Skip to content
2000
image of Antimicrobial Resistance of Environmental V. cholerae Non-O1/O139 Isolates: Systematic Review and Meta-analysis

Abstract

Background

The understanding of the antibiotic resistance status of environmental nonO1/nonO139 [NOVC] in relation to other illnesses, which can vary in severity from mild to life-threatening, is limited. However, it is important to note that NOVC-related infections are increasing and serve as a significant illustration of emerging human diseases associated with climate change. The primary objective of the present study was to assess the rates of resistance observed in environmental NOVC isolates across various years, and regions, and their resistance rates.

Methods

We performed a systematic search of Scopus, PubMed, Web of Science, and EMBASE databases [until May 2024] following PRISMA guidelines. All statistical analyses were carried out using the statistical package R.

Results

Our analysis included a total of 34 studies. According to the meta-regression, chloramphenicol, rifampicin, ciprofloxacin, nalidixic acid, cotrimoxazole, kanamycin, trimethoprim, amoxicillin/clavulanic acid, and tetracycline resistance rate increased over time. The lowest resistance rates were observed in Austria [amoxicillin; 0.6%], the United States [kanamycin; 0.1% and tetracycline; 0.1%], Morocco [polymyxin B; 12%], and Spain [trimethoprim; 0.3%]. Conversely, the highest resistance rates were found in Spain [amoxicillin; 61%], Indonesia [kanamycin and tetracycline; 94.9%], India [polymyxin B; 97.8%], and Morocco [trimethoprim; 48.9%].

Conclusion

The meta-analysis showed significant variability in antibiotic resistance patterns among environmental NOVC isolates across time and regions, emphasizing the need for targeted, time-specific, and country-specific approaches to address antibiotic resistance globally.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265294870241002091842
2024-10-22
2025-01-19
Loading full text...

Full text loading...

References

  1. Baron S. Larvor E. Chevalier S. Jouy E. Kempf I. Granier S.A. Lesne J. Antimicrobial Susceptibility among Urban Wastewater and Wild Shellfish Isolates of Non-O1/Non-O139 Vibrio cholerae from La Rance Estuary (Brittany, France). Front. Microbiol. 2017 8 1637 10.3389/fmicb.2017.01637 28955305
    [Google Scholar]
  2. Chatterjee S. Ghosh K. Raychoudhuri A. Chowdhury G. Bhattacharya M.K. Mukhopadhyay A.K. Ramamurthy T. Bhattacharya S.K. Klose K.E. Nandy R.K. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J. Clin. Microbiol. 2009 47 4 1087 1095 10.1128/JCM.02026‑08 19158257
    [Google Scholar]
  3. Chakraborty S. Garg P. Ramamurthy T. Thungapathra M. Gautam J.K. Kumar C. Maiti S. Yamasaki S. Shimada T. Takeda Y. Ghosh A. Nair G.B. Comparison of antibiogram, virulence genes, ribotypes and DNA fingerprints of Vibrio cholerae of matching serogroups isolated from hospitalised diarrhoea cases and from the environment during 1997–1998 in Calcutta, India. J. Med. Microbiol. 2001 50 10 879 888 10.1099/0022‑1317‑50‑10‑879 11599737
    [Google Scholar]
  4. Chomvarin C. Jumroenjit W. Tangkanakul W. Hasan N.A. Chaicumpar K. Faksri K. Huq A. Genotype and Drug Resistance of Clinical and Environmental Vibrio Cholerae Non-O1/Non-O139 in Northeastern Thailand. Southeast Asian J. Trop. Med. Public Health 2014 45 6 1354 1364 26466421
    [Google Scholar]
  5. Eja M.E. Etok C.A. Asikong B.E. Mboto C.I. Arikpo G.E. Incidence of enteric bacterial pathogens in water found at the bottom of commercial freezers in calabar, southeastern Nigeria. Southeast Asian J. Trop. Med. Public Health 2006 37 2 394 399 17125005
    [Google Scholar]
  6. Dutta D. Chowdhury G. Pazhani G.P. Guin S. Dutta S. Ghosh S. Rajendran K. Nandy R.K. Mukhopadhyay A.K. Bhattacharya M.K. Mitra U. Takeda Y. Nair G.B. Ramamurthy T. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg. Infect. Dis. 2013 19 3 464 467 10.3201/eid1903.121156 23622872
    [Google Scholar]
  7. Dalsgaard A. Forslund A. Bodhidatta L. Serichantalergs O. Pitarangsi C. Pang L. Shimada T. Echeverria P. A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol. Infect. 1999 122 2 217 226 10.1017/S0950268899002137 10355785
    [Google Scholar]
  8. Rudra S. Mahajan R. Mathur M. Kathuria K. Talwar V. Cluster of cases of clinical cholera due to Vibrio cholerae 010 in east Delhi. Indian J. Med. Res. 1996 103 71 73 8714141
    [Google Scholar]
  9. Onifade T.M. Hutchinson R. Van Zile K. Bodager D. Baker R. Blackmore C. Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill. 2011 16 20 19870 10.2807/ese.16.20.19870‑en 21616048
    [Google Scholar]
  10. Mala W. Faksri K. Samerpitak K. Yordpratum U. Kaewkes W. Tattawasart U. Chomvarin C. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand. Infect. Genet. Evol. 2017 52 89 95 10.1016/j.meegid.2017.04.013 28412524
    [Google Scholar]
  11. Petsaris O. Nousbaum J.B. Quilici M.L. Le Coadou G. Payan C. Abalain M.L. Non-O1, non-O139 Vibrio cholerae bacteraemia in a cirrhotic patient. J. Med. Microbiol. 2010 59 10 1260 1262 10.1099/jmm.0.021014‑0 20616193
    [Google Scholar]
  12. Azzaya D Gantuya B Oyuntsetseg K Davaadorj D Matsumoto T Akada J Yamaoka YJM High antibiotic resistance of Helicobacter pylori and its associated novel gene mutations among the Mongolian population. Microorganisms 2020 8 7 1062 10.3390/microorganisms8071062
    [Google Scholar]
  13. Ghosh A. Ramamurthy T. Antimicrobials & cholera: Are we stranded? Indian J. Med. Res. 2011 133 2 225 231 21415499
    [Google Scholar]
  14. Saha D. Karim M.M. Khan W.A. Ahmed S. Salam M.A. Bennish M.L. Single-dose azithromycin for the treatment of cholera in adults. N. Engl. J. Med. 2006 354 23 2452 2462 10.1056/NEJMoa054493 16760445
    [Google Scholar]
  15. Moher D Liberati A Tetzlaff J Altman DG Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010 8 5 336 41
    [Google Scholar]
  16. meta: An R Package for Meta-Analysis. 2007 Available From: https://journal.r-project.org/articles/RN-2007-029/RN-2007-029.pdf
  17. Team RCJhwR-po R: A language and environment for statistical computing. Vienna, Austria R Foundation for Statistical Computing 2013
    [Google Scholar]
  18. Amaro C. Aznar R. Garay E. Alcaide E. R plasmids in environmental Vibrio cholerae non-O1 strains. Appl. Environ. Microbiol. 1988 54 11 2771 2776 10.1128/aem.54.11.2771‑2776.1988 3214157
    [Google Scholar]
  19. Akoachere J.F.T.K. Mbuntcha C.K.P. Water sources as reservoirs of Vibrio choleraeO1 and non-O1 strains in Bepanda, Douala (Cameroon): Relationship between isolation and physico-chemical factors. BMC Infect. Dis. 2014 14 1 421 10.1186/1471‑2334‑14‑421 25073409
    [Google Scholar]
  20. Lamrani Alaoui H. Oufdou K. Mezrioui N. Determination of several potential virulence factors in non-o1 Vibrio cholerae, Pseudomonas aeruginosa, faecal coliforms and streptococci isolated from Marrakesh groundwater. Water Sci. Technol. 2010 61 7 1895 1905 10.2166/wst.2010.263 20371949
    [Google Scholar]
  21. Bakhshi B. Pourshafie M.R. Navabakbar F. Tavakoli A. Shahcheraghi F. Salehi M. Faradjzadegan Z. Zahraei S.M. Comparison of distribution of virulence determinants in clinical and environmental isolates of Vibrio cholera. Iran. Biomed. J. 2008 12 3 159 165 18762819
    [Google Scholar]
  22. Barja J.L. Santos Y. Huq I. Colwell R.R. Toranzo A.E. Plasmids and factors associated with virulence in environmental isolates of Vibrio cholerae non-O 1 in Bangladesh. J. Med. Microbiol. 1990 33 2 107 114 10.1099/00222615‑33‑2‑107 2231676
    [Google Scholar]
  23. Baron S. Lesne J. Jouy E. Larvor E. Kempf I. Boncy J. Rebaudet S. Piarroux R. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti. Front. Microbiol. 2016 7 1671 10.3389/fmicb.2016.01671 27818656
    [Google Scholar]
  24. Bidinost C. Saka H.A. Aliendro O. Sola C. Panzetta-Duttari G. Carranza P. Echenique J. Patrito E. Bocco J.L. Virulence factors of non-O1 non-O139 Vibrio cholerae isolated in Córdoba, Argentina. Rev. Argent. Microbiol. 2004 36 4 158 163 15786867
    [Google Scholar]
  25. Bier N. Schwartz K. Guerra B. Strauch E. Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters. Front. Microbiol. 2015 6 1179 10.3389/fmicb.2015.01179 26579088
    [Google Scholar]
  26. Campos L.C. Zahner V. Avelar K.E.S. Alves R.M. Pereira D.S.G. Vital Brazil J.M. Freitas F.S. Salles C.A. Karaolis D.K.R. Genetic diversity and antibiotic resistance of clinical and environmental Vibrio cholerae suggests that many serogroups are reservoirs of resistance. Epidemiol. Infect. 2004 132 5 985 992 10.1017/S0950268804002705 15473163
    [Google Scholar]
  27. Ceccarelli D. Chen A. Hasan N.A. Rashed S.M. Huq A. Colwell R.R. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Appl. Environ. Microbiol. 2015 81 6 1909 1918 10.1128/AEM.03540‑14 25556194
    [Google Scholar]
  28. Dalsgaard A. Serichantalergs O. Pitarangsi C. Echeverria P. Molecular characterization and antibiotic susceptibility of Vibrio cholerae non-O1. Epidemiol. Infect. 1995 114 1 51 63 10.1017/S0950268800051906 7867743
    [Google Scholar]
  29. Falcão D.P. Lustri W.R. Bauab T.M. Incidence of non-01 Vibrio cholerae and Aeromonas spp. in fresh water in Araraquara, Brazil. Curr. Microbiol. 1998 37 1 28 31 10.1007/s002849900332 9625786
    [Google Scholar]
  30. Imziln B. Hassani L. Antimicrobial susceptibility of non-O1 Vibrio cholerae isolated from wastewater stabilization ponds in Marrakesh, Morocco. World J. Microbiol. Biotechnol. 1994 10 2 230 231 10.1007/BF00360895 24420955
    [Google Scholar]
  31. Isaac-Márquez A.P. Lezama-Dávila C.M. Eslava- Campos C. Navarro-Ocaña A. Cravioto-Quintana A. Serotypes of Vibrio cholerae non-O1 isolated from water supplies for human consumption in Campeche, México and their antibiotic susceptibility pattern. Mem. Inst. Oswaldo Cruz 1998 93 1 17 22 10.1590/S0074‑02761998000100004 9698837
    [Google Scholar]
  32. Islam M.S. Jahid M.I.K. Rahman M.M. Rahman M.Z. Islam M.S. Kabir M.S. Sack D.A. Schoolnik G.K. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. Microbiol. Immunol. 2007 51 4 369 379 10.1111/j.1348‑0421.2007.tb03924.x 17446676
    [Google Scholar]
  33. Jagadeeshan S. Kumar P. Abraham W.P. Thomas S. Multiresistant Vibrio cholerae non‐O1/non‐O139 from waters in South India: Resistance patterns and virulence‐associated gene profiles. J. Basic Microbiol. 2009 49 6 538 544 10.1002/jobm.200900085 19810041
    [Google Scholar]
  34. Meena B. Anburajan L. Sathish T. Das A.K. Vinithkumar N.V. Kirubagaran R. Dharani G. Studies on diversity of Vibrio sp. and the prevalence of hapA, tcpI, st, rtxA&C, acfB, hlyA, ctxA, ompU and toxR genes in environmental strains of Vibrio cholerae from Port Blair bays of South Andaman, India. Mar. Pollut. Bull. 2019 144 105 116 10.1016/j.marpolbul.2019.05.011 31179975
    [Google Scholar]
  35. Kumar P.A. Patterson J. Karpagam P. Multiple Antibiotic Resistance Profiles of <i>Vibrio cholerae</i> non-O1 and non-O139. Jpn. J. Infect. Dis. 2009 62 3 230 232 10.7883/yoken.JJID.2009.230 19468189
    [Google Scholar]
  36. Kumar R. Lalitha K.V. Prevalence and molecular characterization of Vibrio cholerae O1, non-O1 and non-O139 in tropical seafood in Cochin, India. Foodborne Pathog. Dis. 2013 10 3 278 283 10.1089/fpd.2012.1310 23489050
    [Google Scholar]
  37. Mohapatra H. Mohapatra S.S. Mantri C.K. Colwell R.R. Singh D.V. Vibrio cholerae non‐O1, non‐O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain int SXT, dfr18 and aadA5 genes. Environ. Microbiol. 2008 10 4 866 873 10.1111/j.1462‑2920.2007.01502.x 18201198
    [Google Scholar]
  38. Mohapatra S.S. Ramachandran D. Mantri C.K. Colwell R.R. Singh D.V. Determination of relationships among non-toxigenic Vibrio cholerae O1 biotype El Tor strains from housekeeping gene sequences and ribotype patterns. Res. Microbiol. 2009 160 1 57 62 10.1016/j.resmic.2008.10.008 19028569
    [Google Scholar]
  39. Odjadjare E.E.O. Igbinosa E.O. Multi-drug resistant Vibrio species isolated from abattoir effluents in Nigeria. J. Infect. Dev. Ctries. 2017 11 5 373 378 10.3855/jidc.8097 30943178
    [Google Scholar]
  40. Waturangi D.E. Wennars M. Suhartono M.X. Wijaya Y.F. Edible ice in Jakarta, Indonesia, is contaminated with multidrug-resistant Vibrio cholerae with virulence potential. J. Med. Microbiol. 2013 62 3 352 359 10.1099/jmm.0.048769‑0 23264457
    [Google Scholar]
  41. Zavala-Norzagaray A.A. Aguirre A.A. Velazquez-Roman J. Flores-Villaseñor H. León-Sicairos N. Ley-Quiñonez C.P. Hernández-Díaz L.D.J. Canizalez-Roman A. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico. Front. Microbiol. 2015 6 635 10.3389/fmicb.2015.00635 26161078
    [Google Scholar]
  42. Song Y. Yu P. Li B. Pan Y. Zhang X. Cong J. Zhao Y. Wang H. Chen L. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River estuary, China. BMC Microbiol. 2013 13 1 214 10.1186/1471‑2180‑13‑214 24074349
    [Google Scholar]
  43. Abioye O.E. Nontongana N. Osunla C.A. Okoh A.I. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023 18 8 e0290356 10.1371/journal.pone.0290356 37616193
    [Google Scholar]
  44. Laviad-Shitrit S. Sharaby Y. Izhaki I. Peretz A. Halpern M. Antimicrobial susceptibility of environmental non-O1/non-O139 Vibrio cholerae isolates. Front. Microbiol. 2018 9 1726 10.3389/fmicb.2018.01726 30116229
    [Google Scholar]
  45. Lepuschitz S. Baron S. Larvor E. Granier S.A. Pretzer C. Mach R.L. Farnleitner A.H. Ruppitsch W. Pleininger S. Indra A. Kirschner A.K.T. Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian lake frequently associated with cases of human infection. Front. Microbiol. 2019 10 2600 10.3389/fmicb.2019.02600 31781080
    [Google Scholar]
  46. Luo Y. Wang H. Liang J. Qian H. Ye J. Chen L. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. Microb Ecol. 2021 82 2 319 333
    [Google Scholar]
  47. Schmidt K. Scholz H.C. Appelt S. Michel J. Jacob D. Dupke S. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries. Front. Microbiol. 2023 14 1282135 10.3389/fmicb.2023.1282135 38075873
    [Google Scholar]
  48. Valáriková J Korcová J Ziburová J Rosinský J Čížová A Bieliková S Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia. Folia Microbiol (Praha) 2020 65 3 545 555 10.1007/s12223‑019‑00760‑w
    [Google Scholar]
  49. Adabi M. Bakhshi B. Goudarzi H. Zahraei S.M. Pourshafie M.R. Distribution of class I integron and sulfamethoxazole trimethoprim constin in Vibrio cholerae isolated from patients in Iran. Microb. Drug Resist. 2009 15 3 179 184 10.1089/mdr.2009.0885 19728775
    [Google Scholar]
  50. Kitaoka M. Miyata S.T. Unterweger D. Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae. J. Med. Microbiol. 2011 60 4 397 407 10.1099/jmm.0.023051‑0 21252269
    [Google Scholar]
  51. CLSI Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing: Thirtieth Information Supplement. Wayne, PA, USA Clinical and Laboratory Standards Institute 2020 M100 S30
    [Google Scholar]
  52. Yousefi A. Vaez H. Sahebkar A. Khademi F. A systematic review and meta-analysis on the epidemiology of antibiotic resistance of Vibrio cholerae in Iran. Ann. Ig. 2019 31 3 279 290 31069372
    [Google Scholar]
  53. Dengo-Baloi L.C. Semá-Baltazar C.A. Manhique L.V. Chitio J.E. Inguane D.L. Langa J.P. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One 2017 12 8 e0181496 10.1371/journal.pone.0181496 28792540
    [Google Scholar]
  54. Ahmadi M.H. Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2021 10 1 115 10.1186/s13756‑021‑00985‑w 34362438
    [Google Scholar]
  55. Kirpich A. Weppelmann T.A. Yang Y. Ali A. Morris J.G. Jr Longini I.M. Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic. PLoS Negl. Trop. Dis. 2015 9 10 e0004153 10.1371/journal.pntd.0004153 26488620
    [Google Scholar]
  56. Lupica A Gumel AB The computation of reproduction numbers for the environment-host-environment cholera transmission dynamics. J.Biol. Syst. 2020 28 2 1 49
    [Google Scholar]
  57. Bagheri-Josheghani S Bakhshi B Mousavi M. Prevalence of Antibiotic Resistance in Vibrio cholerae: A Meta-analysis. Preprint 2021 10.21203/rs.3.rs‑208720/v1
    [Google Scholar]
  58. Garbern S.C. Chu T.C. Yang P. Gainey M. Nasrin S. Kanekar S. Qu K. Nelson E.J. Leung D.T. Ahmed D. Schmid C.H. Alam N.H. Levine A.C. Clinical and socio-environmental determinants of multidrug-resistant vibrio cholerae 01 in older children and adults in Bangladesh. Int. J. Infect. Dis. 2021 105 436 441 10.1016/j.ijid.2021.02.102 33647514
    [Google Scholar]
  59. Narendrakumar L. Gupta S.S. Johnson J.B. Ramamurthy T. Thomas S. Molecular adaptations and antibiotic resistance in Vibrio cholerae: A communal challenge. Microb. Drug Resist. 2019 25 7 1012 1022 10.1089/mdr.2018.0354 31021308
    [Google Scholar]
  60. Chatterjee P. Kanungo S. Bhattacharya S.K. Dutta S. Mapping cholera outbreaks and antibiotic resistant Vibrio cholerae in India: An assessment of existing data and a scoping review of the literature. Vaccine 2020 38 Suppl. 1 A93 A104 10.1016/j.vaccine.2019.12.003 31883807
    [Google Scholar]
  61. Ganesan D. Gupta S.S. Legros D. Cholera surveillance and estimation of burden of cholera. Vaccine 2020 38 Suppl. 1 A13 A17 10.1016/j.vaccine.2019.07.036 31326254
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265294870241002091842
Loading
/content/journals/iddt/10.2174/0118715265294870241002091842
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test