Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Mitochondria, also called ‘powerhouse of the cell’, is meant for energy generation in eukaryotic cells. This action is performed by mitochondria through the oxidative phosphorylation (OXPHOS) of the respiratory chain (RC). Based on the functioning of the cell, the number of mitochondria varies up to thousands in number. Mutations in the mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes may lead to the generation of primary mitochondrial disease (PMD) that affects the structure and function of mitochondria. The diagnosis of such mitochondrial diseases occurs in early childhood and it can lead to serious, fetal and multi-organ diseases. Understanding epigenetic events and changes in the pathway can help improve the effectiveness of treatment. However, there are several reasons lack of the disease symptoms (age, sign, symptoms, morbidity and lethality), restricted availability of preclinical models along with extensive phenotypes that hamper the development of efficient drugs. Despite the introduction of new treatments and the encouraging results of treatments and therapies, there is no effective cure for PMD.

This article contains information about the changes associated with cytopathic diseases that make possible the analysis of various diseases by genetic techniques. Increasing our understanding of how mitochondrial DNA mutations affect mitochondrial metabolism and subsequently result in neurodegenerative disease will prove vital to the development of targeted therapies and treatments.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265304029240801092834
2024-09-04
2025-03-30
Loading full text...

Full text loading...

References

  1. PicardM. ShirihaiO.S. Mitochondrial signal transduction.Cell Metab.202234111620165310.1016/j.cmet.2022.10.008 36323233
    [Google Scholar]
  2. PagliariniD.J. CalvoS.E. ChangB. A mitochondrial protein compendium elucidates complex I disease biology.Cell2008134111212310.1016/j.cell.2008.06.016 18614015
    [Google Scholar]
  3. RathS. SharmaR. GuptaR. MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations.Nucleic Acids Res.202149D1D1541D154710.1093/nar/gkaa1011 33174596
    [Google Scholar]
  4. AndersonS. BankierA.T. BarrellB.G. Sequence and organization of the human mitochondrial genome.Nature1981290580645746510.1038/290457a0 7219534
    [Google Scholar]
  5. FilogranaR. MennuniM. AlsinaD. LarssonN.G. Mitochondrial DNA copy number in human disease: The more the better?FEBS Lett.20215958976100210.1002/1873‑3468.14021 33314045
    [Google Scholar]
  6. ChenX. ProsserR. SimonettiS. SadlockJ. JagielloG. SchonE.A. Rearranged mitochondrial genomes are present in human oocytes.Am. J. Hum. Genet.1995572239247 7668249
    [Google Scholar]
  7. WaiT. AoA. ZhangX. CyrD. DufortD. ShoubridgeE.A. The role of mitochondrial DNA copy number in mammalian fertility.Biol. Reprod.2010831526210.1095/biolreprod.109.080887 20130269
    [Google Scholar]
  8. PicardM. Blood mitochondrial DNA copy number: What are we counting?Mitochondrion20216011110.1016/j.mito.2021.06.010 34157430
    [Google Scholar]
  9. RausserS. TrumpffC. McGillM.A. Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures.eLife202110e7089910.7554/eLife.70899 34698636
    [Google Scholar]
  10. KellyR.D.W. MahmudA. McKenzieM. TrounceI.A. St JohnJ.C. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A.Nucleic Acids Res.20124020101241013810.1093/nar/gks770 22941637
    [Google Scholar]
  11. VafaiS.B. MoothaV.K. Mitochondrial disorders as windows into an ancient organelle.Nature2012491742437438310.1038/nature11707 23151580
    [Google Scholar]
  12. WallaceD.C. Mitochondrial diseases in man and mouse.Science199928354071482148810.1126/science.283.5407.1482 10066162
    [Google Scholar]
  13. RussellO.M. GormanG.S. LightowlersR.N. TurnbullD.M. Mitochondrial diseases: Hope for the future.Cell2020181116818810.1016/j.cell.2020.02.051 32220313
    [Google Scholar]
  14. El-HattabA.W. ScagliaF. Mitochondrial cytopathies.Cell Calcium201660319920610.1016/j.ceca.2016.03.003 26996063
    [Google Scholar]
  15. SchmiedelJ. JacksonS. SchäferJ. ReichmannH. Mitochondrial cytopathies.J. Neurol.2003250326727710.1007/s00415‑003‑0978‑3 12638015
    [Google Scholar]
  16. TurnbullDM RustinP Genetic and biochemical intricacy shapes mitochondrial cytopathies.Neurobiol Dis201692Part A556310.1016/j.nbd.2015.02.003
    [Google Scholar]
  17. DominicE.A. RamezaniA. AnkerS.D. VermaM. MehtaN. RaoM. Mitochondrial cytopathies and cardiovascular disease.Heart2014100861161810.1136/heartjnl‑2013‑304657 24449718
    [Google Scholar]
  18. FinstererJ. Stroke and stroke-like episodes in muscle disease.Open Neurol. J.201261263610.2174/1874205X01206010026 22715346
    [Google Scholar]
  19. RahmanS. Mitochondrial disease and epilepsy.Dev. Med. Child Neurol.201254539740610.1111/j.1469‑8749.2011.04214.x 22283595
    [Google Scholar]
  20. KhuranaD. SalganicoffL. MelvinJ. Epilepsy and respiratory chain defects in children with mitochondrial encephalopathies.Neuropediatrics200839181310.1055/s‑2008‑1076737 18504675
    [Google Scholar]
  21. ParikhS. The neurologic manifestations of mitochondrial disease.Dev. Disabil. Res. Rev.201016212012810.1002/ddrr.110 20818726
    [Google Scholar]
  22. FlorianA. LudwigA. Stubbe-DrägerB. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy.J. Cardiovasc. Magn. Reson.20151714010.1186/s12968‑015‑0145‑x 26001801
    [Google Scholar]
  23. FinstererJ. MahjoubS.Z. Presentation of adult mitochondrial epilepsy.Seizure201322211912310.1016/j.seizure.2012.11.005 23200763
    [Google Scholar]
  24. JingW. ZongjieH. DenggangF. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis.J. Med. Genet.20155229510310.1136/jmedgenet‑2014‑102753 25515069
    [Google Scholar]
  25. HuangS. XiangG. KangD. Rapid identification of aminoglycoside-induced deafness gene mutations using multiplex real-time polymerase chain reaction.Int. J. Pediatr. Otorhinolaryngol.20157971067107210.1016/j.ijporl.2015.04.028 25959403
    [Google Scholar]
  26. LeisJ.A. RutkaJ.A. GoldW.L. Aminoglycoside-induced ototoxicity.CMAJ20151871E5210.1503/cmaj.140339 25225217
    [Google Scholar]
  27. KabungaP. LauA.K. PhanK. Systematic review of cardiac electrical disease in kearns–sayre syndrome and mitochondrial cytopathy.Int. J. Cardiol.201518130331010.1016/j.ijcard.2014.12.038 25540845
    [Google Scholar]
  28. YoungT.J. ShahA.K. LeeM.H. HayesD.L. Kearns-Sayre syndrome: A case report and review of cardiovascular complications.Pacing Clin. Electrophysiol.200528545445710.1111/j.1540‑8159.2005.40049.x 15869681
    [Google Scholar]
  29. SchonE.A. DiMauroS. HiranoM. Human mitochondrial DNA: Roles of inherited and somatic mutations.Nat. Rev. Genet.2012131287889010.1038/nrg3275 23154810
    [Google Scholar]
  30. WallaceD.C. A mitochondrial bioenergetic etiology of disease.J. Clin. Invest.201312341405141210.1172/JCI61398 23543062
    [Google Scholar]
  31. Al-EneziM. Al-SalehH. NasserM. Mitochondrial disorders with significant ophthalmic manifestations.Middle East Afr. J. Ophthalmol.2008152818610.4103/0974‑9233.51998 21346843
    [Google Scholar]
  32. WallaceD.C. Mitochondrial defects in neurodegenerative disease.Ment. Retard. Dev. Disabil. Res. Rev.20017315816610.1002/mrdd.1023 11553931
    [Google Scholar]
  33. VydtT.C.G. de CooR.F.M. SolimanO.I.I. Cardiac involvement in adults with m.3243A>G MELAS gene mutation.Am. J. Cardiol.200799226426910.1016/j.amjcard.2006.07.089 17223431
    [Google Scholar]
  34. ThomasT. CraigenW.J. MooreR. CzosekR. JefferiesJ.L. Arrhythmia as a cardiac manifestation in MELAS syndrome.Mol. Genet. Metab. Rep.2015491010.1016/j.ymgmr.2015.05.002 26937404
    [Google Scholar]
  35. FinstererJ. Treatment of central nervous system manifestations in mitochondrial disorders.Eur. J. Neurol.2011181283810.1111/j.1468‑1331.2010.03086.x 20500524
    [Google Scholar]
  36. LorenzoniP.J. WerneckL.C. KayC.S.K. SilvadoC.E.S. ScolaR.H. When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis?Arq. Neuropsiquiatr.2015731195996710.1590/0004‑282X20150154 26517220
    [Google Scholar]
  37. WangY.X. LeW.D. Progress in diagnosing mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes.Chin. Med. J. 2015128131820182510.4103/0366‑6999.159360 26112726
    [Google Scholar]
  38. BallingerS.W. ShoffnerJ.M. HedayaE.V. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion.Nat. Genet.199211111510.1038/ng0492‑11 1301992
    [Google Scholar]
  39. DiMauroS. Mitochondrial diseases.Biochim. Biophys. Acta Bioenerg.200416581-2808810.1016/j.bbabio.2004.03.014 15282178
    [Google Scholar]
  40. MancusoM. PetrozziL. FilostoM. MERRF syndrome without ragged-red fibers: The need for molecular diagnosis.Biochem. Biophys. Res. Commun.200735441058106010.1016/j.bbrc.2007.01.099 17275787
    [Google Scholar]
  41. NaingA. KenchaiahM. KrishnanB. Maternally inherited diabetes and deafness (MIDD): Diagnosis and management.J. Diabetes Complications201428454254610.1016/j.jdiacomp.2014.03.006 24746802
    [Google Scholar]
  42. BallingerS.W. ShoffnerJ.M. GebhartS. KoontzD.A. WallaceD.C. Mitochondrial diabetes revisited.Nat. Genet.19947445845910.1038/ng0894‑458 7951312
    [Google Scholar]
  43. MartínM.A. BlázquezA. Gutierrez-SolanaL.G. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.Arch. Neurol.200562465966110.1001/archneur.62.4.659 15824269
    [Google Scholar]
  44. DarinN. OldforsA. MoslemiA.R. HolmeE. TuliniusM. The incidence of mitochondrial encephalomyopathies in childhood: Clinical features and morphological, biochemical, and DNA abnormalities.Ann. Neurol.200149337738310.1002/ana.75 11261513
    [Google Scholar]
  45. GelfandJ.M. DuncanJ.L. RacineC.A. Heterogeneous patterns of tissue injury in NARP syndrome.J. Neurol.2011258344044810.1007/s00415‑010‑5775‑1 20953793
    [Google Scholar]
  46. RawleM. LarnerA. NARP syndrome: A 20-year follow-up.Case Rep. Neurol.20135320420710.1159/000357518 24516410
    [Google Scholar]
  47. BoenziS. DiodatoD. Biomarkers for mitochondrial energy metabolism diseases.Essays Biochem.201862344345410.1042/EBC20170111 29980631
    [Google Scholar]
  48. MurareskuC.C. McCormickE.M. FalkM.J. Mitochondrial Disease: Advances in clinical diagnosis, management, therapeutic development, and preventative strategies.Curr. Genet. Med. Rep.201862627210.1007/s40142‑018‑0138‑9 30393588
    [Google Scholar]
  49. FinstererJ. Zarrouk-MahjoubS. Biomarkers for detecting mitochondrial disorders.J. Clin. Med.2018721610.3390/jcm7020016 29385732
    [Google Scholar]
  50. YatsugaS. FujitaY. IshiiA. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders.Ann. Neurol.201578581482310.1002/ana.24506 26463265
    [Google Scholar]
  51. TortF. García-SilvaM.T. Ferrer-CortèsX. Exome sequencing identifies a new mutation in SERAC1 in a patient with 3-methylglutaconic aciduria.Mol. Genet. Metab.20131101-2737710.1016/j.ymgme.2013.04.021 23707711
    [Google Scholar]
  52. LandsverkM.L. ZhangV.W. WongL.J.C. AnderssonH.C.A. SUCLG1 mutation in a patient with mitochondrial DNA depletion and congenital anomalies.Mol. Genet. Metab. Rep.2014145145410.1016/j.ymgmr.2014.09.007 27896121
    [Google Scholar]
  53. LieberD.S. CalvoS.E. ShanahanK. Targeted exome sequencing of suspected mitochondrial disorders.Neurology201380191762177010.1212/WNL.0b013e3182918c40 23596069
    [Google Scholar]
  54. McCormickE. PlaceE. FalkM.J. Molecular genetic testing for mitochondrial disease: From one generation to the next.Neurotherapeutics201310225126110.1007/s13311‑012‑0174‑1 23269497
    [Google Scholar]
  55. DimmockD.P. LawlorM.W. Presentation and diagnostic evaluation of mitochondrial disease.Pediatr. Clin. North Am.201764116117110.1016/j.pcl.2016.08.011 27894442
    [Google Scholar]
  56. NewellC. KhanA. SinasacD. Hybrid gel electrophoresis using skin fibroblasts to aid in diagnosing mitochondrial disease.Neurol. Genet.201953e33610.1212/NXG.0000000000000336 31192304
    [Google Scholar]
  57. GermainN. DesseinA.F. VienneJ.C. First-line screening of OXPHOS deficiencies using microscale oxygraphy in human skin fibroblasts: A preliminary study.Int. J. Med. Sci.201916793193810.7150/ijms.32413 31341406
    [Google Scholar]
  58. AhmedS.T. CravenL. RussellO.M. TurnbullD.M. VincentA.E. Diagnosis and treatment of mitochondrial myopathies.Neurotherapeutics201815494395310.1007/s13311‑018‑00674‑4 30406383
    [Google Scholar]
  59. ParikhS. SanetoR. FalkM.J. A modern approach to the treatment of mitochondrial disease.Curr. Treat. Options Neurol.200911641443010.1007/s11940‑009‑0046‑0 19891905
    [Google Scholar]
  60. PfefferG. MajamaaK. TurnbullD.M. ThorburnD. ChinneryP.F. Treatment for mitochondrial disorders.Cochrane Libr.201220124CD00442610.1002/14651858.CD004426.pub3 22513923
    [Google Scholar]
  61. WortmannS.B. Zweers-van EssenH. RodenburgR.J.T. Mitochondrial energy production correlates with the age-related BMI.Pediatr. Res.200965110310810.1203/PDR.0b013e31818d1c8a 19096353
    [Google Scholar]
  62. MoravaE. RodenburgR. van EssenH.Z. De VriesM. SmeitinkJ. Dietary intervention and oxidative phosphorylation capacity.J. Inherit. Metab. Dis.200629458910.1007/s10545‑006‑0227‑x 16786255
    [Google Scholar]
  63. El-HattabA.W. HsuJ.W. EmrickL.T. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation.Mol. Genet. Metab.2012105460761410.1016/j.ymgme.2012.01.016 22325939
    [Google Scholar]
  64. BoughK.J. WetheringtonJ. HasselB. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet.Ann. Neurol.200660222323510.1002/ana.20899 16807920
    [Google Scholar]
  65. Di GiovanniS. MirabellaM. SpinazzolaA. Coenzyme Q 10 reverses pathological phenotype and reduces apoptosis in familial CoQ 10 deficiency.Neurology200157351551810.1212/WNL.57.3.515 11502923
    [Google Scholar]
  66. AlmannaiM. El-HattabA.W. Nitric oxide deficiency in mitochondrial disorders: The utility of arginine and citrulline.Front. Mol. Neurosci.20211468278010.3389/fnmol.2021.682780 34421535
    [Google Scholar]
  67. MemmeJ.M. ErlichA.T. PhukanG. HoodD.A. Exercise and mitochondrial health.J. Physiol.2021599380381710.1113/JP278853 31674658
    [Google Scholar]
  68. Suárez-RiveroJ.M. Pastor-MaldonadoC.J. Povea-CabelloS. Coenzyme Q10 analogues: Benefits and challenges for therapeutics.Antioxidants202110223610.3390/antiox10020236 33557229
    [Google Scholar]
  69. KlopstockT. Yu-Wai-ManP. DimitriadisK. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy.Brain201113492677268610.1093/brain/awr17021788663
    [Google Scholar]
  70. NLM. study to assess efficacy, safety and tolerability of idebenone in the treatment of leber’s hereditary optic neuropathy, National library of medicine.2013Available from: https://ClinicalTrials.gov/show/NCT00747487
  71. NLM. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis & stroke-like episodes (MELAS), National library of medicine.2016Available from: https://ClinicalTrials.gov/show/NCT00887562
  72. NLM. idebenone treatment of early parkinson’s disease symptoms (ITEP), National library of medicine. 2018Available from: https://ClinicalTrials.gov/show/NCT00747487
  73. KaganV.E. SerbinovaE.A. KoynovaG.M. Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes.Free Radic. Biol. Med.19909211712610.1016/0891‑5849(90)90114‑X 2227528
    [Google Scholar]
  74. KlopstockT. KlopstockB. ProkischH. Mitochondrial replacement approaches: Challenges for clinical implementation.Genome Med.20168112610.1186/s13073‑016‑0380‑2 27887638
    [Google Scholar]
  75. PeevaV. BleiD. TromblyG. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery.Nat. Commun.201891172710.1038/s41467‑018‑04131‑w 29712893
    [Google Scholar]
  76. MokB.Y. de MoraesM.H. ZengJ. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.Nature2020583781763163710.1038/s41586‑020‑2477‑4 32641830
    [Google Scholar]
  77. GammageP.A. ViscomiC. SimardM.L. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo.Nat. Med.2018241116911695b10.1038/s41591‑018‑0165‑9 30250142
    [Google Scholar]
  78. TashiroR. OnoueN. ShinozakiT. Mitochondrial Cardiomyopathy.Current Perspectives on Cardiomyopathies IntechOpen201810.5772/intechopen.77105
    [Google Scholar]
  79. SloneJ. HuangT. The special considerations of gene therapy for mitochondrial diseases.NPJ Genom. Med.202051710.1038/s41525‑020‑0116‑5 32140258
    [Google Scholar]
  80. BottaniE. LampertiC. PrigioneA. TirantiV. PersicoN. BrunettiD. Therapeutic approaches to treat mitochondrial diseases:“One-size-fits-all” and precision medicine” strategies.Pharmaceutics20201211108310.3390/pharmaceutics12111083 33187380
    [Google Scholar]
  81. PeranteauW.H. FlakeA.W. The future of in utero gene therapy.Mol. Diagn. Ther.202024213514210.1007/s40291‑020‑00445‑y 32020561
    [Google Scholar]
  82. HickeyJ.L. RuhayelR.A. BarnardP.J. BakerM.V. Berners-PriceS.J. FilipovskaA. Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols.J. Am. Chem. Soc.200813038125701257110.1021/ja804027j 18729360
    [Google Scholar]
  83. MallickS. SongS.J. BaeY. ChoiJ.S. Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery.Int. J. Biol. Macromol.201913245146010.1016/j.ijbiomac.2019.03.215
    [Google Scholar]
  84. NeuzilJ. DongL.F. RohlenaJ. TruksaJ. RalphS.J. Classification of mitocans, anti-cancer drugs acting on mitochondria.Mitochondrion201313319920810.1016/j.mito.2012.07.112 22846431
    [Google Scholar]
  85. ZhangD. WenL. HuangR. WangH. HuX. XingD. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots.Biomaterials2018153142610.1016/j.biomaterials.2017.10.034 29096398
    [Google Scholar]
  86. LuP. BrunoB.J. RabenauM. LimC.S. Delivery of drugs and macromolecules to the mitochondria for cancer therapy.J. Control. Release2016240385110.1016/j.jconrel.2015.10.023 26482081
    [Google Scholar]
  87. XiaoQ. DuW. DongX. Cell-penetrating mitochondrion-targeting ligands for the universal delivery of small molecules, proteins and nanomaterials.Chem20212747122071221410.1002/chem.202101989
    [Google Scholar]
  88. ChengG. ZielonkaJ. McAllisterD.M. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death.BMC Cancer201313128510.1186/1471‑2407‑13‑285 23764021
    [Google Scholar]
  89. JeanS.R. AhmedM. LeiE.K. WisnovskyS.P. KelleyS.O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria.Acc. Chem. Res.20164991893190210.1021/acs.accounts.6b00277 27529125
    [Google Scholar]
  90. HanC. ZhangC. MaT. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect.Acta Biomater.20187726828110.1016/j.actbio.2018.07.018 30006311
    [Google Scholar]
  91. LeeJ.H. KimK.Y. JinH. Self-assembled coumarin nanoparticle in aqueous solution as selective mitochondrial-targeting drug delivery system.ACS Appl. Mater. Interfaces20181043380339110.1021/acsami.7b17711 29302967
    [Google Scholar]
  92. ChenT.T. TianX. LiuC.L. GeJ. ChuX. LiY. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor.J. Am. Chem. Soc.2015137298298910.1021/ja511988w 25548948
    [Google Scholar]
  93. Al-WassitiH.A. ThomasD.R. WagstaffK.M. Adenovirus terminal protein contains a bipartite nuclear localisation signal essential for its import into the nucleus.Int. J. Mol. Sci.2021227331010.3390/ijms22073310 33804953
    [Google Scholar]
  94. ChengY. SunC. LiuR. A Multifunctional peptide‐conjugated aiegen for efficient and sequential targeted gene delivery into the nucleus.Angew. Chem. Int. Ed.201958155049505310.1002/anie.201901527 30767348
    [Google Scholar]
  95. SunY. LiangY. HaoN. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20(S)-camptothecin delivery and antitumor efficacy.Nanoscale20201295380539610.1039/C9NR10574C 32022069
    [Google Scholar]
  96. GaroneC. ViscomiC. Towards a therapy for mitochondrial disease: An update.Biochem. Soc. Trans.20184651247126110.1042/BST20180134 30301846
    [Google Scholar]
  97. SinghA. FaccendaD. CampanellaM. Pharmacological advances in mitochondrial therapy.EBioMedicine20216510324410.1016/j.ebiom.2021.103244 33647769
    [Google Scholar]
  98. TinkerR.J. LimA.Z. StefanettiR.J. McFarlandR. Current and emerging clinical treatment in mitochondrial disease.Mol. Diagn. Ther.202125218120610.1007/s40291‑020‑00510‑6 33646563
    [Google Scholar]
  99. MurphyM.P. HartleyR.C. Mitochondria as a therapeutic target for common pathologies.Nat. Rev. Drug Discov.2018171286588610.1038/nrd.2018.174 30393373
    [Google Scholar]
  100. AugustineE.F. AdamsH.R. MinkJ.W. Clinical trials in rare disease: Challenges and opportunities.J. Child Neurol.20132891142115010.1177/0883073813495959 24014509
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265304029240801092834
Loading
/content/journals/iddt/10.2174/0118715265304029240801092834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test