Skip to content
2000
image of The Role of Epigallocatechin Gallate (EGCG) in the Combating and Treatment of Sexually Transmitted Viral Infections

Abstract

Tea is obtained from the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) Kuntze, the most popular and frequently consumed product using a natural beverage worldwide. Some kinds of tea, including green, black, and oolong, have assorted flavors depending on the manufacturing techniques. Green tea has been studied for many years for its important beneficial effects, such as anticancer, antiobesity, antidiabetes, antiinflammatory, neuroprotective, and cardiovascular effects. These effects are primarily associated with tea polyphenols, and regular consumption has been reported to decrease the incidence of some chronic diseases. Current studies support that green tea catechins play an important role in curing and improving the pathology of many diseases. Epigallocatechin-3-gallate (EGCG) is the most highly found polyphenol in the leaves and is of great interest for its protective role in disease prevention. Therefore, this review presents the efficacy and possible mechanisms of EGCG against sexually transmitted viruses. Moreover, EGCG and its derivatives are recognized as safe and bioactive phytochemicals for external and internal use in preventing and treating viral STIs and other concurrent infections. Multidisciplinary studies are essential to discover cheaper, safer, and more effective treatments using EGCG and its derivatives to improve the toxicity and formulations of viral STI medications.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265319110240916061200
2024-10-30
2025-01-31
Loading full text...

Full text loading...

References

  1. Xu J. Xu Z. Zheng W. A review of the antiviral role of green tea catechins. Molecules 2017 22 8 1337 10.3390/molecules22081337 28805687
    [Google Scholar]
  2. Wagenlehner F.M.E. Brockmeyer N.H. Discher T. Friese K. Wichelhaus T.A. The presentation, diagnosis, and treatment of sexually transmitted infections. Dtsch. Arztebl. Int. 2016 113 1-02 11 22 10.3238/arztebl.2016.0011 26931526
    [Google Scholar]
  3. Soriano V. del Romero J. Rebound in sexually transmitted infections following the success of antiretrovirals for HIV/AIDS. AIDS Rev. 2019 20 4 187 204 10.24875/AIDSRev.18000034 30548023
    [Google Scholar]
  4. Torrone E.A. Lewis F.M.T. Kirkcaldy R.D. Bernstein K.T. Ryerson A.B. de Voux A. Oliver S.E. Quilter L.A.S. Weinstock H.S. Genital mycoplasma, Shigellosis, Zika, pubic lice, and other sexually transmitted infections: Neither gone nor forgotten. Sex. Transm. Dis. 2021 48 4 310 314 10.1097/OLQ.0000000000001367 33492101
    [Google Scholar]
  5. Curry K. Chandler R. Kostas-Polston E.A. Alexander I. Orsega S. Johnson-Mallard V. Recommendations for managing sexually transmitted infections. Nurse Pract. 2022 47 4 10 18 10.1097/01.NPR.0000822528.27483.b2 35349512
    [Google Scholar]
  6. Chilaka V.N. Hassan R. Konje J.C. Post-exposure prophylaxis for blood-borne viral (BBV) infections. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020 255 83 91 10.1016/j.ejogrb.2020.10.032 33113403
    [Google Scholar]
  7. Guo Y. Ma A. Wang X. Yang C. Chen X. Li G. Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem. 2022 10 1005360 10.3389/fchem.2022.1005360 36311429
    [Google Scholar]
  8. Kardani K. Basimi P. Fekri M. Bolhassani A. Antiviral therapy for the sexually transmitted viruses: Recent updates on vaccine development. Expert Rev. Clin. Pharmacol. 2020 13 9 1001 1046 10.1080/17512433.2020.1814743 32838584
    [Google Scholar]
  9. Kausar S. Said Khan F. Ishaq Mujeeb Ur Rehman M. Akram M. Riaz M. Rasool G. Hamid Khan A. Saleem I. Shamim S. Malik A. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021 35 10.1177/20587384211002621 33726557
    [Google Scholar]
  10. Ma Y. Frutos-Beltrán E. Kang D. Pannecouque C. De Clercq E. Menéndez-Arias L. Liu X. Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev. 2021 50 7 4514 4540 10.1039/D0CS01084G 33595031
    [Google Scholar]
  11. Mason S. Devincenzo J.P. Toovey S. Wu J.Z. Whitley R.J. Comparison of antiviral resistance across acute and chronic viral infections. Antiviral Res. 2018 158 103 112 10.1016/j.antiviral.2018.07.020 30086337
    [Google Scholar]
  12. Dhama K. Karthik K. Khandia R. Munjal A. Tiwari R. Rana R. Khurana S.K. Sana Ullah Khan R.U. Alagawany M. Farag M.R. Dadar M. Joshi S.K. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens - Current knowledge and future prospects. Curr. Drug Metab. 2018 19 3 236 263 10.2174/1389200219666180129145252 29380697
    [Google Scholar]
  13. Anand A.V. Balamuralikrishnan B. Kaviya M. Bharathi K. Parithathvi A. Arun M. Senthilkumar N. Velayuthaprabhu S. Saradhadevi M. Al-Dhabi N.A. Arasu M.V. Yatoo M.I. Tiwari R. Dhama K. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules 2021 26 6 1775 10.3390/molecules26061775 33809963
    [Google Scholar]
  14. Date A.A. Destache C.J. Natural polyphenols: Potential in the prevention of sexually transmitted viral infections. Drug Discov. Today 2016 21 2 333 341 10.1016/j.drudis.2015.10.019 26546859
    [Google Scholar]
  15. Cabrera C. Artacho R. Giménez R. Beneficial effects of green tea--A review. J. Am. Coll. Nutr. 2006 25 2 79 99 10.1080/07315724.2006.10719518 16582024
    [Google Scholar]
  16. Musial C. Kuban-Jankowska A. Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020 21 5 1744 10.3390/ijms21051744 32143309
    [Google Scholar]
  17. Khan N. Mukhtar H. Tea polyphenols in promotion of human health. Nutrients 2018 11 1 39 10.3390/nu11010039 30585192
    [Google Scholar]
  18. Truong V.L. Jeong W.S. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int. J. Mol. Sci. 2021 22 17 9109 10.3390/ijms22179109 34502017
    [Google Scholar]
  19. Braicu C. Ladomery M.R. Chedea V.S. Irimie A. Berindan-Neagoe I. The relationship between the structure and biological actions of green tea catechins. Food Chem. 2013 141 3 3282 3289 10.1016/j.foodchem.2013.05.122 23871088
    [Google Scholar]
  20. Reygaert W.C. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/9105261 30105263
    [Google Scholar]
  21. Sang S. Lambert J.D. Ho C.T. Yang C.S. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 2011 64 2 87 99 10.1016/j.phrs.2011.02.007 21371557
    [Google Scholar]
  22. Chen Y. Cheng S. Dai J. Wang L. Xu Y. Peng X. Xie X. Peng C. Molecular mechanisms and applications of tea polyphenols: A narrative review. J. Food Biochem. 2021 45 10 e13910 10.1111/jfbc.13910 34426979
    [Google Scholar]
  23. Higdon J.V. Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003 43 1 89 143 10.1080/10408690390826464 12587987
    [Google Scholar]
  24. Bartosikova L. Necas J. Epigallocatechin gallate: A review. Vet. Med. 2018 63 10 443 467 10.17221/31/2018‑VETMED
    [Google Scholar]
  25. Suzuki Y. Miyoshi N. Isemura M. Health-promoting effects of green tea. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2012 88 3 88 101 10.2183/pjab.88.88 22450537
    [Google Scholar]
  26. Steinmann J. Buer J. Pietschmann T. Steinmann E. Anti‐infective properties of epigallocatechin‐3‐gallate ( EGCG ), a component of green tea. Br. J. Pharmacol. 2013 168 5 1059 1073 10.1111/bph.12009 23072320
    [Google Scholar]
  27. Chakrawarti L. Agrawal R. Dang S. Gupta S. Gabrani R. Therapeutic effects of EGCG: A patent review. Expert Opin. Ther. Pat. 2016 26 8 907 916 10.1080/13543776.2016.1203419 27338088
    [Google Scholar]
  28. Mokra D. Joskova M. Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci. 2022 24 1 340 10.3390/ijms24010340 36613784
    [Google Scholar]
  29. Colpitts C.C. Schang L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J. Virol. 2014 88 14 7806 7817 10.1128/JVI.00896‑14 24789779
    [Google Scholar]
  30. Yuen M.F. Chen D.S. Dusheiko G.M. Janssen H.L.A. Lau D.T.Y. Locarnini S.A. Peters M.G. Lai C.L. Hepatitis B virus infection. Nat. Rev. Dis. Primers 2018 4 1 18035 10.1038/nrdp.2018.35 29877316
    [Google Scholar]
  31. Roger S. Ducancelle A. Le Guillou-Guillemette H. Gaudy C. Lunel F. HCV virology and diagnosis. Clin. Res. Hepatol. Gastroenterol. 2021 45 3 101626 10.1016/j.clinre.2021.101626 33636428
    [Google Scholar]
  32. Fénéant L. Levy S. Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014 6 2 535 572 10.3390/v6020535 24509809
    [Google Scholar]
  33. Fofana I. Jilg N. Chung R.T. Baumert T.F. Entry inhibitors and future treatment of hepatitis C. Antiviral Res. 2014 104 136 142 10.1016/j.antiviral.2014.02.001 24525381
    [Google Scholar]
  34. Leoni S. Casabianca A. Biagioni B. Serio I. Viral hepatitis: Innovations and expectations. World J. Gastroenterol. 2022 28 5 517 531 10.3748/wjg.v28.i5.517 35316960
    [Google Scholar]
  35. Huang H.C. Tao M.H. Hung T.M. Chen J.C. Lin Z.J. Huang C. (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res. 2014 111 100 111 10.1016/j.antiviral.2014.09.009 25260897
    [Google Scholar]
  36. Erken R. Andre P. Roy E. Kootstra N. Barzic N. Girma H. Laveille C. Radreau-Pierini P. Darteil R. Vonderscher J. Scalfaro P. Tangkijvanich P. Flisiak R. Reesink H. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study. J. Viral Hepat. 2021 28 12 1690 1698 10.1111/jvh.13608 34467593
    [Google Scholar]
  37. Fung S. Choi H.S.J. Gehring A. Janssen H.L.A. Getting to HBV cure: The promising paths forward. Hepatology 2022 76 1 233 250 10.1002/hep.32314 34990029
    [Google Scholar]
  38. He W. Li L.X. Liao Q.J. Liu C.L. Chen X.L. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line. World J. Gastroenterol. 2011 17 11 1507 1514 10.3748/wjg.v17.i11.1507 21472112
    [Google Scholar]
  39. Xu J. Wang J. Deng F. Hu Z. Wang H. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res. 2008 78 3 242 249 10.1016/j.antiviral.2007.11.011 18313149
    [Google Scholar]
  40. Pang J. Zhao K. Wang J. Ma Z. Xiao X. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. J. Zhejiang Univ. Sci. B 2014 15 6 533 539 10.1631/jzus.B1300307 24903990
    [Google Scholar]
  41. Karamese M. Aydogdu S. Karamese S.A. Altoparlak U. Gundogdu C. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac. J. Cancer Prev. 2015 16 10 4199 4202 10.7314/APJCP.2015.16.10.4199 26028072
    [Google Scholar]
  42. Elpek G.O. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J. Clin. Cases 2021 9 19 4890 4917 10.12998/wjcc.v9.i19.4890 34307543
    [Google Scholar]
  43. Curtil C. Enache L.S. Radreau P. Dron A.G. Scholtès C. Deloire A. Roche D. Lotteau V. André P. Ramière C. The metabolic sensors FXRα, PGC‐1 α, and SIRT1 cooperatively regulate hepatitis B virus transcription. FASEB J. 2014 28 3 1454 1463 10.1096/fj.13‑236372 24297698
    [Google Scholar]
  44. Xu J. Gu W. Li C. Li X. Xing G. Li Y. Song Y. Zheng W. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha. J. Nat. Med. 2016 70 3 584 591 10.1007/s11418‑016‑0980‑6 26968537
    [Google Scholar]
  45. Ciesek S. von Hahn T. Colpitts C.C. Schang L.M. Friesland M. Steinmann J. Manns M.P. Ott M. Wedemeyer H. Meuleman P. Pietschmann T. Steinmann E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology 2011 54 6 1947 1955 10.1002/hep.24610 21837753
    [Google Scholar]
  46. Chen C. Qiu H. Gong J. Liu Q. Xiao H. Chen X.W. Sun B.L. Yang R.G. (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch. Virol. 2012 157 7 1301 1312 10.1007/s00705‑012‑1304‑0 22491814
    [Google Scholar]
  47. Calland N. Albecka A. Belouzard S. Wychowski C. Duverlie G. Descamps V. Hober D. Dubuisson J. Rouillé Y. Séron K. (−)-Epigallocatechin- 3 -gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012 55 3 720 729 10.1002/hep.24803 22105803
    [Google Scholar]
  48. Wang Y. Li J. Wang X. Peña J.C. Li K. Zhang T. Ho W. (-)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes. Sci. Rep. 2016 6 1 21595 10.1038/srep21595 26879672
    [Google Scholar]
  49. Mekky R.Y. El-Ekiaby N. El Sobky S.A. Elemam N.M. Youness R.A. El-Sayed M. Hamza M.T. Esmat G. Abdelaziz A.I. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Arch. Virol. 2019 164 6 1587 1595 10.1007/s00705‑019‑04232‑x 30949812
    [Google Scholar]
  50. Geddawy A. Ibrahim Y.F. Elbahie N.M. Ibrahim M.A. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. J. Transl. Int. Med. 2017 5 1 8 17 10.1515/jtim‑2017‑0007 28680834
    [Google Scholar]
  51. Ceccherini-Silberstein F. Cento V. Di Maio V.C. Perno C.F. Craxì A. Viral resistance in HCV infection. Curr. Opin. Virol. 2018 32 115 127 10.1016/j.coviro.2018.10.005 30439589
    [Google Scholar]
  52. Roh C. Jo S.K. (−)-Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NS5B. Talanta 2011 85 5 2639 2642 10.1016/j.talanta.2011.08.035 21962695
    [Google Scholar]
  53. Halegoua-De Marzio D. Kraft W.K. Daskalakis C. Ying X. Hawke R.L. Navarro V.J. Limited sampling estimates of epigallocatechin gallate exposures in cirrhotic and noncirrhotic patients with hepatitis C after single oral doses of green tea extract. Clin. Ther. 2012 34 12 2279 2285.e1 10.1016/j.clinthera.2012.10.009 23153661
    [Google Scholar]
  54. O’Shea D. Law J. Egli A. Douglas D. Lund G. Forester S. Lambert J. Law M. Burton D.R. Tyrrell D.L.J. Houghton M. Humar A. Kneteman N. Prevention of hepatitis C virus infection using a broad cross‐neutralizing monoclonal antibody (AR4A) and epigallocatechin gallate. Liver Transpl. 2016 22 3 324 332 10.1002/lt.24344 26389583
    [Google Scholar]
  55. Holmes E.C. On the origin and evolution of the human immunodeficiency virus (HIV). Biol. Rev. Camb. Philos. Soc. 2001 76 2 239 254 10.1017/S1464793101005668 11396848
    [Google Scholar]
  56. Nastri B.M. Pagliano P. Zannella C. Folliero V. Masullo A. Rinaldi L. Galdiero M. Franci G. HIV and drug-resistant subtypes. Microorganisms 2023 11 1 221 10.3390/microorganisms11010221 36677513
    [Google Scholar]
  57. Iyidogan P. Anderson K. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014 6 10 4095 4139 10.3390/v6104095 25341668
    [Google Scholar]
  58. Yamaguchi K. Honda M. Ikigai H. Hara Y. Shimamura T. Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res. 2002 53 1 19 34 10.1016/S0166‑3542(01)00189‑9 11684313
    [Google Scholar]
  59. Chang C.W. Hsu F.L. Lin J.Y. Inhibitory effects of polyphenolic catechins from Chinese green tea on HIV reverse transcriptase activity. J. Biomed. Sci. 1994 1 3 163 166 10.1007/BF02253344 11725021
    [Google Scholar]
  60. Li S. Hattori T. Kodama E.N. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir. Chem. Chemother. 2011 21 6 239 243 10.3851/IMP1774 21730371
    [Google Scholar]
  61. Forster S.M. Diagnosing HIV infection. Clin. Med. (Lond.) 2003 3 3 203 205 10.7861/clinmedicine.3‑3‑203 12848250
    [Google Scholar]
  62. Nance C.L. Siwak E.B. Shearer W.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J. Allergy Clin. Immunol. 2009 123 2 459 465 10.1016/j.jaci.2008.12.024 19203663
    [Google Scholar]
  63. Llorente García I. Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. Biochim. Biophys. Acta Biomembr. 2020 1862 6 183158 10.1016/j.bbamem.2019.183158 31863725
    [Google Scholar]
  64. Yan H. Wu T. Chen Y. Jin H. Li L. Zhu Y. Chong H. He Y. Design of a bispecific HIV entry inhibitor targeting the cell receptor CD4 and viral fusion protein Gp41. Front. Cell. Infect. Microbiol. 2022 12 916487 10.3389/fcimb.2022.916487 35711654
    [Google Scholar]
  65. Kawai K. Tsuno N.H. Kitayama J. Okaji Y. Yazawa K. Asakage M. Hori N. Watanabe T. Takahashi K. Nagawa H. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J. Allergy Clin. Immunol. 2003 112 5 951 957 10.1016/S0091‑6749(03)02007‑4 14610487
    [Google Scholar]
  66. Hamza A. Zhan C.G. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors. J. Phys. Chem. B 2006 110 6 2910 2917 10.1021/jp0550762 16471901
    [Google Scholar]
  67. Williamson M. McCormick T. Nance C. Shearer W. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clin. Immunol. 2006 118 6 1369 1374 10.1016/j.jaci.2006.08.016 17157668
    [Google Scholar]
  68. Jiang F. Chen W. Yi K. Wu Z. Si Y. Han W. Zhao Y. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol. 2010 137 3 347 356 10.1016/j.clim.2010.08.007 20832370
    [Google Scholar]
  69. Hauber I. Hohenberg H. Holstermann B. Hunstein W. Hauber J. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc. Natl. Acad. Sci. USA 2009 106 22 9033 9038 10.1073/pnas.0811827106 19451623
    [Google Scholar]
  70. Liu J.B. Li J.L. Zhuang K. Liu H. Wang X. Xiao Q.H. Li X.D. Zhou R.H. Zhou L. Ma T.C. Zhou W. Liu M.Q. Ho W.Z. Epigallocatechin-3-gallate local pre-exposure application prevents SHIV rectal infection of macaques. Mucosal Immunol. 2018 11 4 1230 1238 10.1038/s41385‑018‑0025‑4 29855550
    [Google Scholar]
  71. Ajasin D. Eugenin E.A. HIV-1 Tat: Role in bystander toxicity. Front. Cell. Infect. Microbiol. 2020 10 61 10.3389/fcimb.2020.00061 32158701
    [Google Scholar]
  72. Zhang H.S. Wu T.C. Sang W.W. Ruan Z. EGCG inhibits Tat-induced LTR transactivation: Role of Nrf2, AKT, AMPK signaling pathway. Life Sci. 2012 90 19-20 747 754 10.1016/j.lfs.2012.03.013 22480519
    [Google Scholar]
  73. Giunta B. Obregon D. Hou H. Zeng J. Sun N. Nikolic V. Ehrhart J. Shytle D. Fernandez F. Tan J. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-γ: Role of JAK/STAT1 signaling and implications for HIV-associated dementia. Brain Res. 2006 1123 1 216 225 10.1016/j.brainres.2006.09.057 17078933
    [Google Scholar]
  74. Omarova S. Cannon A. Weiss W. Bruccoleri A. Puccio J. Genital herpes simplex virus-An updated review. Adv. Pediatr. 2022 69 1 149 162 10.1016/j.yapd.2022.03.010 35985707
    [Google Scholar]
  75. Zhu S. Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021 12 1 2670 2702 10.1080/21505594.2021.1982373 34676800
    [Google Scholar]
  76. Frenkl T.L. Potts J. Sexually transmitted infections. Urol. Clin. North Am. 2008 35 1 33 46, vi 10.1016/j.ucl.2007.09.003 18061022
    [Google Scholar]
  77. Jiang Y.C. Feng H. Lin Y.C. Guo X.R. New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci. 2016 8 1 1 6 10.1038/ijos.2016.3 27025259
    [Google Scholar]
  78. Stamos J.D. Lee L.H. Taylor C. Elias T. Adams S.D. In vitro and in silico analysis of the inhibitory activity of EGCG-stearate against herpes simplex virus-2. Microorganisms 2022 10 7 1462 10.3390/microorganisms10071462 35889181
    [Google Scholar]
  79. Isaacs C.E. Wen G.Y. Xu W. Jia J.H. Rohan L. Corbo C. Di Maggio V. Jenkins E.C. Jr Hillier S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother. 2008 52 3 962 970 10.1128/AAC.00825‑07 18195068
    [Google Scholar]
  80. de Oliveira A. Adams S.D. Lee L.H. Murray S.R. Hsu S.D. Hammond J.R. Dickinson D. Chen P. Chu T.C. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food Chem. Toxicol. 2013 52 207 215 10.1016/j.fct.2012.11.006 23182741
    [Google Scholar]
  81. Pradhan P. Nguyen M.L. Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate. Virus Res. 2018 249 93 98 10.1016/j.virusres.2018.03.015 29604359
    [Google Scholar]
  82. Wu C.Y. Yu Z.Y. Chen Y.C. Hung S.L. Effects of epigallocatechin-3-gallate and acyclovir on herpes simplex virus type 1 infection in oral epithelial cells. J. Formos. Med. Assoc. 2021 120 12 2136 2143 10.1016/j.jfma.2020.12.018 33390306
    [Google Scholar]
  83. Castellsagué X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol. Oncol. 2008 110 3 Suppl. 2 S4 S7 10.1016/j.ygyno.2008.07.045 18760711
    [Google Scholar]
  84. Dunne E.F. Park I.U. HPV and HPV-associated diseases. Infect. Dis. Clin. North Am. 2013 27 4 765 778 10.1016/j.idc.2013.09.001 24275269
    [Google Scholar]
  85. Aarthy M. Panwar U. Singh S.K. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci. Rep. 2020 10 1 8661 10.1038/s41598‑020‑65446‑7 32457393
    [Google Scholar]
  86. Grandi G. Botticelli L. Fraia P.D. Babalini C. Masini M. Unfer V. The association of four natural molecules-EGCG, folic acid, vitamin B12, and HA-TO counteract HPV cervical lesions: A case report. J. Pers. Med. 2023 13 3 567 10.3390/jpm13030567 36983748
    [Google Scholar]
  87. Aragona C. Bezerra Espinola M.S. Bilotta G. Porcaro G. Calcagno M. Evaluating the efficacy of Pervistop®, a new combination based on EGCG, folic acid, vitamin B12 and hyaluronic acid on patients with human papilloma virus (HPV) persistent infections and cervical lesions: A pilot study. J. Clin. Med. 2023 12 6 2171 10.3390/jcm12062171 36983172
    [Google Scholar]
  88. Sharma V. Sharma M. Dhull D. Sharma Y. Kaushik S. Kaushik S. Zika virus: An emerging challenge to public health worldwide. Can. J. Microbiol. 2020 66 2 87 98 10.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  89. Mead P.S. Hills S.L. Brooks J.T. Zika virus as a sexually transmitted pathogen. Curr. Opin. Infect. Dis. 2018 31 1 39 44 10.1097/QCO.0000000000000414 29176348
    [Google Scholar]
  90. Sharma N Murali A Singh SK Giri R Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol 2017 104 Pt A 1046 1054 10.1016/j.ijbiomac.2017.06.105
    [Google Scholar]
  91. Mwaliko C. Nyaruaba R. Zhao L. Atoni E. Karungu S. Mwau M. Lavillette D. Xia H. Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog. Glob. Health 2021 115 1 21 39 10.1080/20477724.2020.1845005 33191867
    [Google Scholar]
  92. Carneiro B.M. Batista M.N. Braga A.C.S. Nogueira M.L. Rahal P. The green tea molecule EGCG inhibits Zika virus entry. Virology 2016 496 215 218 10.1016/j.virol.2016.06.012 27344138
    [Google Scholar]
  93. Chu K.O. Wang C.C. Chu C.Y. Chan K.P. Rogers M.S. Choy K.W. Pang C.P. Pharmacokinetic studies of green tea catechins in maternal plasma and fetuses in rats. J. Pharm. Sci. 2006 95 6 1372 1381 10.1002/jps.20594 16625654
    [Google Scholar]
  94. Vázquez-Calvo Á. Jiménez de Oya N. Martín-Acebes M.A. Garcia-Moruno E. Saiz J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west Nile virus, zika virus, and dengue virus. Front. Microbiol. 2017 8 1314 10.3389/fmicb.2017.01314 28744282
    [Google Scholar]
  95. Samrat S.K. Xu J. Li Z. Zhou J. Li H. Antiviral agents against flavivirus protease: Prospect and future direction. Pathogens 2022 11 3 293 10.3390/pathogens11030293 35335617
    [Google Scholar]
  96. Coronado M.A. Gering I. Sevenich M. Olivier D.S. Mastalipour M. Amaral M.S. Willbold D. Eberle R.J. The importance of epigallocatechin as a scaffold for drug development against flaviviruses. Pharmaceutics 2023 15 3 803 10.3390/pharmaceutics15030803 36986663
    [Google Scholar]
  97. Patrick Reid S. Shurtleff A.C. Costantino J.A. Tritsch S.R. Retterer C. Spurgers K.B. Bavari S. HSPA5 is an essential host factor for Ebola virus infection. Antiviral Res. 2014 109 171 174 10.1016/j.antiviral.2014.07.004 25017472
    [Google Scholar]
  98. Andreu Fernández V. Almeida Toledano L. Pizarro Lozano N. Navarro Tapia E. Gómez Roig M.D. De la Torre Fornell R. García Algar Ó. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants 2020 9 5 440 10.3390/antiox9050440 32438698
    [Google Scholar]
  99. LIczbiński P. Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind. Crops Prod. 2022 175 114265 10.1016/j.indcrop.2021.114265 34815622
    [Google Scholar]
  100. Dai W. Ruan C. Zhang Y. Wang J. Han J. Shao Z. Sun Y. Liang J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods 2020 65 103732 10.1016/j.jff.2019.103732
    [Google Scholar]
  101. Krzyzowska M. Janicka M. Chodkowski M. Patrycy M. Obuch-Woszczatyńska O. Tomaszewska E. Ranoszek-Soliwoda K. Celichowski G. Grobelny J. Epigallocatechin gallate-modified silver nanoparticles show antiviral activity against Herpes Simplex Type 1 and 2. Viruses 2023 15 10 2024 10.3390/v15102024 37896801
    [Google Scholar]
  102. Hong M Cheng L Liu Y Wu Z Zhang P Zhang X. A natural plant source-tea polyphenols, a potential drug for improving immunity and combating virus. Nutrients 2022 14 3 550 10.3390/nu14030550
    [Google Scholar]
  103. Ouyang J. Zhu K. Liu Z. Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/9723686 32850004
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265319110240916061200
Loading
/content/journals/iddt/10.2174/0118715265319110240916061200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test