Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

It was in 2019 that the world experienced the devastation caused by SARS-CoV-2, contributing to a large number of deaths. This contagious virus not only challenged the health care system but has also hit the economy very badly. There has been a lot of research on effective vaccine development, and there has been some success in the same, but no effective antiviral drugs are available in the market. No doubt vaccination can prevent the disease, but it doesn’t have the potential to cure an infected person, for which there is a dire need to develop some effective drug. Angiotensin convertase enzyme 2 (ACE2) played a substantial role in SARS-CoV-2 pathogenesis and thus has gained much attention during the pandemic. Moreover, it has opened up new avenues for the cure of COVID-19.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265298816240321045741
2024-04-18
2025-01-11
Loading full text...

Full text loading...

References

  1. AbduljalilJ.M. AbduljalilB.M. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: A recent view.New Microbes New Infect.20203510067210.1016/j.nmni.2020.100672 32322400
    [Google Scholar]
  2. COVID-19 epidemological update 27 october 2023 WHO.2023Available from: https:/www.who.int/publications/m/item/covid(Accessed 25 November 2023).
  3. ChengH. WangY. WangG.Q. Organ‐protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19.J. Med. Virol.202092772673010.1002/jmv.25785 32221983
    [Google Scholar]
  4. TolouianR. Zununi VahedS. GhiyasvandS. TolouianA. ArdalanM. COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment.J. Renal Inj. Prev.202092e1910.34172/jrip.2020.19
    [Google Scholar]
  5. GurwitzD. Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics.Drug Dev. Res.202081553754010.1002/ddr.21656 32129518
    [Google Scholar]
  6. Passos-SilvaD.G. Verano-BragaT. SantosR.A.S. Angiotensin-(1–7): Beyond the cardio-renal actions.Clin. Sci. 2013124744345610.1042/CS20120461 23249272
    [Google Scholar]
  7. ElfikyA.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19.Life Sci.202024811747710.1016/j.lfs.2020.117477 32119961
    [Google Scholar]
  8. WangK. GheblawiM. OuditG.Y. Angiotensin converting enzyme 2: A double-edged sword.Circulation2020142542642810.1161/CIRCULATIONAHA.120.047049 32213097
    [Google Scholar]
  9. LuR. ZhaoX. LiJ. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  10. HaschkeM. SchusterM. PoglitschM. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects.Clin. Pharmacokinet.201352978379210.1007/s40262‑013‑0072‑7 23681967
    [Google Scholar]
  11. YangM. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection.In: Department of OphthalmologyThe University of Hong Kong20201710.2139/ssrn.3527420
    [Google Scholar]
  12. FuY. ChengY. WuY. Understanding SARS-CoV-2 mediated inflammatory responses: from mechanisms to potential therapeutic tools.Virol. Sin.202035326627110.1007/s12250‑020‑00207‑4 32125642
    [Google Scholar]
  13. JiaH.P. LookD.C. TanP. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.Am. J. Physiol. Lung Cell. Mol. Physiol.20092971L84L9610.1152/ajplung.00071.2009 19411314
    [Google Scholar]
  14. BombardiniT. PicanoE. Angiotensin-converting enzyme 2 as the molecular bridge between epidemiologic and clinical features of COVID-19.Can. J. Cardiol.2020203029930300
    [Google Scholar]
  15. TikellisC. ThomasM.C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease.Int. J. Pept.201220121810.1155/2012/256294 22536270
    [Google Scholar]
  16. LetkoM. MarziA. MunsterV. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses.Nat. Microbiol.20205456256910.1038/s41564‑020‑0688‑y 32094589
    [Google Scholar]
  17. ArendseL.B. DanserA.H.J. PoglitschM. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure.Pharmacol. Rev.201971453957010.1124/pr.118.017129 31537750
    [Google Scholar]
  18. GuignabertC. de ManF. LombèsM. ACE2 as therapy for pulmonary arterial hypertension: The good outweighs the bad.Eur. Respir. J.2018516180084810.1183/13993003.00848‑2018 29929959
    [Google Scholar]
  19. Kazemi-BajestaniS.M.R. PatelV.B. WangW. OuditG.Y. Targeting the ACE2 and apelin pathways are novel therapies for heart failure: Opportunities and challenges.Cardiol. Res. Pract.2012201211110.1155/2012/823193 22655211
    [Google Scholar]
  20. BatlleD. WysockiJ. SatchellK. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy?Clin. Sci.2020134554354510.1042/CS20200163 32167153
    [Google Scholar]
  21. Şı̇mşek YavuzS. Komşuoğlu Çelı̇kyurtİ. An update of anti-viral treatment of COVID-19.Turk. J. Med. Sci.202151SI-13372339010.3906/sag‑2106‑250 34391321
    [Google Scholar]
  22. ZhangH. LvP. JiangJ. Advances in developing ACE2 derivatives against SARS-CoV-2.Lancet Microbe202345e369e37810.1016/S2666‑5247(23)00011‑3 36934742
    [Google Scholar]
  23. YamaguchiT. HoshizakiM. MinatoT. ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury.Nat. Commun.2021121679110.1038/s41467‑021‑27097‑8 34815389
    [Google Scholar]
  24. ZoufalyA. PoglitschM. AberleJ.H. Human recombinant soluble ACE2 in severe COVID-19.Lancet Respir. Med.20208111154115810.1016/S2213‑2600(20)30418‑5 33131609
    [Google Scholar]
  25. ShoemakerR.H. PanettieriR.A.Jr LibuttiS.K. Development of an aerosol intervention for COVID-19 disease: Tolerability of soluble ACE2 (APN01) administered via nebulizer.PLoS One2022177e027106610.1371/journal.pone.0271066 35816490
    [Google Scholar]
  26. DaniellH. NairS.K. EsmaeiliN. Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection.Mol. Ther.20223051966197810.1016/j.ymthe.2021.11.008 34774754
    [Google Scholar]
  27. LinskyT.W. VergaraR. CodinaN. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2.Science202037065211208121410.1126/science.abe0075 33154107
    [Google Scholar]
  28. KruseR.L. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China.F1000 Res.202097210.12688/f1000research.22211.2 32117569
    [Google Scholar]
  29. Aboul-FotouhS. MahmoudA.N. ElnahasE.M. HabibM.Z. AbdelraoufS.M. What are the current anti-COVID-19 drugs? From traditional to smart molecular mechanisms.Virol. J.202320124110.1186/s12985‑023‑02210‑z 37875904
    [Google Scholar]
  30. SandersJ.M. MonogueM.L. JodlowskiT.Z. CutrellJ.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19).JAMA2020323181824183610.1001/jama.2020.601932282022
    [Google Scholar]
  31. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑032020029
    [Google Scholar]
  32. NIHCoronavirus disease 2019 (COVID‑19) treatment guidelines.Available from : https:// www. covid 19treatmentguidelines. nih. gov/ (Accessed 3 Oct 2023). 2019
  33. IDSA,IDSA guidelines on the treatment and management of patients with COVID-192023Available from: https:// www. idsociety.org/ (Accessed 3 Oct 2023).
  34. NICECOVID‑19 rapid guideline: managing COVID‑19. NICE guideline.2021Available from: https:// www. nice. org (Accessed 3 Oct 2023).
  35. FDA approves first oral antiviral for treatment of COVID-19 in adults.Available from: https:// www. fda. gov/ (Accessed 3 Oct 2023).
    [Google Scholar]
  36. ZarenezhadE. MarziM. Review on molnupiravir as a promising oral drug for the treatment of COVID-19.Med. Chem. Res.202231223224310.1007/s00044‑021‑02841‑335002192
    [Google Scholar]
  37. BaumA. AjithdossD. CopinR. ZhouA. LanzaK. NegronN. NiM. WeiY. MohammadiK. MusserB. AtwalG.S. OyejideA. Goez-GaziY. DuttonJ. ClemmonsE. StaplesH.M. BartleyC. KlaffkeB. AlfsonK. GaziM. GonzalezO. DickE.Jr CarrionR.Jr PessaintL. PortoM. CookA. BrownR. AliV. GreenhouseJ. TaylorT. AndersenH. LewisM.G. StahlN. MurphyA.J. YancopoulosG.D. KyratsousC.A. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters.Science202037065201110111510.1126/science.abe240233037066
    [Google Scholar]
  38. JonesBE Brown-AugsburgerPL CorbettKS WestendorfK DaviesJ CujecTP The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates.Sci Transl Med20211359311906
    [Google Scholar]
  39. FDAEVUSHELD (tixagevimab co‑packaged with cilgavimab) EAU fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 154701/ (Accessed 3 Oct 2023).
  40. FDAbamlanivimab/etesevimab EAU fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 145802/ (Accessed 3 Oct 2023).
  41. FDAcasirivimab/ imdevimab EAU fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 145611/ (Accessed 3 Oct 2023).
  42. FDASotrovimab EAU fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 149534/ (Accessed 3 Oct 2023).
  43. FDABebtelovimab EAU fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 156152/ (Accessed 3 Oct 2023).
  44. FDACoronavirus (COVID‑19) Update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab.Available from: https:// www. fda. gov/ (Accessed 3 Oct 2023).
  45. FDACoronavirus (COVID‑19) Update: FDA limits use of certain monoclonal antibodies to treat COVID‑19 due to the omicron variant.Available from: https:// www. fda. gov/ (Accessed 3 Oct 2023).
  46. FDAFDA updates Sotrovimab emergency use authorization.Available from: https:// www. fda. gov/ drugs/ (Accessed 3 Oct 2023).
    [Google Scholar]
  47. FDAFDA announces bebtelovimab is not currently authorized in any US region.Available from: https:// www. fda. gov/ drugs/ (Accessed 3 Oct 2023).
  48. FDA announces Evusheld is not currently authorized for emergency use in the U.S.Available from: https:// www. fda. gov/ drugs/ (Accessed 3 Oct 2023).
  49. van GriensvenJ. EdwardsT. de LamballerieX. SempleM.G. GallianP. BaizeS. HorbyP.W. RaoulH. MagassoubaN.F. AntierensA. LomasC. FayeO. SallA.A. FransenK. BuyzeJ. RavinettoR. TiberghienP. ClaeysY. De CropM. LynenL. BahE.I. SmithP.G. DelamouA. De WeggheleireA. HabaN. Ebola-Tx Consortium Evaluation of convalescent plasma for ebola virus disease in guinea.N. Engl. J. Med.20163741334210.1056/NEJMoa151181226735992
    [Google Scholar]
  50. YoshikawaT. HillT. LiK. PetersC.J. TsengC.T.K. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells.J. Virol.20098373039304810.1128/JVI.01792‑0819004938
    [Google Scholar]
  51. FDA roundup.2022Available from: https:// www. fda. gov/ (Accessed 3 Oct 2023).
  52. GeneraliD. BosioG. MalbertiF. CuzzoliA. TestaS. RomaniniL. FioravantiA. MorandiniA. PiantaL. GiannottiG. ViolaE.M. Giorgi-PierfranceschiM. ForamittiM. TiraR.A. ZangrandiI. ChiodelliG. MachiavelliA. CappellettiM.R. GiossiA. De GiuliV. CostanziC. CampanaC. BernocchiO. SiricoM. ZoncadaA. MolteniA. VenturiniS. GiudiciF. ScaltritiM. PanA. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study.Int. J. Infect. Dis.202110443344010.1016/j.ijid.2020.12.07333385581
    [Google Scholar]
  53. FDAAnakinra EUA fact sheet for health care providers.Available from: https:// www. fda. gov/ media/ 163075/ (Accessed 3 Oct 2023).
    [Google Scholar]
  54. FDAAuthorizes Gohibic (vilobelimab) injection for the treatment of COVID‑19.Available from: https:// www. fda. gov/ drugs/ (Accessed 3 Oct 2023).
  55. Labandeira-GarciaJ.L. LabandeiraC.M. ValenzuelaR. PedrosaM.A. QuijanoA. Rodriguez-PerezA.I. Drugs modulating renin-angiotensin system in COVID-19 treatment.Biomedicines202210250210.3390/biomedicines1002050235203711
    [Google Scholar]
  56. MonteilV. KwonH. PradoP. HagelkrüysA. WimmerR.A. StahlM. LeopoldiA. GarretaE. Hurtado del PozoC. ProsperF. RomeroJ.P. WirnsbergerG. ZhangH. SlutskyA.S. ConderR. MontserratN. MirazimiA. PenningerJ.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.Cell20201814905913.e710.1016/j.cell.2020.04.00432333836
    [Google Scholar]
  57. HussainM. JabeenN. RazaF. ShabbirS. BaigA.A. AmanullahA. AzizB. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein.J. Med. Virol.20209291580158610.1002/jmv.2583232249956
    [Google Scholar]
  58. CaoY. LiL. FengZ. WanS. HuangP. SunX. WenF. HuangX. NingG. WangW. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations.Cell Discov.2020611110.1038/s41421‑020‑0147‑132133153
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265298816240321045741
Loading
/content/journals/iddt/10.2174/0118715265298816240321045741
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ACE2 downregulation; COVID-19; COVID-19 treatment; hepatocytes; Kupffer cells; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test