P.E. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020 11 1451 10.3389/fimmu.2020.01451 32636851
    [Google Scholar]
  37. Corrêa A.P.F. Daroit D.J. Fontoura R. Meira S.M.M. Segalin J. Brandelli A. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides 2014 61 48 55 10.1016/j.peptides.2014.09.001 25218972
    [Google Scholar]
  38. Kim K.H. Lee E.N. Park J.K. Lee J.R. Kim J.H. Choi H.J. Kim B.S. Lee H.W. Lee K.S. Yoon S. Curcumin attenuates TNF-α-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phytother. Res. 2012 26 7 1037 1047 10.1002/ptr.3694 22183741
    [Google Scholar]
  39. Crump K.E. Langston P.K. Rajkarnikar S. Grayson J.M. Antioxidant treatment regulates the humoral immune response during acute viral infection. J. Virol. 2013 87 5 2577 2586 10.1128/JVI.02714‑12 23255789
    [Google Scholar]
  40. Kreider R.B. Stout J.R. Creatine in health and disease. Nutrients 2021 13 2 447 10.3390/nu13020447 33572884
    [Google Scholar]
  41. Cui D. Stephensen C.B. Moldoveanu Z. High-level dietary vitamin A enhances T-helper type 2 cytokine production and secretory immunoglobulin A response to influenza A virus infection in BALB/c mice. J. Nutr. 2000 130 5 1132 1139 10.1093/jn/130.5.1132 10801909
    [Google Scholar]
  42. Ashique S. Sandhu N.K. Haque S.N. Koley K. A Recent Update on Therapeutics to Treat Emerging n-COVID 19: A Review. Coronaviruses 2021 2 7 e250621188724 10.2174/2666796701999201204123259
    [Google Scholar]
  43. Demir S. Atayoglu A.T. Galeotti F. Garzarella E.U. Zaccaria V. Volpi N. Karagoz A. Sahin F. Antiviral activity of different extracts of standardized propolis preparations against HSV. Antivir. Ther. 2020 25 7 353 363 10.3851/IMP3383 33620334
    [Google Scholar]
  44. Liao M.T. Wu C.C. Wu S.F.V. Lee M.C. Hu W.C. Tsai K.W. Yang C.H. Lu C.L. Chiu S.K. Lu K.C. Resveratrol as an adjunctivetherapy for excessive oxidative stress in aging COVID-19 patients. Antioxidants 2021 10 9 1440 10.3390/antiox10091440 34573071
    [Google Scholar]
  45. Derosa G. Maffioli P. D’Angelo A. Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother. Res. 2021 35 3 1230 1236 10.1002/ptr.6887 33034398
    [Google Scholar]
  46. Domínguez-Perles R. Mena P. García-Viguera C. Moreno D.A. Brassica foods as a dietary source of vitamin C: a review. Crit. Rev. Food Sci. Nutr. 2014 54 8 1076 1091 10.1080/10408398.2011.626873 24499123
    [Google Scholar]
  47. Ashique S. Chaudhary V. Pal S. Panwar J. Kumar M. Pramanik S. Sinha A. Mukherjee A. Marburg virus-a threat during SARS-CoV-2 era: A review. Infect. Disorders-Drug Targ. 2023 23 5 1 3
    [Google Scholar]
  48. Fenwick G.R. Hanley A.B. Whitaker J.R. The genus allium— part 1. CRC Crit. Rev. Food Sci. Nutr. 1985 22 3 199 271 10.1080/10408398509527415 3902370
    [Google Scholar]
  49. Lindseth G. Helland B. Caspers J. The effects of dietary tryptophan on affective disorders. Arch. Psychiatr. Nurs. 2015 29 2 102 107 10.1016/j.apnu.2014.11.008 25858202
    [Google Scholar]
  50. Ashique S. Mishra N. Mohanto S. Garg A. Taghizadeh-Hesary F. Gowda B.H.J. Chellappan D.K. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024 10 4 e25754 10.1016/j.heliyon.2024.e25754 38370192
    [Google Scholar]
  51. Hennet T. Peterhans E. Stocker R. Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J. Gen. Virol. 1992 73 1 39 46 10.1099/0022‑1317‑73‑1‑39 1530963
    [Google Scholar]
  52. Paudel K.R. Patel V. Vishwas S. Gupta S. Sharma S. Chan Y. Jha N.K. Shrestha J. Imran M. Panth N. Shukla S.D. Jha S.K. Devkota H.P. Warkiani M.E. Singh S.K. Ali M.K. Gupta G. Chellappan D.K. Hansbro P.M. Dua K. Nutraceuticals and COVID‐19: A mechanistic approach toward attenuating the disease complications. J. Food Biochem. 2022 46 12 e14445 10.1111/jfbc.14445 36239436
    [Google Scholar]
  53. Lopez-Santamarina A. Lamas A. del Carmen Mondragón A. Cardelle-Cobas A. Regal P. Rodriguez-Avila J.A. Miranda J.M. Franco C.M. Cepeda A. Probiotic effects against virus infections: new weapons for an old war. Foods 2021 10 1 130 10.3390/foods10010130 33435315
    [Google Scholar]
  54. Garofalo R.P. Kolli D. Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid. Redox Signal. 2013 18 2 186 217 10.1089/ars.2011.4307 22799599
    [Google Scholar]
  55. Lordan R. Rando H.M. Greene C.S. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 2021 6 3 e00122-21 10.1128/mSystems.00122‑21 33947804
    [Google Scholar]
  56. Ghazal S.A. Abuzarqua M. Mahansneh A.M. Effect of plant flavonoids on immune and inflammatory cell function. Phytother. Res. 1992 2 265 271 10.1002/ptr.2650060509
    [Google Scholar]
  57. Mohan S. Elhassan Taha M.M. Makeen H.A. Alhazmi H.A. Al Bratty M. Sultana S. Ahsan W. Najmi A. Khalid A. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules 2020 25 21 4878 10.3390/molecules25214878 33105694
    [Google Scholar]
  58. Meinhardt J. Radke J. Dittmayer C. Franz J. Thomas C. Mothes R. Laue M. Schneider J. Brünink S. Greuel S. Lehmann M. Hassan O. Aschman T. Schumann E. Chua R.L. Conrad C. Eils R. Stenzel W. Windgassen M. Rößler L. Goebel H.H. Gelderblom H.R. Martin H. Nitsche A. Schulz-Schaeffer W.J. Hakroush S. Winkler M.S. Tampe B. Scheibe F. Körtvélyessy P. Reinhold D. Siegmund B. Kühl A.A. Elezkurtaj S. Horst D. Oesterhelweg L. Tsokos M. Ingold-Heppner B. Stadelmann C. Drosten C. Corman V.M. Radbruch H. Heppner F.L. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021 24 2 168 175 10.1038/s41593‑020‑00758‑5 33257876
    [Google Scholar]
  59. Gilliland F.D. Berhane K.T. Li Y.F. Gauderman W.J. McConnell R. Peters J. Children’s lung function and antioxidant vitamin, fruit, juice, and vegetable intake. Am. J. Epidemiol. 2003 158 6 576 584 10.1093/aje/kwg181 12965883
    [Google Scholar]
  60. Aruoma O.I. Spencer J.P.E. Rossi R. Aeschbach R. Khan A. Mahmood N. Munoz A. Murcia A. Butler J. Halliwell B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provençal herbs. Food Chem. Toxicol. 1996 34 5 449 456 10.1016/0278‑6915(96)00004‑X 8655093
    [Google Scholar]
  61. Mocking R.J.T. Harmsen I. Assies J. Koeter M.W.J. Ruhé H.G. Schene A.H. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl. Psychiatry 2016 6 3 e756 10.1038/tp.2016.29 26978738
    [Google Scholar]
  62. Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008 476 2 107 112 10.1016/j.abb.2008.01.028 18284912
    [Google Scholar]
  63. Morgan C.I. Ledford J.R. Zhou P. Page K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. J. Inflamm. (Lond.) 2011 8 1 36 10.1186/1476‑9255‑8‑36 22151973
    [Google Scholar]
  64. Han S.N. Wu D. Ha W.K. Beharka A. Smith D.E. Bender B.S. Meydani S.N. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology 2000 100 4 487 493 10.1046/j.1365‑2567.2000.00070.x 10929076
    [Google Scholar]
  65. Mostafa W.Z. Hegazy R.A. Vitamin D and the skin: Focus on a complex relationship: A review. J. Adv. Res. 2015 6 6 793 804 10.1016/j.jare.2014.01.011 26644915
    [Google Scholar]
  66. He Y.Q. Cai L. Qian Q.G. Yang S.H. Chen D.L. Zhao B.Q. Zhong Z.P. Zhou X.J. Anti-influenza A (H1N1) viral and cytotoxic sesquiterpenes from Carpesium abrotanoides. Phytochem. Lett. 2020 35 41 45 10.1016/j.phytol.2019.10.013
    [Google Scholar]
  67. Nami M. Mehrabi S. Kamali A.M. Kazemiha M. Carvalho J. Derman S. Lakey-Betia J. Vasquez V. Kosagisharaf R. A new hypothesis on anxiety, sleep insufficiency, and viral infections; reciprocal links to consider in today’s “world vs. COVID-19” endeavors. Front. Psychiatry 2020 11 585893 10.3389/fpsyt.2020.585893 33250794
    [Google Scholar]
  68. Hemilä H. Carr A. Chalker E. Vitamin C may increase the recovery rate of outpatient cases of SARS-CoV-2 infection by 70%: reanalysis of the COVID A to Z randomized clinical trial. Front. Immunol. 2021 12 674681 10.3389/fimmu.2021.674681 34040614
    [Google Scholar]
  69. Peterhans E. Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J. Nutr. 1997 127 5 Suppl. 962S 965S 10.1093/jn/127.5.962S 9164274
    [Google Scholar]
  70. Niempoog S. Pawa K.K. Amatyakul C. The efficacy of powdered ginger in osteoarthritis of the knee. J. Med. Assoc. Thai. 2012 95 Suppl. 1 S59 S64 23964445
    [Google Scholar]
  71. Olaimat A.N. Aolymat I. Al-Holy M. Ayyash M. Abu Ghoush M. Al-Nabulsi A.A. Osaili T. Apostolopoulos V. Liu S.Q. Shah N.P. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci. Food 2020 4 1 17
    [Google Scholar]
  72. Holasova M. Fiedlerova V. Smrcinova H. Orsak M. Lachman J. Vavreinova S. Buckwheat—the source of antioxidant activity in functional foods. Food Res. Int. 2002 35 2-3 207 211 10.1016/S0963‑9969(01)00185‑5
    [Google Scholar]
  73. Chams N. Chams S. Badran R. Shams A. Araji A. Raad M. Mukhopadhyay S. Stroberg E. Duval E.J. Barton L.M. Hajj Hussein I. COVID-19: a multidisciplinary review. Front. Public Health 2020 8 383 10.3389/fpubh.2020.00383 32850602
    [Google Scholar]
  74. Hosakote Y.M. Jantzi P.D. Esham D.L. Spratt H. Kurosky A. Casola A. Garofalo R.P. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am. J. Respir. Crit. Care Med. 2011 183 11 1550 1560 10.1164/rccm.201010‑1755OC 21471094
    [Google Scholar]
  75. Ashique S. Kumar S. Hussain A. Mishra N. Garg A. Gowda B.H.J. Farid A. Gupta G. Dua K. Taghizadeh-Hesary F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J. Health Popul. Nutr. 2023 42 1 74 10.1186/s41043‑023‑00423‑0 37501216
    [Google Scholar]
  76. Patel S.S. Acharya A. Ray R.S. Agrawal R. Raghuwanshi R. Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020 60 6 887 939 10.1080/10408398.2018.1552244 30632782
    [Google Scholar]
  77. Wu S.F. Lin C.K. Chuang Y.S. Chang F.R. Tseng C.K. Wu Y.C. Lee J.C. Anti‐hepatitis C virus activity of 3‐hydroxy caruilignan C from Swietenia macrophylla stems. J. Viral Hepat. 2012 19 5 364 370 10.1111/j.1365‑2893.2011.01558.x 22497816
    [Google Scholar]
  78. Hussein F.A. Chay S.Y. Zarei M. Auwal S.M. Hamid A.A. Wan Ibadullah W.Z. Saari N. Whey protein concentrate as a novel source of bifunctional peptides with angiotensin-I converting enzyme inhibitory and antioxidant properties: RSM study. Foods 2020 9 1 64 10.3390/foods9010064 31936191
    [Google Scholar]
  79. Proal A.D. VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021 12 698169 10.3389/fmicb.2021.698169 34248921
    [Google Scholar]
  80. Gasmi A. Mujawdiya P.K. Lysiuk R. Shanaida M. Peana M. Gasmi Benahmed A. Beley N. Kovalska N. Bjørklund G. Quercetin in the prevention and treatment of coronavirus infections: a focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022 15 9 1049 10.3390/ph15091049 36145270
    [Google Scholar]
  81. Qin C. Zhou L. Hu Z. Zhang S. Yang S. Tao Y. Xie C. Ma K. Shang K. Wang W. Tian D.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020 71 15 762 768 10.1093/cid/ciaa248 32161940
    [Google Scholar]
  82. Kagan V. Packerz L. Serbinova E. Bakalova R. Stoyanovsky D. Mechanisms of vitamin E control of lipid peroxidation: regeneration, synergism, asymmetry, migration and metal chelation. Biological Oxidation Systems 2012 2 889
    [Google Scholar]
  83. Srivastava S. Kumar S. Ashique S. Satapathy P. Mehta R. Mohanty A. Sah R. Fast-Spreading JN.1: What You Need to Know About the Latest COVID-19 Subvariant. J. Infect. Public Health 2024 17 7 102451 10.1016/j.jiph.2024.05.039 38838605
    [Google Scholar]
  84. Ashique S. Mishra N. Garg A. Garg S. Farid A. Rai S. Gupta G. Dua K. Paudel K.R. Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am. J. Med. 2024 S0002-9343(24)00133-5 10.1016/j.amjmed.2024.02.029 38485111
    [Google Scholar]
  85. Kapoor R. Sharma B. Kanwar S.S. Antiviral phytochemicals: an overview. Biochem. Physiol. 2017 6 2 7 10.4172/2168‑9652.1000220
    [Google Scholar]
  86. Roman M. Irwin M.R. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain Behav. Immun. 2020 83 7 21 10.1016/j.bbi.2019.09.016 31550500
    [Google Scholar]
  87. Ghildiyal R. Prakash V. Chaudhary V.K. Gupta V. Gabrani R. Phytochemicals as antiviral agents: Recent updates. Plant-derived Bioactives Springer 2020 10.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  88. Saeedi-Boroujeni A. Mahmoudian-Sani M.R. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J. Inflamm. (Lond.) 2021 18 1 3 10.1186/s12950‑021‑00268‑6 33509217
    [Google Scholar]
  89. Shakoor H. Feehan J. Al Dhaheri A.S. Ali H.I. Platat C. Ismail L.C. Apostolopoulos V. Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021 143 1 9 10.1016/j.maturitas.2020.08.003 33308613
    [Google Scholar]
  90. Keil S.D. Ragan I. Yonemura S. Hartson L. Dart N.K. Bowen R. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light‐based photochemical treatment. Vox Sang. 2020 115 6 495 501 10.1111/vox.12937 32311760
    [Google Scholar]
  91. Kelsey N.A. Wilkins H.M. Linseman D.A. Nutraceutical antioxidants as novel neuroprotective agents. Molecules 2010 15 11 7792 7814 10.3390/molecules15117792 21060289
    [Google Scholar]
  92. Sharma S. Batra S. Gupta S. Sharma V.K. Rahman M.H. Kamal M.A. Persons with co-existing neurological disorders: risk analysis, considerations and management in COVID-19 pandemic. CNS Neurol. Disord. Drug Targ. 2022 21 3 228 234
    [Google Scholar]
  93. Khare D. Godbole N.M. Pawar S.D. Mohan V. Pandey G. Gupta S. Kumar D. Dhole T.N. Godbole M.M. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr. 2013 52 4 1405 1415 10.1007/s00394‑012‑0449‑7 23015061
    [Google Scholar]
  94. Alipio M. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-19). SSRN 2020 3571484
    [Google Scholar]
  95. Xu X. Chen P. Wang J. Feng J. Zhou H. Li X. Zhong W. Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020 63 3 457 460 10.1007/s11427‑020‑1637‑5 32009228
    [Google Scholar]
  96. Malek Mahdavi A. A brief review of interplay between vitamin D and angiotensin‐converting enzyme 2: Implications for a potential treatment for COVID ‐19. Rev. Med. Virol. 2020 30 5 e2119 10.1002/rmv.2119 32584474
    [Google Scholar]
  97. Getachew B. Tizabi Y. Vitamin D and COVID‐19: Role of ACE2, age, gender, and ethnicity. J. Med. Virol. 2021 93 9 5285 5294 10.1002/jmv.27075 33990955
    [Google Scholar]
  98. Slominski R.M. Stefan J. Athar M. Holick M.F. Jetten A.M. Raman C. Slominski A.T. COVID‐19 and Vitamin D: A lesson from the skin. Exp. Dermatol. 2020 29 9 885 890 10.1111/exd.14170 32779213
    [Google Scholar]
  99. Khanal P. Patil B.M. In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens. Chin. Herb. Med. 2020 12 4 406 413 10.1016/j.chmed.2020.02.004 36120176
    [Google Scholar]
  100. Mileva M. Bakalova R. Tancheva L. Galabov A. Ribarov S. Effect of vitamin E supplementation on lipid peroxidation in blood and lung of influenza virus infected mice. Comp. Immunol. Microbiol. Infect. Dis. 2002 25 1 1 11 10.1016/S0147‑9571(01)00010‑8 11831742
    [Google Scholar]
  101. Ramos-Martínez E. López-Vancell M.R. Fernández de Córdova-Aguirre J.C. Rojas-Serrano J. Chavarría A. Velasco-Medina A. Velázquez-Sámano G. Reduction of respiratory infections in asthma patients supplemented with vitamin D is related to increased serum IL-10 and IFNγ levels and cathelicidin expression. Cytokine 2018 108 239 246 10.1016/j.cyto.2018.01.001 29402723
    [Google Scholar]
  102. Khubber S. Hashemifesharaki R. Mohammadi M. Gharibzahedi S.M.T. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr. J. 2020 19 1 124 10.1186/s12937‑020‑00643‑8 33208167
    [Google Scholar]
  103. Sundararaman A. Ray M. Ravindra P.V. Halami P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020 104 19 8089 8104 10.1007/s00253‑020‑10832‑4 32813065
    [Google Scholar]
  104. ter Ellen B.M. Dinesh Kumar N. Bouma E.M. Troost B. van de Pol D.P.I. van der Ende-Metselaar H.H. Apperloo L. van Gosliga D. van den Berge M. Nawijn M.C. van der Voort P.H.J. Moser J. Rodenhuis-Zybert I.A. Smit J.M. Resveratrol and pterostilbene inhibit SARS-CoV-2 replication in air–liquid interface cultured human primary bronchial epithelial cells. Viruses 2021 13 7 1335 10.3390/v13071335 34372541
    [Google Scholar]
  105. Subedi L. Tchen S. Gaire B.P. Hu B. Hu K. Adjunctive nutraceutical therapies for COVID-19. Int. J. Mol. Sci. 2021 22 4 1963 10.3390/ijms22041963 33669456
    [Google Scholar]
  106. Kieliszek M. Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses 2020 143 109878 10.1016/j.mehy.2020.109878 32464491
    [Google Scholar]
  107. Vaishya R. Jain V.K. Iyengar K.P. Musculoskeletal manifestations of COVID-19. J. Clin. Orthop. Trauma 2021 17 280 281 10.1016/j.jcot.2021.03.002 33716426
    [Google Scholar]
  108. Valizadeh H. Abdolmohammadi-vahid S. Danshina S. Ziya Gencer M. Ammari A. Sadeghi A. Roshangar L. Aslani S. Esmaeilzadeh A. Ghaebi M. Valizadeh S. Ahmadi M. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020 89 Pt B 107088 10.1016/j.intimp.2020.107088 33129099
    [Google Scholar]
  109. Kokate C.K. Purohit A.P. Gokhale S.B. Nutraceutical and Cosmaceutical. Pharmacognosy 21st ed Pune, India NiraliPrakashan 2002 542 549
    [Google Scholar]
  110. Koushki M. Amiri-Dashatan N. Ahmadi N. Abbaszadeh H.A. Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr. 2018 6 8 2473 2490 10.1002/fsn3.855 30510749
    [Google Scholar]
  111. Lin S.C. Ho C.T. Chuo W.H. Li S. Wang T.T. Lin C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis. 2017 17 1 144 10.1186/s12879‑017‑2253‑8 28193191
    [Google Scholar]
  112. Ambra R. Melloni S. Venneria E. Could selenium supplementation prevent COVID-19? A comprehensive review of available studies. Molecules 2023 28 10 4130 10.3390/molecules28104130 37241870
    [Google Scholar]
  113. Sadeghizadeh M. Asadollahi E. Jahangiri B. Yadollahzadeh M. Mohajeri M. Afsharpad M. Najafi F. Rezaie N. Eskandari M. Tavakoli-Ardakani M. Feizabadi F. Masjedi M.R. Promising clinical outcomes of nano‐curcumin treatment as an adjunct therapy in hospitalized COVID ‐19 patients: A randomized, double‐blinded, placebo‐controlled trial. Phytother. Res. 2023 37 8 3631 3644 10.1002/ptr.7844 37118944
    [Google Scholar]
  114. McCreary M.R. Schnell P.M. Rhoda D.A. Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19). Sci. Rep. 2022 12 1 10978 10.1038/s41598‑022‑13920‑9 35768453
    [Google Scholar]
  115. Giordo R. Zinellu A. Eid A.H. Pintus G. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders. Molecules 2021 26 4 856 10.3390/molecules26040856 33562030
    [Google Scholar]
  116. Nagai T. Miyaichi Y. Tomimori T. Suzuki Y. Yamada H. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antiviral Res. 1992 19 3 207 217 10.1016/0166‑3542(92)90080‑O 1444327
    [Google Scholar]
  117. Namazi R. Zabihollahi R. Behbahani M. Rezaei A. Inhibitory activity of Avicennia marina, a medicinal plant in Persian folk medicine, against HIV and HSV. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res. 2013 12 2 435 443 24250619
    [Google Scholar]
  118. Ahovègbé L.Y. Ogwang P.E. Peter E.L. Mtewa A.G. Kasali F.M. Tolo C.U. Gbenoudon J. Weisheit A. Pakoyo K.F. Therapeutic potentials of Vachellia nilotica (L.) extracts in Hepatitis C infection: A review. Sci. Am. 2021 13 e00918
    [Google Scholar]
  119. Hussein G. Miyashiro H. Nakamura N. Hattori M. Kakiuchi N. Shimotohno K. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res. 2000 14 7 510 516 10.1002/1099‑1573(200011)14:7<510::AID‑PTR646>3.0.CO;2‑B 11054840
    [Google Scholar]
  120. Cheng P.W. Ng L.T. Chiang L.C. Lin C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006 33 7 612 616 10.1111/j.1440‑1681.2006.04415.x 16789928
    [Google Scholar]
  121. Toulabi T. Delfan B. Rashidipour M. Yarahmadi S. Ravanshad F. Javanbakht A. Almasian M. The efficacy of olive leaf extract on healing herpes simplex virus labialis: A randomized double-blind study. Explore (NY) 2022 18 3 287 292 10.1016/j.explore.2021.01.003 33541815
    [Google Scholar]
  122. Saderi H. Abbasi M. Evaluation of anti-adenovirus activity of some plants from Lamiaceae family grown in Iran in cell culture. Afr. J. Biotechnol. 2011 10 76 17546 17550
    [Google Scholar]
  123. Ali S.I. Sheikh W.M. Rather M.A. Venkatesalu V. Muzamil Bashir S. Nabi S.U. Medicinal plants: Treasure for antiviral drug discovery. Phytother. Res. 2021 35 7 3447 3483 10.1002/ptr.7039 33590931
    [Google Scholar]
  124. Woo M.S. Malsy J. Pöttgen J. Seddiq Zai S. Ufer F. Hadjilaou A. Schmiedel S. Addo M.M. Gerloff C. Heesen C. Schulze Zur Wiesch J. Friese M.A. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2020 2 2 fcaa205 10.1093/braincomms/fcaa205 33376990
    [Google Scholar]
  125. Khaliq B. Ali N. Akrem A. Ashraf M.Y. Malik A. Tahir A. Zia-Ul-Haq M. Medicinal plants against COVID-19. The COVID-19 Pandemic Apple Academic Press. 2022
    [Google Scholar]
  126. Li Y.H. Lai C.Y. Su M.C. Cheng J.C. Chang Y.S. Antiviral activity of Portulaca oleracea L. against influenza A viruses. J. Ethnopharmacol. 2019 241 112013 10.1016/j.jep.2019.112013 31170517
    [Google Scholar]
  127. Espinoza T. Valencia E. Albarrán M. Díaz D. Quevedo R.A. Díaz O. Bastías J. Garlic (Allium sativum L) and Itsbeneficialproperties for health: A review. Agro Sci. 2020 10 1 103 115
    [Google Scholar]
  128. Delgado Y. Cassé C. Ferrer-Acosta Y. Suárez-Arroyo I.J. Rodríguez-Zayas J. Torres A. Torres-Martínez Z. Pérez D. González M.J. Velázquez-Aponte R.A. Andino J. Correa-Rodríguez C. Franco J.C. Milán W. Rosario G. Velázquez E. Vega J. Colón J. Batista C. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review. Appl. Sci. (Basel) 2021 11 18 8477 10.3390/app11188477
    [Google Scholar]
  129. Zeng Z.Y. Feng S.D. Chen G.P. Wu J.N. Predictive value of the neutrophil to lymphocyte ratio for disease deterioration and serious adverse outcomes in patients with COVID-19: a prospective cohort study. BMC Infect. Dis. 2021 21 1 80 10.1186/s12879‑021‑05796‑3 33461497
    [Google Scholar]
  130. Lin C.J. Chen T.L. Tseng Y.Y. Wu G.J. Hsieh M.H. Lin Y.W. Chen R.M. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol. Appl. Pharmacol. 2016 304 59 69 10.1016/j.taap.2016.05.018 27236003
    [Google Scholar]
  131. Seyed Hosseini E. Riahi Kashani N. Nikzad H. Azadbakht J. Hassani Bafrani H. Haddad Kashani H. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology 2020 551 1 9 10.1016/j.virol.2020.08.011 33010669
    [Google Scholar]
  132. Henry B.M. de Oliveira M.H.S. Benoit S. Plebani M. Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clinical Chemistry and Laboratory Medicine (CCLM) 2020 58 7 1021 1028 10.1515/cclm‑2020‑0369 32286245
    [Google Scholar]
  133. Rahimkhani M. Nikfalah A. Saberian M. Mordadi A. Varmazyar S. Tavakoli A. URINARY TRACT INFECTION IN SPINAL CORD INJURIES. Asian J. Pharm. Clin. Res. 2014 7 2 178 182
    [Google Scholar]
  134. Guo W. Song Y. Song W. Liu Y. Liu Z. Zhang D. Tang Z. Bai O. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy. Sci. Rep. 2020 10 1 7832 10.1038/s41598‑020‑64828‑1 32398729
    [Google Scholar]
  135. Islam H. Chamberlain T.C. Mui A.L. Little J.P. Elevated interleukin-10 levels in COVID-19: potentiation of pro-inflammatory responses or impaired anti-inflammatory action? Front. Immunol. 2021 12 677008 10.3389/fimmu.2021.677008 34234779
    [Google Scholar]
  136. Lipipun V. Kurokawa M. Suttisri R. Taweechotipatr P. Pramyothin P. Hattori M. Shiraki K. Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res. 2003 60 3 175 180 10.1016/S0166‑3542(03)00152‑9 14638393
    [Google Scholar]
  137. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad. Med. J. 2021 97 1147 312 320 10.1136/postgradmedj‑2020‑138577 32978337
    [Google Scholar]
  138. Khan A. Iqtadar S. Mumtaz S.U. Heinrich M. Pascual-Figal D.A. Livingstone S. Abaidullah S. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19—Results from a pilot open-label, randomized controlled trial. Front. Pharmacol. 2022 13 898062 10.3389/fphar.2022.898062 35747751
    [Google Scholar]
  139. Liu F. Zhu Y. Zhang J. Li Y. Peng Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial. BMJ Open 2020 10 7 e039519 10.1136/bmjopen‑2020‑039519 32641343
    [Google Scholar]
  140. Saber-Moghaddam N. Salari S. Hejazi S. Amini M. Taherzadeh Z. Eslami S. Rezayat S.M. Jaafari M.R. Elyasi S. Oral nano‐curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease ‐19 patients: An open label nonrandomized clinical trial. Phytother. Res. 2021 35 5 2616 2623 10.1002/ptr.7004 33389761
    [Google Scholar]
  141. Lucas K. Fröhlich-Nowoisky J. Oppitz N. Ackermann M. Cinnamon and hop extracts as potential immunomodulators for severe COVID-19 cases. Front. Plant Sci. 2021 12 589783 10.3389/fpls.2021.589783 33719281
    [Google Scholar]
  142. Maarasyid C. Muhamad I.I. Supriyanto E. Potential source and extraction of vitamin E from palm-based oils: a review. J. Teknol. 2014 69 4 43 10.11113/jt.v69.3172
    [Google Scholar]
  143. Yakhchali M. Taghipour Z. Mirabzadeh Ardakani M. Alizadeh Vaghasloo M. Vazirian M. Sadrai S. Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed. Pharmacother. 2021 143 112221 10.1016/j.biopha.2021.112221 34563952
    [Google Scholar]
  144. Mahmood N. Pizza C. Aquino R. De Tommasi N. Piacente S. Colman S. Burke A. Hay A.J. Inhibition of HIV infection by flavanoids. Antiviral Res. 1993 22 2-3 189 199 10.1016/0166‑3542(93)90095‑Z 8279812
    [Google Scholar]
  145. Martineau A.R. Jolliffe D.A. Greenberg L. Aloia J.F. Bergman P. Dubnov-Raz G. Esposito S. Ganmaa D. Ginde A.A. Goodall E.C. Grant C.C. Janssens W. Jensen M.E. Kerley C.P. Laaksi I. Manaseki-Holland S. Mauger D. Murdoch D.R. Neale R. Rees J.R. Simpson S. Jr Stelmach I. Trilok Kumar G. Urashima M. Camargo C.A. Jr Griffiths C.J. Hooper R.L. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol. Assess. 2019 23 2 1 44 10.3310/hta23020 30675873
    [Google Scholar]
  146. Menni C. Valdes A. Freydin M.B. Ganesh S. Moustafa J.E. Visconti A. Hysi P. Bowyer R.C. Mangino M. Falchi M. Wolf J. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. Nature Medicine 2020 Preprint
    [Google Scholar]
  147. Lu L. Xiong W. Mu J. Zhang Q. Zhang H. Zou L. Li W. He L. Sander J.W. Zhou D. The potential neurological effect of the COVID‐19 vaccines: A review. Acta Neurol. Scand. 2021 144 1 3 12 10.1111/ane.13417 33779985
    [Google Scholar]
  148. Di Matteo G. Spano M. Grosso M. Salvo A. Ingallina C. Russo M. Ritieni A. Mannina L. Food and COVID-19: preventive/co-therapeutic strategies explored by current clinical trials and in silico studies. Foods 2020 9 8 1036 10.3390/foods9081036 32752217
    [Google Scholar]
  149. Vishwakarma S. Panigrahi C. Barua S. Sahoo M. Mandliya S. Food nutrients as inherent sources of immunomodulation during COVID-19 pandemic. Lebensm. Wiss. Technol. 2022 158 113154 10.1016/j.lwt.2022.113154 35125518
    [Google Scholar]
  150. Mrityunjaya M. Pavithra V. Neelam R. Janhavi P. Halami P.M. Ravindra P.V. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front. Immunol. 2020 11 570122 10.3389/fimmu.2020.570122 33117359
    [Google Scholar]
  151. Morimoto R. Hanada A. Matsubara C. Horio Y. Sumitani H. Ogata T. Isegawa Y. Anti-influenza A virus activity of flavonoids in vitro: a structure–activity relationship. J. Nat. Med. 2023 77 1 219 227 10.1007/s11418‑022‑01660‑z 36357821
    [Google Scholar]
  152. McElvaney O.J. Hobbs B.D. Qiao D. McElvaney O.F. Moll M. McEvoy N.L. Clarke J. O’Connor E. Walsh S. Cho M.H. Curley G.F. A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine 2020 ••• 61
    [Google Scholar]
  153. Nagy S. Vitamin C contents of citrus fruit and their products: a review. J. Agric. Food Chem. 1980 28 1 8 18 10.1021/jf60227a026 7358939
    [Google Scholar]
  154. Kai H. Obuchi M. Yoshida H. Watanabe W. Tsutsumi S. Park Y.K. Matsuno K. Yasukawa K. Kurokawa M. In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J. Funct. Foods 2014 8 214 223 10.1016/j.jff.2014.03.019
    [Google Scholar]
  155. Nutan N. Modi M. Dezzutti C.S. Kulshreshtha S. Rawat A.K.S. Srivastava S.K. Malhotra S. Verma A. Ranga U. Gupta S.K. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol. J. 2013 10 1 309 10.1186/1743‑422X‑10‑309 25228267
    [Google Scholar]
  156. Narayana K.R. Reddy S.M. Chaluvadi M.R. Krishna D.R. Bioflavonoids classification, pharmacological Effects and therapeutic potential. Indian J. Pharmacol. 2001 33 2 1
    [Google Scholar]
  157. Nichols W.G. Peck Campbell A.J. Boeckh M. Respiratory viruses other than influenza virus: impact and therapeutic advances. Clin. Microbiol. Rev. 2008 21 2 274 290 10.1128/CMR.00045‑07 18400797
    [Google Scholar]
  158. Paciello F. Fetoni A.R. Mezzogori D. Rolesi R. Di Pino A. Paludetti G. Grassi C. Troiani D. The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Sci. Rep. 2020 10 1 1063 10.1038/s41598‑020‑57965‑0 31913322
    [Google Scholar]
  159. Palai S. Manaswini D. Spices boosting immunity in COVID-19. Annal. Phytomed. Int. J. 2020 2020 80 96
    [Google Scholar]
  160. Bhargava P. Mahanta D. Kaul A. Ishida Y. Terao K. Wadhwa R. Kaul S.C. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021 13 8 2528 10.3390/nu13082528 34444688
    [Google Scholar]
  161. Pleschka S. Stein M. Schoop R. Hudson J.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J. 2009 6 1 197 10.1186/1743‑422X‑6‑197 19912623
    [Google Scholar]
  162. Ragan I. Hartson L. Pidcoke H. Bowen R. Goodrich R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One 2020 15 5 e0233947 10.1371/journal.pone.0233947 32470046
    [Google Scholar]
  163. Rahman M.T. Idid S.Z. Can Zn be a critical element in COVID-19 treatment? Biol. Trace Elem. Res. 2021 199 2 550 558 10.1007/s12011‑020‑02194‑9 32458149
    [Google Scholar]
  164. Rangan R. Zheludev I.N. Hagey R.J. Pham E.A. Wayment-Steele H.K. Glenn J.S. Das R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. RNA 2020 26 8 937 959 10.1261/rna.076141.120 32398273
    [Google Scholar]
  165. Rather I.A. Choi S.B. Kamli M.R. Hakeem K.R. Sabir J.S.M. Park Y.H. Hor Y.Y. Potential Adjuvant Therapeutic Effect of Lactobacillus plantarum Probio-88 Postbiotics against SARS-COV-2. Vaccines (Basel) 2021 9 10 1067 10.3390/vaccines9101067 34696175
    [Google Scholar]
  166. Stobiecka M. Król J. Brodziak A. Antioxidant activity of milk and dairy products. Animals (Basel) 2022 12 3 245 10.3390/ani12030245 35158569
    [Google Scholar]
  167. Razeghi Jahromi S. Moradi Tabriz H. Togha M. Ariyanfar S. Ghorbani Z. Naeeni S. Haghighi S. Jazayeri A. Montazeri M. Talebpour M. Ashraf H. Ebrahimi M. Hekmatdoost A. Jafari E. The correlation between serum selenium, zinc, and COVID-19 severity: an observational study. BMC Infect. Dis. 2021 21 1 899 10.1186/s12879‑021‑06617‑3 34479494
    [Google Scholar]
  168. Romita K. O’Brien R. Minerals: Their functions and sources. Health Alberta 2018 1 36
    [Google Scholar]
  169. Moreb N.A. Albandary A. Jaiswal S. Jaiswal A.K. Fruits and vegetables in the management of underlying conditions for COVID-19 high-risk groups. Foods 2021 10 2 389 10.3390/foods10020389 33578926
    [Google Scholar]
  170. Darbar S. Saha S. Immune boosting role of vitamins in prevention of COVID-19 infection. Journal of Basic Pharmacology and Toxicology. 2020 4 2 1 5
    [Google Scholar]
  171. Sawicka B. Ziarati P. Behmanesh M. Skiba D Adom D. Plants sources of vitamins against SARS-CoV-2. Coronavirus Drug Discovery Elsevier 2022
    [Google Scholar]
  172. Chand V. Nutrition as a key weapon in strengthening immune system relative to pandemic novel Coronavirus disease (COVID-19): A review. Int. J. Health Sci. Res. 2020 10 8 96 104
    [Google Scholar]
  173. Shaikh Z. Sundarrajan P. Bhagtaney L. Zehra S. Zahra K.F. Badra B. Yigit B.M. Patel N. Alim H. Khan J. Ali A. Applicability of vitamins in the management of COVID-19: An overview. Annal. Phytomed. Int. J. 2021 10 1 S65 S76
    [Google Scholar]
  174. Wei X. Pandohee J. Xu B. Recent developments and emerging trends in dietary vitamin D sources and biological conversion. Crit. Rev. Food Sci. Nutr. 2023 ••• 1 17 10.1080/10408398.2023.2220793 37357915
    [Google Scholar]
  175. Darbar S. Saha S. Agarwal S. Immunomodulatory role of vitamin C, D and E to fight against COVID-19 infection through boosting immunity: a review. Parana Journal of Science and Education. 2021 7 1 10 18
    [Google Scholar]
  176. Awuchi C.G. Twinomuhwezi T. Awuchi C.G. Amagwula I.O. Egbuna C. Immune Foods for Fighting Coronavirus Disease-2019 (COVID-19). Medicinal Plants, Phytomedicines and Traditional Herbal Remedies for Drug Discovery and Development against COVID-19 Bentham science publishers 2023
    [Google Scholar]
  177. Dhok A. Butola L.K. Anjankar A. Shinde A.D.R. Kute P.K. Jha R.K. Role of vitamins and minerals in improving immunity during Covid-19 pandemic-A review. J. Evol. Med. Dent. Sci. 2020 9 32 2296 2300 10.14260/jemds/2020/497
    [Google Scholar]
  178. Colin-Ortega J.C. González-Pérez M. Analysis of the chemical-quantum interactions of some components of carrots versus sars-cov-2 proteins and their influence on covid-19. World J. Pharm. Res. 2020 9 15 41 49
    [Google Scholar]
  179. Verma V. Yadav R. Singh Z. Importance of vitamin B and its effect on health during the COVID-19 pandemic period. Handbook of Research on Complexities, Management, and Governance in Healthcare IGI Global 2023
    [Google Scholar]
  180. Tahmasebi S. El-Esawi M.A. Mahmoud Z.H. Timoshin A. Valizadeh H. Roshangar L. Varshoch M. Vaez A. Aslani S. Navashenaq J.G. Aghebati-Maleki L. Ahmadi M. RETRACTED: Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID‐19 patients. J. Cell. Physiol. 2021 236 7 5325 5338 10.1002/jcp.30233 33372280
    [Google Scholar]
  181. Tapparel C. Siegrist F. Petty T.J. Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect. Genet. Evol. 2013 14 282 293 10.1016/j.meegid.2012.10.016 23201849
    [Google Scholar]
  182. Theisen L.L. Muller C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res. 2012 94 2 147 156 10.1016/j.antiviral.2012.03.006 22475498
    [Google Scholar]
  183. Tverdislov V.A. El Karadaghi S. Bucher D.J. Zakomirdin J.A. Kharitonenkov I.G. Interaction of influenza virus proteins with planar bilayer lipid membranes II. Effects of rimantadine and amantadine. Biochim. Biophys. Acta Biomembr. 1984 778 2 276 280 10.1016/0005‑2736(84)90369‑9 6498193
    [Google Scholar]
  184. Urashima M. Segawa T. Okazaki M. Kurihara M. Wada Y. Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am. J. Clin. Nutr. 2010 91 5 1255 1260 10.3945/ajcn.2009.29094 20219962
    [Google Scholar]
  185. Gu S. Chen Y. Wu Z. Chen Y. Gao H. Lv L. Guo F. Zhang X. Luo R. Huang C. Lu H. Zheng B. Zhang J. Yan R. Zhang H. Jiang H. Xu Q. Guo J. Gong Y. Tang L. Li L. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin. Infect. Dis. 2020 71 10 2669 2678 10.1093/cid/ciaa709 32497191
    [Google Scholar]
  186. Yeoh Y.K. Zuo T. Lui G.C.Y. Zhang F. Liu Q. Li A.Y.L. Chung A.C.K. Cheung C.P. Tso E.Y.K. Fung K.S.C. Chan V. Ling L. Joynt G. Hui D.S.C. Chow K.M. Ng S.S.S. Li T.C.M. Ng R.W.Y. Yip T.C.F. Wong G.L.H. Chan F.K.L. Wong C.K. Chan P.K.S. Ng S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021 70 4 698 706 10.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  187. Usachev E.V. Pyankov O.V. Usacheva O.V. Agranovski I.E. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. J. Aerosol Sci. 2013 59 22 30 10.1016/j.jaerosci.2013.01.004
    [Google Scholar]
  188. Vázquez-Calvo Á. Jiménez de Oya N. Martín-Acebes M.A. Garcia-Moruno E. Saiz J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front. Microbiol. 2017 8 1314 10.3389/fmicb.2017.01314 28744282
    [Google Scholar]
  189. Vignesh R. Swathirajan C.R. Tun Z.H. Rameshkumar M.R. Solomon S.S. Balakrishnan P. Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm? Front. Immunol. 2021 11 607734 10.3389/fimmu.2020.607734 33569053
    [Google Scholar]
  190. Wang T.T. Nestel F.P. Bourdeau V. Nagai Y. Wang Q. Liao J. Tavera-Mendoza L. Lin R. Hanrahan J.W. Mader S. White J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004 173 5 2909 2912 10.4049/jimmunol.173.5.2909 15322146
    [Google Scholar]
  191. Wang W. Jin Y. Zeng N. Ruan Q. Qian F. SOD2 facilitates the antiviral innate immune response by scavenging reactive oxygen species. Viral Immunol. 2017 30 8 582 589 10.1089/vim.2017.0043 28574756
    [Google Scholar]
  192. Weinberg J.B. Shugars D.C. Sherman P.A. Sauls D.L. Fyfe J.A. Cobalamin inhibition of HIV-1 integrase and integration of HIV-1 DNA into cellular DNA. Biochem. Biophys. Res. Commun. 1998 246 2 393 397 10.1006/bbrc.1998.8629 9610370
    [Google Scholar]
  193. Weng J.R. Lin C.S. Lai H.C. Lin Y.P. Wang C.Y. Tsai Y.C. Wu K.C. Huang S.H. Lin C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res. 2019 273 197767 10.1016/j.virusres.2019.197767 31560964
    [Google Scholar]
  194. Wessels I. Rolles B. Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 2020 11 1712 10.3389/fimmu.2020.01712 32754164
    [Google Scholar]
  195. Wu D. Yang X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020 53 3 368 370 10.1016/j.jmii.2020.03.005 32205092
    [Google Scholar]
  196. Yosri N. Abd El-Wahed A.A. Ghonaim R. Khattab O.M. Sabry A. Ibrahim M.A.A. Moustafa M.F. Guo Z. Zou X. Algethami A.F.M. Masry S.H.D. AlAjmi M.F. Afifi H.S. Khalifa S.A.M. El-Seedi H.R. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021 10 8 1776 10.3390/foods10081776 34441553
    [Google Scholar]
  197. Young G.A. Jr Underdahl N.R. Carpenter L.E. Vitamin D intake and susceptibility of mice to experimental swine influenza virus infection. Exp. Biol. Med. (Maywood) 1949 72 3 695 697 10.3181/00379727‑72‑17545 15400837
    [Google Scholar]
  198. Yuan J. Liu J. Hu Y. Fan Y. Wang D. Guo L. Nguyen T.L. Zhao X. Liu X. Liu C. Wu Y. The immunological activity of propolis flavonoids liposome on the immune response against ND vaccine. Int. J. Biol. Macromol. 2012 51 4 400 405 10.1016/j.ijbiomac.2012.06.002 22705053
    [Google Scholar]
  199. Zabetakis I. Lordan R. Norton C. Tsoupras A. COVID-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients 2020 12 5 1466 10.3390/nu12051466 32438620
    [Google Scholar]
  200. Zandi K. Taherzadeh M. Yaghoubi R. Tajbakhsh S. Rastian Z. Sartavi K. Antiviral activity of Avicennia marina against herpes simplex virus type 1 and vaccine strain of poliovirus (An in vitro study). J. Med. Plants Res. 2009 3 771 775
    [Google Scholar]
  201. Zareie A. Soleimani D. Askari G. Jamialahmadi T. Guest P.C. Bagherniya M. Sahebkar A. Cinnamon: A promising natural product against COVID-19. Adv. Exp. Med. Biol. 2021 1327 191 195
    [Google Scholar]
  202. Zelko I.N. Mariani T.J. Folz R.J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002 33 3 337 349 10.1016/S0891‑5849(02)00905‑X 12126755
    [Google Scholar]
  203. Rahimkhani M. Mordadi A.R. Survey of the Lethal Effect of Ciprofloxacin and Supernatant Isolated from Staphylococcus Aureus under the Stress of Ciprofloxacin on Methicillin-Resistant Staphylococcus Aureus Strains Isolated from Clinical Specimens. J. payavard salamat 2022 15 6 578 584
    [Google Scholar]
  204. Pérez-Torrado R. Querol A. Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products. Front. Microbiol. 2016 6 1522 10.3389/fmicb.2015.01522 26779173
    [Google Scholar]
  205. Atıcı S. Soysal A. Karadeniz Cerit K. Yılmaz Ş. Aksu B. Kıyan G. Bakır M. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature. Med. Mycol. Case Rep. 2017 15 33 35 10.1016/j.mmcr.2017.02.002 28280685
    [Google Scholar]
  206. Pinto G. Lima L. Pedra T. Assumpção A. Morgado S. Mascarenhas L. Bloodstream infection by Saccharomyces cerevisiae in a COVID-19 patient receiving probiotic supplementation in the ICU in Brazil. Access Microbiol. 2021 3 8 000250 10.1099/acmi.0.000250 34888480
    [Google Scholar]
  207. Ventoulis I. Sarmourli T. Amoiridou P. Mantzana P. Exindari M. Gioula G. Vyzantiadis T.A. Bloodstream infection by Saccharomyces cerevisiae in two COVID-19 patients after receiving supplementation of Saccharomyces in the ICU. J. Fungi (Basel) 2020 6 3 98 10.3390/jof6030098 32630111
    [Google Scholar]
  208. Ramos L. Mokus L. Frota H. Santos M. Oliveira S. Oliveira M. Costa G. Alves A. Bernardes-Engemann A. Orofino-Costa R. Aor A. Branquinha M. Santos A. SARS-CoV-2 Post-Infection and Sepsis by Saccharomyces cerevisiae: A Fatal Case Report—Focus on Fungal Susceptibility and Potential Virulence Attributes. Trop. Med. Infect. Dis. 2023 8 2 99 10.3390/tropicalmed8020099 36828515
    [Google Scholar]
  209. Hung Y.P. Lee C.C. Lee J.C. Tsai P.J. Ko W.C. Gut dysbiosis during COVID-19 and potential effect of probiotics. Microorganisms 2021 9 8 1605 10.3390/microorganisms9081605 34442684
    [Google Scholar]
  210. Annweiler C. Beaudenon M. Gautier J. Simon R. Dubée V. Gonsard J. Parot-Schinkel E. Aidoud A. Albaret G. Annweiler C. Audemard-Verger A. Asfar M. Barré J. Berteau F. Bertoletti G. Beuscart J-B. Bigot A. Boucher S. Botelho-Nevers E. Bourdel-Marchasson I. Boureau A.S. Brangier A. Brouessard C. Bureau M.L. Cardinaud N. Carles M. Castro-Lionard K. Celarier T. Chapelet G. Chirio D. Clabé E. Codron P. Courjon J. Cua É. Danet-Lamasou M. Decorbez A. De La Chapelle M. Demonchy E. Desvaux E. D’Hautefeuille M. Dubée V. Duval G. Fougère B. Gassie P. Giroult N. Guérin O. Hankard R. Houvet M. Jobard S. Lacout C. Lafargue A. Laubarie-Mouret C. Le Floch M. Le Gentil S. Lléonart S. Loison J. Mahieu R. Maillot F. Martinez L. Mathieu M. Mauclere A. Ménager P. Michel E. Nguyen T.B. Ordonez R. Otekpo M. Pichon V. Poitau F. Pommier G. Rabier V. Risso K. Rivière H. Rouaud A. Roubaud-Baudron C. Sacco G. Scholastique F. Seronie-Doutriaux E. Tchalla A. Trzepizur W. Vandamme Y-M. COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): study protocol for a randomized controlled trial. Trials 2020 21 1 1031 10.1186/s13063‑020‑04928‑5 33371905
    [Google Scholar]
  211. Hassaniazad M. Eftekhar E. Inchehsablagh B.R. Kamali H. Tousi A. Jaafari M.R. Rafat M. Fathalipour M. Nikoofal-Sahlabadi S. Gouklani H. Alizade H. Nikpoor A.R. A triple‐blind, placebo‐controlled, randomized clinical trial to evaluate the effect of curcumin‐containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID ‐19 patients. Phytother. Res. 2021 35 11 6417 6427 10.1002/ptr.7294 34541720
    [Google Scholar]
  212. Al Sulaiman K. Aljuhani O. Saleh K.B. Badreldin H.A. Al Harthi A. Alenazi M. Alharbi A. Algarni R. Al Harbi S. Alhammad A.M. Vishwakarma R. Aldekhyl S. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: a propensity score matched study. Sci. Rep. 2021 11 1 17648 10.1038/s41598‑021‑96703‑y 34480041
    [Google Scholar]
  213. Patel O. Chinni V. El-Khoury J. Perera M. Neto A.S. McDonald C. See E. Jones D. Bolton D. Bellomo R. Trubiano J. Ischia J. A pilot double‐blind safety and feasibility randomized controlled trial of high‐dose intravenous zinc in hospitalized COVID‐19 patients. J. Med. Virol. 2021 93 5 3261 3267 10.1002/jmv.26895 33629384
    [Google Scholar]
  214. Ivashkin V. Fomin V. Moiseev S. Brovko M. Maslennikov R. Ulyanin A. Sholomova V. Vasilyeva M. Trush E. Shifrin O. Poluektova E. Efficacy of a Probiotic Consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the Treatment of Hospitalized Patients with COVID-19: a Randomized Controlled Trial. Probiotics Antimicrob. Proteins 2021 ••• 1 9 34643888
    [Google Scholar]
  215. Castrellón G.P. Martí G.T. Abreu A.T. Rufino N.C.D. Orduña L.E. Escobar J.I. Gutiérrez J.C. Velazquez L.G. Mazo E.J. Efficacy and safety of novel probiotic formulation in adult Covid19 outpatients: A randomized, placebo-controlled clinical trial. medRxiv 2021 10.1101/2021.05.20.21256954
    [Google Scholar]
  216. Ren Z. Jia G. He H. Ding T. Yu Y. Zuo Z. Hu Y. Zhong Z. Yu S. Deng H. Shen L. Cao S. Peng G. Wang Y. Cai D. Gou L. Ma X. Liu H. Zhou Z. Deng Y. Yang D. Deng J. Antiviral effect of selenomethionine on porcine deltacoronavirus in pig kidney epithelial cells. Front. Microbiol. 2022 13 846747 10.3389/fmicb.2022.846747 35242124
    [Google Scholar]
  217. Tito A. Colantuono A. Pirone L. Pedone E. Intartaglia D. Giamundo G. Conte I. Vitaglione P. Apone F. Pomegranate peel extract as an inhibitor of SARS-CoV-2 spike binding to human ACE2 receptor (in vitro): A promising source of novel antiviral drugs. Front Chem. 2021 9 638187 10.3389/fchem.2021.638187 33996744
    [Google Scholar]
  218. Attia G.H. Moemen Y.S. Youns M. Ibrahim A.M. Abdou R. El Raey M.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf. B Biointerfaces 2021 203 111724 10.1016/j.colsurfb.2021.111724 33838582
    [Google Scholar]
  219. Zhao Z. Xiao Y. Xu L. Liu Y. Jiang G. Wang W. Li B. Zhu T. Tan Q. Tang L. Zhou H. Huang X. Shan H. Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 2021 13 18 20995 21006 10.1021/acsami.1c02755 33930273
    [Google Scholar]
  220. Gaylis N.B. Kreychman I. Sagliani J. Mograbi J. Gabet Y. The results of a unique dietary supplement (nutraceutical formulation) used to treat the symptoms of long-haul COVID. Front. Nutr. 2022 9 1034169 10.3389/fnut.2022.1034169 36386945
    [Google Scholar]
  221. Faiyazuddin M. Sophia A. Ashique S. Gholap A.D. Gowri S. Mohanto S. Karthikeyan C. Nag S. Hussain A. Akhtar M.S. Bakht M.A. Ahmed M.G. Rustagi S. Rodriguez-Morales A.J. Salas-Matta L.A. Mohanty A. Bonilla-Aldana D.K. Sah R. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review. Front. Immunol. 2023 14 1264502 10.3389/fimmu.2023.1264502 37818370
    [Google Scholar]
  222. Fragkou P.C. Dimopoulou D. Serious complications of COVID-19 vaccines: A mini-review. Metabolism open. 2021 12 100145
    [Google Scholar]
  223. Hosseini R. Askari N. A review of neurological side effects of COVID-19 vaccination. Eur. J. Med. Res. 2023 28 1 102 10.1186/s40001‑023‑00992‑0 36841774
    [Google Scholar]
  224. Chatterjee A. Chakravarty A. Neurological complications following COVID-19 vaccination. Curr. Neurol. Neurosci. Rep. 2023 23 1 1 14 10.1007/s11910‑022‑01247‑x 36445631
    [Google Scholar]
  225. Notarte K.I. Catahay J.A. Velasco J.V. Pastrana A. Ver A.T. Pangilinan F.C. Peligro P.J. Casimiro M. Guerrero J.J. Gellaco M.M.L. Lippi G. Henry B.M. Fernández-de-las-Peñas C. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. EClinicalMedicine 2022 53 101624 10.1016/j.eclinm.2022.101624 36051247
    [Google Scholar]
  226. Alsadi M.O. John V. Dermatological complications of COVID 19 vaccines: An updated review. Natl. J. Community Med. 2023 14 3 180 186 10.55489/njcm.140320232663
    [Google Scholar]
  227. Ghasemiyeh P. Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol. J. 2024 21 1 98 10.1186/s12985‑024‑02370‑6 38671455
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265320091241017161919
Loading
/content/journals/iddt/10.2174/0118715265320091241017161919
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antioxidant ; minerals ; propolis ; vitamins ; probiotics ; nutraceuticals ; post-COVID syndrome ; Antiviral
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test