Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

Shiga Toxin-Producing () O157:H7, capable of causing serious food-borne illnesses, is extensively studied and is known to be transmitted through animal reservoirs or person-to-person contact, leading to severe disease outbreaks. The emergence of antibiotic resistance in these strains, coupled with increased adverse effects of existing therapeutics, underscores the urgent need for alternative therapeutic strategies.

Objective

This study aims to evaluate Glutamate Racemase (MurI protein) of the food-pathogenic O157:H7 (EC MurI) as a novel drug target. Furthermore, the study seeks to identify new compounds with potential inhibitory effects against this protein.

Methods

Using computational tools, the study identified inhibitor binding sites on EC MurI and identified relevant inhibitors capable of binding to these sites. Molecular docking techniques were employed to assess potential hits, and selected compounds were further analyzed for their structural activity and binding affinity to the protein.

Results

The results of the study revealed that Frigocyclinone and Deslanoside, exhibited the best binding affinity with EC-MurI. Subsequent molecular dynamic (MD) simulations of the selected complexes indicated that both compounds were stable. This suggests that Frigocyclinone and Deslanoside have the potential to serve as potent inhibitors of EC-MurI.

Conclusion

In summary, this study highlights the urgent need for alternative therapies against food-pathogenic , focusing on O157:H7. Evaluation of Glutamate Racemase as a drug target identified Frigocyclinone and Deslanoside as promising inhibitors. MD simulations indicated their stability, suggesting their potential as lead molecules for further research and treatment development.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265306131240809095241
2024-08-16
2025-04-02
Loading full text...

Full text loading...

References

  1. WHO’s first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths. 2015Available from: https://www.who.int/news/item/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths (Accessed on:Jun. 27, 2023)
  2. CollignonP. Resistant Escherichia coli--we are what we eat.Clin. Infect. Dis.200949220220410.1086/599831 19508163
    [Google Scholar]
  3. LauplandK.B. ChurchD.L. VidakovichJ. MucenskiM. PitoutJ.D.D. Community-onset extended-spectrum β-lactamase (ESBL) producing Escherichia coli: Importance of international travel.J. Infect.200857644144810.1016/j.jinf.2008.09.034 18990451
    [Google Scholar]
  4. SáenzY. BriñasL. DomínguezE. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins.Antimicrob. Agents Chemother.200448103996400110.1128/AAC.48.10.3996‑4001.2004 15388464
    [Google Scholar]
  5. HeijenoortJ. Formation of the glycan chains in the synthesis of bacterial peptidoglycan.Glycobiology200111325R36R10.1093/glycob/11.3.25R 11320055
    [Google Scholar]
  6. ZhouJ. CaiY. LiuY. Breaking down the cell wall: Still an attractive antibacterial strategy.Front. Microbiol.20221395263310.3389/fmicb.2022.952633 36212892
    [Google Scholar]
  7. FisherS.L. Glutamate racemase as a target for drug discovery.Microb. Biotechnol.20081534536010.1111/j.1751‑7915.2008.00031.x 21261855
    [Google Scholar]
  8. LiuY. BreukinkE. The membrane steps of bacterial cell wall synthesis as antibiotic targets.Antibiotics (Basel)2016532810.3390/antibiotics5030028 27571111
    [Google Scholar]
  9. MancaC. TsenovaL. BarryC.E.III Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates.J. Immunol.1999162116740674610.4049/jimmunol.162.11.6740 10352293
    [Google Scholar]
  10. DoubletP. van HeijenoortJ. BohinJ.P. Mengin-LecreulxD. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity.J. Bacteriol.1993175102970297910.1128/jb.175.10.2970‑2979.1993 8098327
    [Google Scholar]
  11. KumarA SinghE JhaRK Targeting multi-drug-resistant Acinetobacter baumannii : A structure-based approach to identify the promising lead candidates against glutamate racemase.J Mol Model202329618810.1007/s00894‑023‑05587‑4 37225922
    [Google Scholar]
  12. AshiuchiM. KuwanaE. YamamotoT. KomatsuK. SodaK. MisonoH. Glutamate racemase is an endogenous DNA gyrase inhibitor.J. Biol. Chem.200227742390703907310.1074/jbc.C200253200 12213801
    [Google Scholar]
  13. ChhedaPR CoolingGT DeanSF ProppJ HobbsKF SpiesMA Decrypting a cryptic allosteric pocket in H. pylori glutamate racemase.Commun Chem20214117210.1038/s42004‑021‑00605‑z36697800
    [Google Scholar]
  14. DelettiG. GreenS.D. WeberC. Unveiling an indole alkaloid diketopiperazine biosynthetic pathway that features a unique stereoisomerase and multifunctional methyltransferase.Nat. Commun.2023141255810.1038/s41467‑023‑38168‑3 37137876
    [Google Scholar]
  15. YadavP. SinghR. SurS. BansalS. ChaudhryU. TandonV. Moonlighting proteins: beacon of hope in era of drug resistance in bacteria.Crit. Rev. Microbiol.2023491578110.1080/1040841X.2022.2036695 35220864
    [Google Scholar]
  16. WuC.H. ApweilerR. BairochA. The universal protein resource (UniProt): an expanding universe of protein information.Nucleic Acids Res.20063490001D187D19110.1093/nar/gkj161 16381842
    [Google Scholar]
  17. PeñalverM. ParadelaA. Palacios-CuéllarC. PucciarelliM.G. García-del PortilloF. Experimental evidence of d‐glutamate racemase activity in the uncultivated bacterium Candidatus Saccharimonas aalborgensis.Environ. Microbiol.2024264e1662110.1111/1462‑2920.16621 38558504
    [Google Scholar]
  18. SinghR. SladeJ.A. BrockettM. MendezD. LiechtiG.W. MaurelliA.T. Competing Substrates for the Bifunctional diaminopimelic acid epimerase/glutamate racemase modulate peptidoglycan synthesis in Chlamydia trachomatis.Infect. Immun.2020891e00401e0042010.1128/IAI.00401‑20 33106295
    [Google Scholar]
  19. KataneM. NakasakoK. YakoK. SaitohY. SekineM. HommaH. Identification of an l-serine/l-threonine dehydratase with glutamate racemase activity in mammals.Biochem. J.2020477214221424110.1042/BCJ20200721 33079132
    [Google Scholar]
  20. ZhuJ WangX ZhaoJ Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis .BMC Microbiol202424112510.1186/s12866‑024‑03262‑z 38622505
    [Google Scholar]
  21. HorieM. OhmiyaY. OhmoriT. Analysis of d-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha.Biosci. Microbiota Food Health202342425426310.12938/bmfh.2023‑005 37791341
    [Google Scholar]
  22. ZhangZ HeP CaiD ChenS Genetic and metabolic engineering for poly-γ-glutamic acid production: Current progress, challenges, and prospects.World J Microbiol Biotechnol2022381120810.1007/s11274‑022‑03390‑6 36030456
    [Google Scholar]
  23. PawarA. KonwarC. JhaP. Bactericidal activity of esculetin is associated with impaired cell wall synthesis by targeting glutamate racemase of Neisseria gonorrhoeae.Mol. Divers.202310.1007/s11030‑023‑10745‑0 37880544
    [Google Scholar]
  24. MountD.W. Using the basic local alignment search tool (BLAST). CSH Protoc20072007pdb.top1710.1101/pdb.top17 21357135
  25. van SantenJ.A. JacobG. SinghA.L. The natural products atlas: An open access knowledge base for microbial natural products discovery.ACS Cent. Sci.20195111824183310.1021/acscentsci.9b00806 31807684
    [Google Scholar]
  26. BiasiniM. BienertS. WaterhouseA. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information.Nucleic Acids Res.201442W1W252-810.1093/nar/gku340 24782522
    [Google Scholar]
  27. SchwedeT. KoppJ. GuexN. PeitschM.C. SWISS-MODEL: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg520 12824332
    [Google Scholar]
  28. CavasottoC.N. PhatakS.S. Homology modeling in drug discovery: Current trends and applications.Drug Discov. Today20091413-1467668310.1016/j.drudis.2009.04.006 19422931
    [Google Scholar]
  29. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.1853201 1853201
    [Google Scholar]
  30. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a0 1538787
    [Google Scholar]
  31. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  32. HonarparvarB. GovenderT. MaguireG.E.M. SolimanM.E.S. KrugerH.G. Integrated approach to structure-based enzymatic drug design: Molecular modeling, spectroscopy, and experimental bioactivity.Chem. Rev.2014114149353710.1021/cr300314q 24024775
    [Google Scholar]
  33. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  34. KleigerG. BeamerL.J. GrotheR. MallickP. EisenbergD. The 1.7 Å crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold 1 1Edited by D. Rees.J Mol Biol2000299410193410.1006/jmbi.2000.3805 10843855
    [Google Scholar]
  35. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  36. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  37. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  38. StuderG. RempferC. WaterhouseA.M. GumiennyR. HaasJ. SchwedeT. QMEANDisCo—distance constraints applied on model quality estimation.Bioinformatics20203661765177110.1093/bioinformatics/btz828 31697312
    [Google Scholar]
  39. EswarN Marti-RenomMA WebbB Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics200610.1002/0471250953.bi0506s15 18428767
    [Google Scholar]
  40. BowersK.J. ChowE. XuH. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE Conference on Supercomputing2006Tampa, FL, USA10.1109/SC.2006.54
    [Google Scholar]
  41. LuC. WuC. GhoreishiD. OPLS4: Improving force field accuracy on challenging regimes of chemical space.J. Chem. Theory Comput.20211774291430010.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  42. LindahlA HessS 2021Available from: https://manual.gromacs.org/2021.1/download.html
  43. Chemistry at HARvard molecular mechanics (CHARMM)2021Available from: https://projects.iq.harvard.edu/karplusgroup/charmm
  44. BrooksB.R. BruccoleriR.E. OlafsonB.D. StatesD.J. SwaminathanS. KarplusM. CHARMM: A Program for macromolecular energy, minimization, and dynamics calculations.J. Comput. Chem.20014218721710.1002/jcc.540040211
    [Google Scholar]
  45. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  46. BenkertP. TosattoS.C.E. SchomburgD. QMEAN: A comprehensive scoring function for model quality assessment.Proteins200871126127710.1002/prot.21715 17932912
    [Google Scholar]
  47. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  48. LuD.F. WangY.S. LiC. Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells.Int. J. Clin. Exp. Med.20158219041911 25932119
    [Google Scholar]
  49. O’Neill Jim. Antimicrobial resistance:Tackling a crisis for the health and wealth of nations.2014Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (Accessed on: 2018 Apr 06)
  50. Antibiotic resistance of Escherichia coli in India.Available from: https://resistancemap.onehealthtrust.org/CountryPage.php?country=India(Accessed on: 2018 Jan 19)
  51. GandraS KleinEY PantS Malhotra-KumarS LaxminarayanR Faropenem consumption is increasing in India. Clin Infect Dis20166281050.2210.1093/cid/ciw055 26908807
    [Google Scholar]
  52. The state of the world's antibiotics 20152015Available from: https://onehealthtrust.org/wp-content/uploads/2015/09/the-state-of-the-worlds-antibiotics-_2015.pdf (Accessed on: 2018 Jan 20)
  53. India: National action plan on antimicrobial resistance (NAP-AMR) 2017 – 2021Available from: https://www.who.int/publications/m/item/india-national-action-plan-on-antimicrobial-resistance-(nap-amr)-2017-2021
  54. ChoiK SonGJ AhmadS LeeSY LeeHJ LeeSW Contribution of the murI gene encoding glutamate racemase in the motility and virulence of Ralstonia solanacearum .Plant Pathol J20203643556310.5423/PPJ.OA.03.2020.004932788894
    [Google Scholar]
  55. MiyamotoT. MoriyaT. HommaH. OshimaT. Enzymatic properties and physiological function of glutamate racemase from Thermus thermophilus.Biochim. Biophys. Acta. Proteins Proteomics20201868914046110.1016/j.bbapap.2020.140461 32474108
    [Google Scholar]
  56. LinJ. WangX. ShenT. ZhangJ. iTRAQ-based quantitative analysis reveals the mechanism underlying the changes in physiological activity in a glutamate racemase mutant strain of Streptococcus mutans UA159.Mol. Biol. Rep.20204753719373310.1007/s11033‑020‑05463‑x 32338332
    [Google Scholar]
  57. PawarA JhaP ChopraM ChaudhryU SalujaD Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids.Sci Rep202010194910.1038/s41598‑020‑57658‑8 31969615
    [Google Scholar]
  58. PawarA. JhaP. KonwarC. ChaudhryU. ChopraM. SalujaD. Ethambutol targets the glutamate racemase of Mycobacterium tuberculosis—an enzyme involved in peptidoglycan biosynthesis.Appl. Microbiol. Biotechnol.2019103284385110.1007/s00253‑018‑9518‑z 30456576
    [Google Scholar]
  59. TanwerP. KoloraS.R.R. BabbarA. SalujaD. ChaudhryU. Identification of potential therapeutic targets in Neisseria gonorrhoeae by an in-silico approach.J. Theor. Biol.202049011017210.1016/j.jtbi.2020.110172 31972174
    [Google Scholar]
  60. CroxenMA LawRJ ScholzR KeeneyKM WlodarskaM FinlayBB Recent advances in understanding enteric pathogenic Escherichia coli .Clin Microbiol Rev201326482288010.1128/CMR.00022‑13 24092857
    [Google Scholar]
  61. ScheutzF. Taxonomy meets public health: The case of shiga toxinproducing Escherichia coli.Microbiol Spectr2014232.3.0910.1128/microbiolspec.EHEC‑0019‑2013 26103973
    [Google Scholar]
  62. GouldLH DemmaL JonesTF Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000-2006.Clin Infect Dis200949101480510.1086/644621 19827953
    [Google Scholar]
  63. SafdarN. SaidA. GangnonR.E. MakiD.G. Risk of hemolytic uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 enteritis: A meta-analysis.JAMA20022888996100110.1001/jama.288.8.996 12190370
    [Google Scholar]
  64. SmithD.L. RooksD.J. FoggP.C.M. Comparative genomics of Shiga toxin encoding bacteriophages.BMC Genomics201213131110.1186/1471‑2164‑13‑311 22799768
    [Google Scholar]
  65. WongC.S. JelacicS. HabeebR.L. WatkinsS.L. TarrP.I. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections.N. Engl. J. Med.2000342261930193610.1056/NEJM200006293422601 10874060
    [Google Scholar]
  66. Etienne-MesminL. ChassaingB. SauvanetP. Interactions with M cells and macrophages as key steps in the pathogenesis of enterohemorrhagic Escherichia coli infections.PLoS One201168e2359410.1371/journal.pone.0023594 21858177
    [Google Scholar]
  67. KimH.J. KooM. JeongA.R. Occurrence of pathogenic Escherichia coli in commercially available fresh vegetable products in Korea.J. Korean Soc. Appl. Biol. Chem.201457336737010.1007/s13765‑014‑4073‑5
    [Google Scholar]
  68. OgawaM. ShimizuK. NomotoK. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits.Infect. Immun.20016921101110810.1128/IAI.69.2.1101‑1108.2001 11160007
    [Google Scholar]
  69. MoJ. YeJ. ChenH. HouB. WuH. ZhangH. Cloning and identification of the Frigocyclinone biosynthetic gene cluster from Streptomyces griseus strain NTK 97.Biosci. Biotechnol. Biochem.201983112082208910.1080/09168451.2019.1638755 31303144
    [Google Scholar]
  70. LiuM. HuangQ. A.J. The cardiac glycoside deslanoside exerts anticancer activity in prostate cancer cells by modulating multiple signaling pathways.Cancers (Basel)20211322580910.3390/cancers13225809 34830961
    [Google Scholar]
  71. EvansD.E. GillisR.A. Effect of ouabain and its interaction with diphenylhydantoin on cardiac arrhythmias induced by hypothalamic stimulation.J. Pharmacol. Exp. Ther.19751953577586 1195139
    [Google Scholar]
  72. GarcíaP CabralMP BeceiroA MoscosoM BouG Cross-protection against acute Staphylococcus aureus lung infection in mice by a d-glutamate auxotrophic vaccine candidate.Vaccines (Basel)202311221010.3390/vaccines11020210 36851088
    [Google Scholar]
  73. MoscosoM VallejoJA CabralMP A new live auxotrophic vaccine induces cross-protection against Klebsiella pneumoniae infections in mice. Vaccines (Basel)202210695310.3390/vaccines10060953 35746561
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265306131240809095241
Loading
/content/journals/iddt/10.2174/0118715265306131240809095241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test