Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Tea is obtained from the young leaves and shoots of the evergreen perennial plant (L.) Kuntze, the most popular and frequently consumed product using a natural beverage worldwide. Some kinds of tea products, such as green tea, black tea, and oolong tea, have assorted flavors depending on the manufacturing techniques. Green tea has been studied for many years for its important beneficial effects, including anticancer, anti-obesity, anti-diabetes, anti-inflammatory, neuroprotective, and cardiovascular effects. These effects are primarily associated with tea polyphenols, and regular consumption has been reported to decrease the incidence of some chronic diseases. Current studies support that green tea catechins play an important role in healing and improving the pathology of many diseases. Epigallocatechin-3-gallate (EGCG) is the most a highly found polyphenol in the leaves and is of great interest for its protective role in the prevention of diseases. Therefore, this review presents the efficacy and possible mechanisms of EGCG against sexually transmitted viruses. Moreover, EGCG and its derivatives are recognized as safe bioactive phytochemicals for external and internal use in preventing and treating viral STIs and other concurrent infections. Multidisciplinary studies are essential to discover cheaper, safer, and more effective treatments using EGCG and its derivatives to improve the toxicity and formulations of viral STI medications.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265319110240916061200
2024-10-30
2025-06-17
Loading full text...

Full text loading...

References

  1. XuJ. XuZ. ZhengW. A review of the antiviral role of green tea catechins.Molecules2017228133710.3390/molecules22081337 28805687
    [Google Scholar]
  2. WagenlehnerFME BrockmeyerNH DischerT FrieseK WichelhausTA The presentation, diagnosis, and treatment of sexually transmitted infections.Dtsch Arztebl Int20161131-02112210.3238/arztebl.2016.0011 26931526
    [Google Scholar]
  3. SorianoV. del RomeroJ. Rebound in sexually transmitted infections following the success of antiretrovirals for HIV/AIDS.AIDS Rev.201920418720410.24875/AIDSRev.18000034 30548023
    [Google Scholar]
  4. TorroneE.A. LewisF.M.T. KirkcaldyR.D. Genital mycoplasma, Shigellosis, Zika, pubic lice, and other sexually transmitted infections: Neither gone nor forgotten.Sex. Transm. Dis.202148431031410.1097/OLQ.0000000000001367 33492101
    [Google Scholar]
  5. CurryK. ChandlerR. Kostas-PolstonE.A. AlexanderI. OrsegaS. Johnson-MallardV. Recommendations for managing sexually transmitted infections.Nurse Pract.2022474101810.1097/01.NPR.0000822528.27483.b2 35349512
    [Google Scholar]
  6. ChilakaV.N. HassanR. KonjeJ.C. Post-exposure prophylaxis for blood-borne viral (BBV) infections.Eur. J. Obstet. Gynecol. Reprod. Biol.2020255839110.1016/j.ejogrb.2020.10.032 33113403
    [Google Scholar]
  7. GuoY. MaA. WangX. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships.Front Chem.202210100536010.3389/fchem.2022.1005360 36311429
    [Google Scholar]
  8. KardaniK. BasimiP. FekriM. BolhassaniA. Antiviral therapy for the sexually transmitted viruses: Recent updates on vaccine development.Expert Rev. Clin. Pharmacol.20201391001104610.1080/17512433.2020.1814743 32838584
    [Google Scholar]
  9. KausarS. Said KhanF. Ishaq Mujeeb Ur RehmanM. A review: Mechanism of action of antiviral drugs.Int. J. Immunopathol. Pharmacol.20213510.1177/20587384211002621 33726557
    [Google Scholar]
  10. MaY. Frutos-BeltránE. KangD. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses.Chem. Soc. Rev.20215074514454010.1039/D0CS01084G 33595031
    [Google Scholar]
  11. MasonS. DevincenzoJ.P. TooveyS. WuJ.Z. WhitleyR.J. Comparison of antiviral resistance across acute and chronic viral infections.Antiviral Res.201815810311210.1016/j.antiviral.2018.07.020 30086337
    [Google Scholar]
  12. DhamaK. KarthikK. KhandiaR. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens - Current knowledge and future prospects.Curr. Drug Metab.201819323626310.2174/1389200219666180129145252 29380697
    [Google Scholar]
  13. AnandA.V. BalamuralikrishnanB. KaviyaM. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2.Molecules2021266177510.3390/molecules26061775 33809963
    [Google Scholar]
  14. DateA.A. DestacheC.J. Natural polyphenols: Potential in the prevention of sexually transmitted viral infections.Drug Discov. Today201621233334110.1016/j.drudis.2015.10.019 26546859
    [Google Scholar]
  15. CabreraC. ArtachoR. GiménezR. Beneficial effects of green tea--A review.J. Am. Coll. Nutr.2006252799910.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  16. MusialC. Kuban-JankowskaA. Gorska-PonikowskaM. Beneficial properties of green tea catechins.Int. J. Mol. Sci.2020215174410.3390/ijms21051744 32143309
    [Google Scholar]
  17. KhanN. MukhtarH. Tea polyphenols in promotion of human health.Nutrients20181113910.3390/nu11010039 30585192
    [Google Scholar]
  18. TruongV.L. JeongW.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship.Int. J. Mol. Sci.20212217910910.3390/ijms22179109 34502017
    [Google Scholar]
  19. BraicuC. LadomeryM.R. ChedeaV.S. IrimieA. Berindan-NeagoeI. The relationship between the structure and biological actions of green tea catechins.Food Chem.201314133282328910.1016/j.foodchem.2013.05.122 23871088
    [Google Scholar]
  20. ReygaertW.C. Green tea catechins: Their use in treating and preventing infectious diseases.BioMed Res. Int.201820181910.1155/2018/9105261 30105263
    [Google Scholar]
  21. SangS. LambertJ.D. HoC.T. YangC.S. The chemistry and biotransformation of tea constituents.Pharmacol. Res.2011642879910.1016/j.phrs.2011.02.007 21371557
    [Google Scholar]
  22. ChenY. ChengS. DaiJ. Molecular mechanisms and applications of tea polyphenols: A narrative review.J. Food Biochem.20214510e1391010.1111/jfbc.13910 34426979
    [Google Scholar]
  23. HigdonJ.V. FreiB. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions.Crit. Rev. Food Sci. Nutr.20034318914310.1080/10408690390826464 12587987
    [Google Scholar]
  24. BartosikovaL. NecasJ. Epigallocatechin gallate: A review.Vet Med2018631044346710.17221/31/2018‑VETMED
    [Google Scholar]
  25. SuzukiY. MiyoshiN. IsemuraM. Health-promoting effects of green tea.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.20128838810110.2183/pjab.88.88 22450537
    [Google Scholar]
  26. SteinmannJ. BuerJ. PietschmannT. SteinmannE. Anti‐infective properties of epigallocatechin‐3‐gallate (EGCG), a component of green tea.Br. J. Pharmacol.201316851059107310.1111/bph.12009 23072320
    [Google Scholar]
  27. ChakrawartiL. AgrawalR. DangS. GuptaS. GabraniR. Therapeutic effects of EGCG: A patent review.Expert Opin. Ther. Pat.201626890791610.1080/13543776.2016.1203419 27338088
    [Google Scholar]
  28. MokraD. JoskovaM. MokryJ. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis.Int. J. Mol. Sci.202224134010.3390/ijms24010340 36613784
    [Google Scholar]
  29. ColpittsC.C. SchangL.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans.J. Virol.201488147806781710.1128/JVI.00896‑14 24789779
    [Google Scholar]
  30. YuenM.F. ChenD.S. DusheikoG.M. Hepatitis B virus infection.Nat. Rev. Dis. Primers2018411803510.1038/nrdp.2018.35 29877316
    [Google Scholar]
  31. RogerS. DucancelleA. Le Guillou-GuillemetteH. GaudyC. LunelF. HCV virology and diagnosis.Clin. Res. Hepatol. Gastroenterol.202145310162610.1016/j.clinre.2021.101626 33636428
    [Google Scholar]
  32. FénéantL. LevyS. CocquerelL. CD81 and hepatitis C virus (HCV) infection.Viruses20146253557210.3390/v6020535 24509809
    [Google Scholar]
  33. FofanaI. JilgN. ChungR.T. BaumertT.F. Entry inhibitors and future treatment of hepatitis C.Antiviral Res.201410413614210.1016/j.antiviral.2014.02.001 24525381
    [Google Scholar]
  34. LeoniS. CasabiancaA. BiagioniB. SerioI. Viral hepatitis: Innovations and expectations.World J. Gastroenterol.202228551753110.3748/wjg.v28.i5.517 35316960
    [Google Scholar]
  35. HuangH.C. TaoM.H. HungT.M. ChenJ.C. LinZ.J. HuangC. (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes.Antiviral Res.201411110011110.1016/j.antiviral.2014.09.009 25260897
    [Google Scholar]
  36. ErkenR. AndreP. RoyE. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study.J. Viral Hepat.202128121690169810.1111/jvh.13608 34467593
    [Google Scholar]
  37. FungS. ChoiH.S.J. GehringA. JanssenH.L.A. Getting to HBV cure: The promising paths forward.Hepatology202276123325010.1002/hep.32314 34990029
    [Google Scholar]
  38. HeW. LiL.X. LiaoQ.J. LiuC.L. ChenX.L. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line.World J. Gastroenterol.201117111507151410.3748/wjg.v17.i11.1507 21472112
    [Google Scholar]
  39. XuJ. WangJ. DengF. HuZ. WangH. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro.Antiviral Res.200878324224910.1016/j.antiviral.2007.11.011 18313149
    [Google Scholar]
  40. PangJ. ZhaoK. WangJ. MaZ. XiaoX. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro.J. Zhejiang Univ. Sci. B201415653353910.1631/jzus.B1300307 24903990
    [Google Scholar]
  41. KarameseM. AydogduS. KarameseS.A. AltoparlakU. GundogduC. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication.Asian Pac. J. Cancer Prev.201516104199420210.7314/APJCP.2015.16.10.4199 26028072
    [Google Scholar]
  42. ElpekG.O. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update.World J. Clin. Cases20219194890491710.12998/wjcc.v9.i19.4890 34307543
    [Google Scholar]
  43. CurtilC. EnacheL.S. RadreauP. The metabolic sensors FXRα, PGC‐1 α, and SIRT1 cooperatively regulate hepatitis B virus transcription.FASEB J.20142831454146310.1096/fj.13‑236372 24297698
    [Google Scholar]
  44. XuJ. GuW. LiC. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha.J. Nat. Med.201670358459110.1007/s11418‑016‑0980‑6 26968537
    [Google Scholar]
  45. CiesekS. von HahnT. ColpittsC.C. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry.Hepatology20115461947195510.1002/hep.24610 21837753
    [Google Scholar]
  46. ChenC. QiuH. GongJ. (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus.Arch. Virol.201215771301131210.1007/s00705‑012‑1304‑0 22491814
    [Google Scholar]
  47. CallandN. AlbeckaA. BelouzardS. (−)-Epigallocatechin- 3 -gallate is a new inhibitor of hepatitis C virus entry.Hepatology201255372072910.1002/hep.24803 22105803
    [Google Scholar]
  48. WangY. LiJ. WangX. (-)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes.Sci. Rep.2016612159510.1038/srep21595 26879672
    [Google Scholar]
  49. MekkyR.Y. El-EkiabyN. El SobkyS.A. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models.Arch. Virol.201916461587159510.1007/s00705‑019‑04232‑x 30949812
    [Google Scholar]
  50. GeddawyA. IbrahimY.F. ElbahieN.M. IbrahimM.A. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction.J. Transl. Int. Med.20175181710.1515/jtim‑2017‑0007 28680834
    [Google Scholar]
  51. Ceccherini-SilbersteinF. CentoV. Di MaioV.C. PernoC.F. CraxìA. Viral resistance in HCV infection.Curr. Opin. Virol.20183211512710.1016/j.coviro.2018.10.005 30439589
    [Google Scholar]
  52. RohC. JoS.K. (−)-Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NS5B.Talanta20118552639264210.1016/j.talanta.2011.08.035 21962695
    [Google Scholar]
  53. Halegoua-De MarzioD. KraftW.K. DaskalakisC. YingX. HawkeR.L. NavarroV.J. Limited sampling estimates of epigallocatechin gallate exposures in cirrhotic and noncirrhotic patients with hepatitis C after single oral doses of green tea extract.Clin. Ther.2012341222792285.e110.1016/j.clinthera.2012.10.009 23153661
    [Google Scholar]
  54. O’SheaD. LawJ. EgliA. Prevention of hepatitis C virus infection using a broad cross‐neutralizing monoclonal antibody (AR4A) and epigallocatechin gallate.Liver Transpl.201622332433210.1002/lt.24344 26389583
    [Google Scholar]
  55. HolmesE.C. On the origin and evolution of the human immunodeficiency virus (HIV).Biol. Rev. Camb. Philos. Soc.200176223925410.1017/S1464793101005668 11396848
    [Google Scholar]
  56. NastriB.M. PaglianoP. ZannellaC. HIV and drug-resistant subtypes.Microorganisms202311122110.3390/microorganisms11010221 36677513
    [Google Scholar]
  57. IyidoganP. AndersonK. Current perspectives on HIV-1 antiretroviral drug resistance.Viruses20146104095413910.3390/v6104095 25341668
    [Google Scholar]
  58. YamaguchiK. HondaM. IkigaiH. HaraY. ShimamuraT. Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1).Antiviral Res.2002531193410.1016/S0166‑3542(01)00189‑9 11684313
    [Google Scholar]
  59. ChangC.W. HsuF.L. LinJ.Y. Inhibitory effects of polyphenolic catechins from Chinese green tea on HIV reverse transcriptase activity.J. Biomed. Sci.19941316316610.1007/BF02253344 11725021
    [Google Scholar]
  60. LiS. HattoriT. KodamaE.N. Epigallocatechin gallate inhibits the HIV reverse transcription step.Antivir. Chem. Chemother.201121623924310.3851/IMP1774 21730371
    [Google Scholar]
  61. ForsterS.M. Diagnosing HIV infection.Clin. Med. (Lond.)20033320320510.7861/clinmedicine.3‑3‑203 12848250
    [Google Scholar]
  62. NanceC.L. SiwakE.B. ShearerW.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy.J. Allergy Clin. Immunol.2009123245946510.1016/j.jaci.2008.12.024 19203663
    [Google Scholar]
  63. Llorente GarcíaI. MarshM. A biophysical perspective on receptor-mediated virus entry with a focus on HIV.Biochim. Biophys. Acta Biomembr.20201862618315810.1016/j.bbamem.2019.183158 31863725
    [Google Scholar]
  64. YanH. WuT. ChenY. Design of a bispecific HIV entry inhibitor targeting the cell receptor CD4 and viral fusion protein Gp41.Front. Cell. Infect. Microbiol.20221291648710.3389/fcimb.2022.916487 35711654
    [Google Scholar]
  65. KawaiK. TsunoN.H. KitayamaJ. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding.J. Allergy Clin. Immunol.2003112595195710.1016/S0091‑6749(03)02007‑4 14610487
    [Google Scholar]
  66. HamzaA. ZhanC.G. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors.J. Phys. Chem. B200611062910291710.1021/jp0550762 16471901
    [Google Scholar]
  67. WilliamsonM. McCormickT. NanceC. ShearerW. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy.J. Allergy Clin. Immunol.200611861369137410.1016/j.jaci.2006.08.016 17157668
    [Google Scholar]
  68. JiangF. ChenW. YiK. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors.Clin. Immunol.2010137334735610.1016/j.clim.2010.08.007 20832370
    [Google Scholar]
  69. HauberI. HohenbergH. HolstermannB. HunsteinW. HauberJ. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection.Proc. Natl. Acad. Sci. USA2009106229033903810.1073/pnas.0811827106 19451623
    [Google Scholar]
  70. LiuJ.B. LiJ.L. ZhuangK. Epigallocatechin-3-gallate local pre-exposure application prevents SHIV rectal infection of macaques.Mucosal Immunol.20181141230123810.1038/s41385‑018‑0025‑4 29855550
    [Google Scholar]
  71. AjasinD. EugeninE.A. HIV-1 Tat: Role in bystander toxicity.Front. Cell. Infect. Microbiol.2020106110.3389/fcimb.2020.00061 32158701
    [Google Scholar]
  72. ZhangH.S. WuT.C. SangW.W. RuanZ. EGCG inhibits Tat-induced LTR transactivation: Role of Nrf2, AKT, AMPK signaling pathway.Life Sci.20129019-2074775410.1016/j.lfs.2012.03.013 22480519
    [Google Scholar]
  73. GiuntaB. ObregonD. HouH. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-γ: Role of JAK/STAT1 signaling and implications for HIV-associated dementia.Brain Res.20061123121622510.1016/j.brainres.2006.09.057 17078933
    [Google Scholar]
  74. OmarovaS. CannonA. WeissW. BruccoleriA. PuccioJ. Genital herpes simplex virus-An updated review.Adv. Pediatr.202269114916210.1016/j.yapd.2022.03.010 35985707
    [Google Scholar]
  75. ZhuS. Viejo-BorbollaA. Pathogenesis and virulence of herpes simplex virus.Virulence20211212670270210.1080/21505594.2021.1982373 34676800
    [Google Scholar]
  76. FrenklT.L. PottsJ. Sexually transmitted infections.Urol. Clin. North Am.20083513346vi.10.1016/j.ucl.2007.09.003 18061022
    [Google Scholar]
  77. JiangY.C. FengH. LinY.C. GuoX.R. New strategies against drug resistance to herpes simplex virus.Int. J. Oral Sci.2016811610.1038/ijos.2016.3 27025259
    [Google Scholar]
  78. StamosJ.D. LeeL.H. TaylorC. EliasT. AdamsS.D. In vitro and in silico analysis of the inhibitory activity of EGCG-stearate against herpes simplex virus-2.Microorganisms2022107146210.3390/microorganisms10071462 35889181
    [Google Scholar]
  79. IsaacsC.E. WenG.Y. XuW. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus.Antimicrob. Agents Chemother.200852396297010.1128/AAC.00825‑07 18195068
    [Google Scholar]
  80. de OliveiraA. AdamsS.D. LeeL.H. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate.Food Chem. Toxicol.20135220721510.1016/j.fct.2012.11.006 23182741
    [Google Scholar]
  81. PradhanP. NguyenM.L. Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate.Virus Res.2018249939810.1016/j.virusres.2018.03.015 29604359
    [Google Scholar]
  82. WuC.Y. YuZ.Y. ChenY.C. HungS.L. Effects of epigallocatechin-3-gallate and acyclovir on herpes simplex virus type 1 infection in oral epithelial cells.J. Formos. Med. Assoc.2021120122136214310.1016/j.jfma.2020.12.018 33390306
    [Google Scholar]
  83. CastellsaguéX. Natural history and epidemiology of HPV infection and cervical cancer.Gynecol. Oncol.20081103Suppl. 2S4S710.1016/j.ygyno.2008.07.045 18760711
    [Google Scholar]
  84. DunneE.F. ParkI.U. HPV and HPV-associated diseases.Infect. Dis. Clin. North Am.201327476577810.1016/j.idc.2013.09.001 24275269
    [Google Scholar]
  85. AarthyM. PanwarU. SinghS.K. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7.Sci. Rep.2020101866110.1038/s41598‑020‑65446‑7 32457393
    [Google Scholar]
  86. GrandiG. BotticelliL. FraiaP.D. BabaliniC. MasiniM. UnferV. The association of four natural molecules-EGCG, folic acid, vitamin B12, and HA-TO counteract HPV cervical lesions: A case report.J. Pers. Med.202313356710.3390/jpm13030567 36983748
    [Google Scholar]
  87. AragonaC. Bezerra EspinolaM.S. BilottaG. PorcaroG. CalcagnoM. Evaluating the efficacy of Pervistop®, a new combination based on EGCG, folic acid, vitamin B12 and hyaluronic acid on patients with human papilloma virus (HPV) persistent infections and cervical lesions: A pilot study.J. Clin. Med.2023126217110.3390/jcm12062171 36983172
    [Google Scholar]
  88. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  89. MeadP.S. HillsS.L. BrooksJ.T. Zika virus as a sexually transmitted pathogen.Curr. Opin. Infect. Dis.2018311394410.1097/QCO.0000000000000414 29176348
    [Google Scholar]
  90. SharmaN MuraliA SinghSK GiriR Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein.Int J Biol Macromol2017104Pt A10465410.1016/j.ijbiomac.2017.06.105
    [Google Scholar]
  91. MwalikoC. NyaruabaR. ZhaoL. Zika virus pathogenesis and current therapeutic advances.Pathog. Glob. Health20211151213910.1080/20477724.2020.1845005 33191867
    [Google Scholar]
  92. CarneiroB.M. BatistaM.N. BragaA.C.S. NogueiraM.L. RahalP. The green tea molecule EGCG inhibits Zika virus entry.Virology201649621521810.1016/j.virol.2016.06.012 27344138
    [Google Scholar]
  93. ChuK.O. WangC.C. ChuC.Y. Pharmacokinetic studies of green tea catechins in maternal plasma and fetuses in rats.J. Pharm. Sci.20069561372138110.1002/jps.20594 16625654
    [Google Scholar]
  94. Vázquez-CalvoÁ. Jiménez de OyaN. Martín-AcebesM.A. Garcia-MorunoE. SaizJ.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west Nile virus, zika virus, and dengue virus.Front. Microbiol.20178131410.3389/fmicb.2017.01314 28744282
    [Google Scholar]
  95. SamratS.K. XuJ. LiZ. ZhouJ. LiH. Antiviral agents against flavivirus protease: Prospect and future direction.Pathogens202211329310.3390/pathogens11030293 35335617
    [Google Scholar]
  96. CoronadoM.A. GeringI. SevenichM. The importance of epigallocatechin as a scaffold for drug development against flaviviruses.Pharmaceutics202315380310.3390/pharmaceutics15030803 36986663
    [Google Scholar]
  97. Patrick ReidS. ShurtleffA.C. CostantinoJ.A. HSPA5 is an essential host factor for Ebola virus infection.Antiviral Res.201410917117410.1016/j.antiviral.2014.07.004 25017472
    [Google Scholar]
  98. Andreu FernándezV Almeida ToledanoL Pizarro LozanoN Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers.Antioxidants20209544010.3390/antiox9050440 32438698
    [Google Scholar]
  99. LIczbińskiP BukowskaB. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations.Ind. Crops Prod.202217511426510.1016/j.indcrop.2021.114265 34815622
    [Google Scholar]
  100. DaiW. RuanC. ZhangY. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review.J. Funct. Foods20206510373210.1016/j.jff.2019.103732
    [Google Scholar]
  101. KrzyzowskaM. JanickaM. ChodkowskiM. Epigallocatechin gallate-modified silver nanoparticles show antiviral activity against Herpes Simplex Type 1 and 2.Viruses20231510202410.3390/v15102024 37896801
    [Google Scholar]
  102. HongM. ChengL. LiuY. WuZ. ZhangP. ZhangX. A natural plant source-tea polyphenols, a potential drug for improving immunity and combating virus.Nutrients202214355010.3390/nu14030550
    [Google Scholar]
  103. OuyangJ. ZhuK. LiuZ. HuangJ. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect.Oxid. Med. Cell. Longev.2020202011410.1155/2020/9723686 32850004
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265319110240916061200
Loading
/content/journals/iddt/10.2174/0118715265319110240916061200
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): EGCG; green tea; HIV; HPV; HSV; sexually transmitted infections; viral hepatitis; ZIKV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test