Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

It is a known fact that HIV infection remains a serious public health problem throughout the world, and the need to constantly develop new antiretroviral drugs to combat HIV emerges from the fact that repetitive mutations occurring in viral enzymes make this virus resistant to antiretroviral drugs. This resistance causes failure of treatment, and hence, for many years, extensive research has been to discover newer possibilities for fighting this disease at a molecular level, along with many long-standing and expensive clinical trials. Many scientific research programs have either been discarded or unsuccessful. However, the research has not stopped, and in the process, many heterocyclic scaffolds have been used to build up novel drug molecules to combat this disease. A literature survey reveals that many heterocycles have been explored and were found to be very useful in treating different types of viral infections. This concise and rigorous literature explains the journey and highlights the various strategies to develop new anti-HIV drug candidates.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265290911240611072422
2024-08-23
2025-03-30
Loading full text...

Full text loading...

References

  1. ChiuI.M. YanivA. DahlbergJ.E. Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses.Nature1985317603536636810.1038/317366a0 2995822
    [Google Scholar]
  2. Menéndez-AriasL. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases.Viruses2009131137116510.3390/v1031137 21994586
    [Google Scholar]
  3. HillA BalkinA. © Permanyer Publications.2010
    [Google Scholar]
  4. BuonaguroL. TorneselloM.L. BuonaguroF.M. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: Pathogenetic and therapeutic implications.J. Virol.20078119102091021910.1128/JVI.00872‑07 17634242
    [Google Scholar]
  5. CastroK.G. WardJ.W. SlutskerL. 1993 revised classification system for hiv infection and expanded surveillance case definition for AIDS among adolescents and adults.Clin. Infect. Dis.199317480281010.1093/clinids/17.4.802
    [Google Scholar]
  6. BergerE.A. MurphyP.M. FarberJ.M. Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease.Annu. Rev. Immunol.199917165770010.1146/annurev.immunol.17.1.657 10358771
    [Google Scholar]
  7. Menéndez-AriasL. Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments.Antiviral Res.20139819312010.1016/j.antiviral.2013.01.007 23403210
    [Google Scholar]
  8. KaleM. Molecular modeling studies on some important anticancer heterocycles: An overview.Curr Comput Aided Drug Des201814317819010.2174/1573409914666180321105745
    [Google Scholar]
  9. Martín-AlonsoS. Frutos-BeltránE. Menéndez-AriasL. Reverse transcriptase: From transcriptomics to genome editing.Trends Biotechnol.202139219421010.1016/j.tibtech.2020.06.008 32653101
    [Google Scholar]
  10. GuS.X. ZhuY.Y. WangC. Recent discoveries in HIV-1 reverse transcriptase inhibitors.Curr. Opin. Pharmacol.20205416617210.1016/j.coph.2020.09.017 33176248
    [Google Scholar]
  11. HorwitzJ.P. ChuaJ. NoelM. The Monomesylates of 1-(2′-Deoxy-β-D-lyxofuranosyl)thymine 1,2.J. Org. Chem.19642972076207810.1021/jo01030a546
    [Google Scholar]
  12. FulmorW KlundtL. XVuNHC1 284.196612120511
    [Google Scholar]
  13. HalasiS. 2′,3′-Dideoxycytidine.Contin Pract199118440
    [Google Scholar]
  14. BroderS. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic.Antiviral Res.201085111810.1016/j.antiviral.2009.10.002 20018391
    [Google Scholar]
  15. DubinskyR.M. YarchoanR. DalakasM. BroderS. Reversible axonal neuropathy from the treatment of AIDS and related disorders with 2′,3′‐dideoxycytidine (ddc).Muscle Nerve1989121085686010.1002/mus.880121012 2558314
    [Google Scholar]
  16. De ClercqE. A 40-year journey in search of selective antiviral chemotherapy.Annu. Rev. Pharmacol. Toxicol.201151112410.1146/annurev‑pharmtox‑010510‑100228 20809796
    [Google Scholar]
  17. PerryC.M. BalfourJ.A. An update on its antiviral activity, pharmacokinetic properties and therapeutic efficacy in the management of HIV disease.Drugs1996526928962
    [Google Scholar]
  18. SneadD.R. McQuadeD.T. AhmadS. An economical route to lamivudine featuring a novel strategy for stereospecific assembly.Org. Process Res. Dev.20202461194119810.1021/acs.oprd.0c00083 32587454
    [Google Scholar]
  19. RizzettoM. Herzog-HauffS. BöcherW.O. GalleP.R. LöhrH.F. Efficacy of lamivudine in HBeAg‐negative chronic hepatitis B.J. Med. Virol.200266443545110.1002/jmv.2164 11857520
    [Google Scholar]
  20. JacksonA. MoyleG. DickinsonL. Pharmacokinetics of abacavir and its anabolite carbovir triphosphate without and with darunavir/ritonavir or raltegravir in HIV-infected subjects.Antivir. Ther.2012171192410.3851/IMP1910 22267465
    [Google Scholar]
  21. ZhuangC. PannecouqueC. De ClercqE. ChenF. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): Our past twenty years.Acta Pharm. Sin. B202010696197810.1016/j.apsb.2019.11.010 32642405
    [Google Scholar]
  22. NamasivayamV. The journey of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) from lab to clinic.In: J Med Chem.20206210485183
    [Google Scholar]
  23. LiG. WangY. De ClercqE. Approved HIV reverse transcriptase inhibitors in the past decade.Acta Pharm. Sin. B20221241567159010.1016/j.apsb.2021.11.009 35847492
    [Google Scholar]
  24. KohlN.E. EminiE.A. SchleifW.A. Active human immunodeficiency virus protease is required for viral infectivity.Proc. Natl. Acad. Sci. USA198885134686469010.1073/pnas.85.13.4686 3290901
    [Google Scholar]
  25. LymphoidT. PharmacokineticsT. The lymphoid tissue pharmacokinetics of tenofovir disoproxil fumarate and tenofovir alafenamide in HIV- infected persons.Clin. Pharmacol. Ther.2020108597197510.1002/cpt.1883
    [Google Scholar]
  26. LudoviciD.W. KavashR.W. KuklaM.J. Evolution of anti-HIV drug candidates. Part 2: Diaryltriazine (DATA) analogues.Bioorg. Med. Chem. Lett.200111172229223410.1016/S0960‑894X(01)00411‑5 11527704
    [Google Scholar]
  27. DorseyB.D. LevinR.B. McDanielS.L. L-735,524: The design of a potent and orally bioavailable HIV protease inhibitor.J. Med. Chem.199437213443345110.1021/jm00047a001 7932573
    [Google Scholar]
  28. HoustonJ. BanksM.N. BinnieA. BrennerS. O’ConnellJ. PetrilloE.W. Case study: Impact of technology investment on lead discovery at Bristol–Myers Squibb, 1998–2006.Drug Discov. Today2008131-2445110.1016/j.drudis.2007.11.004 18190863
    [Google Scholar]
  29. KramerR.A. SchaberM.D. SkalkaA.M. GangulyK. Wong-StaalF. ReddyE.P. HTLV-III gag protein is processed in yeast cells by the virus pol-protease.Science198623147451580158410.1126/science.2420008 2420008
    [Google Scholar]
  30. PearlLH TaylorWR A structural model for the retroviral proteases.Nature 19873296137351410.1038/329351a0 3306411
    [Google Scholar]
  31. WangY. LvZ. ChuY. HIV protease inhibitors: A review of molecular selectivity and toxicity.HIV AIDS201579510410.2147/HIV.S79956 25897264
    [Google Scholar]
  32. TredwellM. GouverneurV. 1.5 fluorine in medicinal chemistry: Importance of chirality.In: Comprehensive ChiralityElsevier Ltd20121708510.1016/B978‑0‑08‑095167‑6.00106‑3
    [Google Scholar]
  33. IstingSPL Structure -based drug design200211595614
    [Google Scholar]
  34. KaldorS.W. KalishV.J. DaviesJ.F.II Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease.J. Med. Chem.199740243979398510.1021/jm9704098 9397180
    [Google Scholar]
  35. ShamH.L. KempfD.J. MollaA. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease.Antimicrob. Agents Chemother.199842123218322410.1128/AAC.42.12.3218 9835517
    [Google Scholar]
  36. ChapmanT.M. PloskerG.L. PerryC.M. Fosamprenavir: A review of its use in the management of antiretroviral therapy-naive patients with HIV infection.Drugs200464182101212410.2165/00003495‑200464180‑00014 15341507
    [Google Scholar]
  37. LyleT.A. PointW. Ribonucleic acid viruses: Antivirals for human immunodeficiency virus.In: Comprehensive Medicinal Chemistry II2007732971
    [Google Scholar]
  38. McCoyC. Darunavir: A nonpeptidic antiretroviral protease inhibitor.Clin. Ther.20072981559157610.1016/j.clinthera.2007.08.016 17919539
    [Google Scholar]
  39. KawasujiT. Carbamoyl pyridone HIV-1 integrase inhibitors. 1. Molecular design and establishment of an advanced two-metal binding pharmacophore.J. Med. Chem.2007552087358744
    [Google Scholar]
  40. HazudaD.J. FelockP. WitmerM. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells.Science2000287545364665010.1126/science.287.5453.646 10649997
    [Google Scholar]
  41. DalwadiD.A. OzunaL. HarveyB.H. ViljoenM. SchetzJ.A. Adverse neuropsychiatric events and recreational use of efavirenz and other HIV-1 antiretroviral drugs. In: Pharmacol Rev.2018; 703684711
    [Google Scholar]
  42. ShimuraK. KodamaE. SakagamiY. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137).J. Virol.200882276477410.1128/JVI.01534‑07 17977962
    [Google Scholar]
  43. BaillyF. CotelleP. The preclinical discovery and development of dolutegravir for the treatment of HIV.Expert Opin. Drug Discov.201510111243125310.1517/17460441.2015.1064896 26517818
    [Google Scholar]
  44. HughesD.L. Review of synthetic routes and final forms of integrase inhibitors dolutegravir, cabotegravir, and bictegravir.Org. Process Res. Dev.201923571672910.1021/acs.oprd.9b00031
    [Google Scholar]
  45. MatthewsT. SalgoM. GreenbergM. ChungJ. DeMasiR. BolognesiD. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes.Nat. Rev. Drug Discov.20043321522510.1038/nrd1331 15031735
    [Google Scholar]
  46. BarmaniaF. PepperM.S. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection.Appl. Transl. Genomics20132131610.1016/j.atg.2013.05.004 27942440
    [Google Scholar]
  47. VeljkovicN. VucicevicJ. TassiniS. GlisicS. VeljkovicV. RadiM. Preclinical discovery and development of maraviroc for the treatment of HIV.Expert Opin. Drug Discov.201510667168410.1517/17460441.2015.1041497 25927601
    [Google Scholar]
  48. MeanwellN.A. KrystalM.R. Nowicka-SansB. Inhibitors of HIV-1 attachment: The discovery and development of temsavir and its prodrug fostemsavir.J. Med. Chem.2018611628010.1021/acs.jmedchem.7b01337 29271653
    [Google Scholar]
  49. WangT. KadowJ.F. MeanwellN.A. Innovation in the discovery of the HIV-1 attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir.Med. Chem. Res.202130111955198010.1007/s00044‑021‑02787‑6 34602806
    [Google Scholar]
  50. MarkhamA. Ibalizumab: First global approval.Drugs201878778178510.1007/s40265‑018‑0907‑5 29675744
    [Google Scholar]
  51. ShermanE.M. WorleyM.V. UngerN.R. GauthierT.P. SchaferJ.J. Cobicistat: Review of a pharmacokinetic enhancer for HIV infection.Clin. Ther.20153791876189310.1016/j.clinthera.2015.07.022 26319088
    [Google Scholar]
  52. Guidance for industry human immunodeficiency virus-1 infection : Developing antiretroviral drugs for treatment guidance for industry human immunodeficiency virus-1 infection : Developing antiretroviral drugs for treatment.Fda2013June113
    [Google Scholar]
  53. Menéndez-AriasL. DelgadoR. Update and latest advances in antiretroviral therapy.Trends Pharmacol. Sci.2022431162910.1016/j.tips.2021.10.004 34742581
    [Google Scholar]
  54. SmithD.B. MartinJ.A. KlumppK. Design, synthesis, and antiviral properties of 4′-substituted ribonucleosides as inhibitors of hepatitis C virus replication: The discovery of R1479.Bioorg. Med. Chem. Lett.20071792570257610.1016/j.bmcl.2007.02.004 17317178
    [Google Scholar]
  55. SangY. PannecouqueC. De ClercqE. ZhuangC. ChenF. Chemical space exploration of novel naphthyl-carboxamide-diarylpyrimidine derivatives with potent anti-HIV-1 activity.Bioorg. Chem.2021111January10490510.1016/j.bioorg.2021.104905 33895602
    [Google Scholar]
  56. SharmaS. AnitaK. ShaikB. AgrawalV.K. In silico modeling of some HEPT analogues as anti -HIV agents using QSAR and molecular docking studies.Mater. Today Proc.2021471942195110.1016/j.matpr.2021.03.716
    [Google Scholar]
  57. KhodairA.I. El-BarbaryA.A. ImamD.R. KhederN.A. ElmalkiF. Ben HaddaT. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds.Carbohydr. Res.2021500January10824610.1016/j.carres.2021.108246 33516074
    [Google Scholar]
  58. GawaliR. Design, synthesis, in vitro and in silico studies of novel 4-oxoquinoline ribonucleoside derivatives as HIV-1 reverse transcriptase inhibitors.Eur. J. Med. Chem.202019411225510.1016/j.ejmech.2020.112255
    [Google Scholar]
  59. GawaliR. TrivediJ. BhansaliS. BhosaleR. SarkarD. MitraD. Design, synthesis, docking studies and biological screening of 2-thiazolyl substituted -2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines as potent HIV-1 reverse transcriptase inhibitors.Eur. J. Med. Chem.201815731031910.1016/j.ejmech.2018.07.067 30099253
    [Google Scholar]
  60. VasilyevaS.V. ShtilA.A. PetrovaA.S. Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: Synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity.Bioorg. Med. Chem.20172551696170210.1016/j.bmc.2017.01.038 28169081
    [Google Scholar]
  61. KolodziejK. RomanowskaJ. StawinskiJ. Aryl H-phosphonates 18. Synthesis, properties, and biological activity of 2′,3′-dideoxynucleoside (N-heteroaryl)phosphoramidates of increased lipophilicity.Eur. J. Med. Chem.2015100778810.1016/j.ejmech.2015.06.004 26071860
    [Google Scholar]
  62. KubotaY. KanedaY. HaraguchiK. Synthesis of novel 4′-C-methyl-1′,3′-dioxolane pyrimidine nucleosides and evaluation of its anti-HIV-1 activity.Tetrahedron20136951108841089210.1016/j.tet.2013.10.075
    [Google Scholar]
  63. HuangB. KangD. TianY. Design, synthesis, and biological evaluation of piperidinyl‐substituted [1,2,4]triazolo[1,5‐a]pyrimidine derivatives as potential anti‐HIV‐1 agents with reduced cytotoxicity.Chem. Biol. Drug Des.2021971677610.1111/cbdd.13760 32725669
    [Google Scholar]
  64. WuJ. YuW. FuL. Design, synthesis, and biological evaluation of new 2′-deoxy-2′-fluoro-4′-triazole cytidine nucleosides as potent antiviral agents.Eur. J. Med. Chem.20136373974510.1016/j.ejmech.2013.02.042 23570720
    [Google Scholar]
  65. LiC. MaC. ZhangJ. Design and synthesis of novel distamycin-modified nucleoside analogues as HIV-1 reverse transcriptase inhibitors.Antiviral Res.2014102546010.1016/j.antiviral.2013.12.002 24342709
    [Google Scholar]
  66. BhakatS. VipperlaB. Designing and computational study of some novel lamivudine analogues as potential HIV-1 reverse transcriptase inhibitors: Analysis of the binding interactions using QSAR, molecular docking and molecular dynamics simulation study.Int. J. Pharm. Pharm. Sci.201351367373
    [Google Scholar]
  67. WangQ. HuW. WangS. Synthesis of new 2′-deoxy-2′-fluoro-4′-azido nucleoside analogues as potent anti-HIV agents.Eur. J. Med. Chem.20114694178418310.1016/j.ejmech.2011.06.020 21745701
    [Google Scholar]
  68. SinghR.K. YadavD. RaiD. KumariG. PannecouqueC. De ClercqE. Synthesis, structure–activity relationship and antiviral activity of 3′-N,N-dimethylamino-2′,3′-dideoxythymidine and its prodrugs.Eur. J. Med. Chem.20104593787379310.1016/j.ejmech.2010.05.028 20538384
    [Google Scholar]
  69. RavettiS. GualdesiM.S. Trinchero-HernándezJ.S. TurkG. BriñónM.C. Synthesis and anti-HIV activity of novel 2′,3′-dideoxy-3′-thiacytidine prodrugs.Bioorg. Med. Chem.200917176407641310.1016/j.bmc.2009.07.032 19660957
    [Google Scholar]
  70. JõgiA. PajuA. PehkT. KailasT. MüüriseppA.M. LoppM. Synthesis of 4′-aryl-2′,3′-dideoxynucleoside analogues.Tetrahedron200965152959296510.1016/j.tet.2009.02.010
    [Google Scholar]
  71. HamannM. PierraC. SommadossiJ.P. Synthesis and antiviral evaluation of thieno[3,4-d]pyrimidine C-nucleoside analogues of 2′,3′-dideoxy- and 2′,3′-dideoxy-2′,3′-didehydro-adenosine and -inosine.Bioorg. Med. Chem.20091762321232610.1016/j.bmc.2009.02.011 19254848
    [Google Scholar]
  72. JeongL.S. ChoiY.N. ToshD.K. ChoiW.J. KimH.O. ChoiJ. Design and synthesis of novel 2′,3′-dideoxy-4′-selenonucleosides as potential antiviral agents.Bioorg. Med. Chem.200816239891989710.1016/j.bmc.2008.10.034 18977147
    [Google Scholar]
  73. AljarahM. CouturierS. MathéC. PérigaudC. Synthesis of 3′-deoxy-3′-C-methyl nucleoside derivatives.Bioorg. Med. Chem.200816157436744210.1016/j.bmc.2008.06.011 18579389
    [Google Scholar]
  74. YekelerH. Preferred conformations of some pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs).J. Mol. Struct. THEOCHEM20046841-322323010.1016/j.theochem.2004.06.036
    [Google Scholar]
  75. BeadleJ.R. AldernK.A. ZhangX.Q. ValiaevaN. HostetlerK.Y. SchooleyR.T. Octadecyloxyethyl benzyl tenofovir: A novel tenofovir diester provides sustained intracellular levels of tenofovir diphosphate.Antiviral Res.2019171June10461410.1016/j.antiviral.2019.104614 31550449
    [Google Scholar]
  76. HoughtonS.R. MeltonJ. FortunakJ. Brown RipinD.H. BoddyC.N. Rapid, mild method for phosphonate diester hydrolysis: development of a one-pot synthesis of tenofovir disoproxil fumarate from tenofovir diethyl ester.Tetrahedron201066418137814410.1016/j.tet.2010.08.037
    [Google Scholar]
  77. JiangX. HuangB. RumrillS. Discovery of diarylpyrimidine derivatives bearing piperazine sulfonyl as potent HIV-1 nonnucleoside reverse transcriptase inhibitors.Commun. Chem.2023618310.1038/s42004‑023‑00888‑4 37120482
    [Google Scholar]
  78. GaoP. SongS. WangZ. Design, synthesis and anti-HIV evaluation of novel 5-substituted diarylpyrimidine derivatives as potent HIV-1 NNRTIs.Bioorg. Med. Chem.202140February11619510.1016/j.bmc.2021.116195 33979774
    [Google Scholar]
  79. ZhangT. ZhouZ. ZalloumW.A. Design, synthesis, and antiviral evaluation of novel piperidine-substituted arylpyrimidines as HIV-1 NNRTIs by exploring the hydrophobic channel of NNIBP.Bioorg. Chem.2021116September10535310.1016/j.bioorg.2021.105353 34536931
    [Google Scholar]
  80. XuS. Indolylarylsulfones bearing phenylboronic acid and phenylboronate ester functionalities as potent HIV 1 non-nucleoside reverse transcriptase inhibitors.Bioorg. Med. Chem.20225311653110.1016/j.bmc.2021.116531
    [Google Scholar]
  81. ChenY. TianY. GaoY. In silico design of novel HIV-1 NNRTIs based on combined modeling studies of dihydrofuro[3,4-d]pyrimidines.Front Chem.20208March16410.3389/fchem.2020.00164 32266208
    [Google Scholar]
  82. SrivastavaR. GuptaS.K. NaazF. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV.Comput. Biol. Chem.202089June10740010.1016/j.compbiolchem.2020.107400 33068917
    [Google Scholar]
  83. SinghV.K. SrivastavaR. GuptaP.S.S. Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: Design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations.J. Biomol. Struct. Dyn.20213972430244610.1080/07391102.2020.1748111 32216610
    [Google Scholar]
  84. LiY.M. LuoR.H. YangL.M. Design, synthesis and anti-HIV evaluation of 5-alkyl- 6-(benzo[d][1,3]dioxol-5-alkyl)-2-mercaptopyrimidin-4(3H)-ones as potent HIV-1 NNRTIs.Bioorg. Chem.202010210404110.1016/j.bioorg.2020.104041 32683184
    [Google Scholar]
  85. XiaoT. TangJ.F. MengG. Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities.Eur. J. Med. Chem.202018611186410.1016/j.ejmech.2019.111864 31767136
    [Google Scholar]
  86. HanS. SangY. WuY. Fragment hopping-based discovery of novel sulfinylacetamide-diarylpyrimidines (DAPYs) as HIV-1 nonnucleoside reverse transcriptase inhibitors.Eur. J. Med. Chem.202018511187410.1016/j.ejmech.2019.111874 31735575
    [Google Scholar]
  87. FabianL. Taverna PorroM. GómezN. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme.Eur. J. Med. Chem.202018811198710.1016/j.ejmech.2019.111987 31893549
    [Google Scholar]
  88. RaufA. KashifM.K. SaeedB.A. Al-MasoudiN.A. HameedS. Synthesis, anti-HIV activity, molecular modeling study and QSAR of new designed 2-(2-arylidenehydrazinyl)-4-arylthiazoles.J. Mol. Struct.2019119812686610.1016/j.molstruc.2019.07.113
    [Google Scholar]
  89. JinK. LiuM. ZhuangC. Improving the positional adaptability: Structure-based design of biphenyl-substituted diaryltriazines as novel non-nucleoside HIV-1 reverse transcriptase inhibitors.Acta Pharm. Sin. B202010234435710.1016/j.apsb.2019.09.007 32082978
    [Google Scholar]
  90. El-HussienyM. El-SayedN.F. EwiesE.F. IbrahimN.M. MahranM.R.H. FouadM.A. Synthesis, molecular docking and biological evaluation of 2-(thiophen-2-yl)-1H-indoles as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.Bioorg. Chem.202095103521
    [Google Scholar]
  91. TianY. LiuZ. LiuJ. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus.Eur. J. Med. Chem.201815133935010.1016/j.ejmech.2018.03.059 29635166
    [Google Scholar]
  92. JinK. YinH. De ClercqE. PannecouqueC. MengG. ChenF. Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1.Eur. J. Med. Chem.201814572673410.1016/j.ejmech.2018.01.016 29353724
    [Google Scholar]
  93. HuangB. WangX. LiuX. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays.Bioorg. Med. Chem.201725164397440610.1016/j.bmc.2017.06.022 28659246
    [Google Scholar]
  94. MonforteA.M. De LucaL. BuemiM.R. AgharbaouiF.E. PannecouqueC. FerroS. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains.Bioorg. Med. Chem.201826366167410.1016/j.bmc.2017.12.033 29291935
    [Google Scholar]
  95. LuH.H. XueP. ZhuY.Y. Structural modifications of diarylpyrimidines (DAPYs) as HIV-1 NNRTIs: Synthesis, anti-HIV activities and SAR.Bioorg. Med. Chem.20172582491249710.1016/j.bmc.2017.03.009 28314514
    [Google Scholar]
  96. ZhangH. TianY. KangD. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization.Eur. J. Med. Chem.201713020922210.1016/j.ejmech.2017.02.047 28254696
    [Google Scholar]
  97. LiX. GaoP. HuangB. Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement.Eur. J. Med. Chem.201712619020110.1016/j.ejmech.2016.10.009 27750153
    [Google Scholar]
  98. ViiraB. SelyutinaA. García-SosaA.T. Design, discovery, modelling, synthesis, and biological evaluation of novel and small, low toxicity s-triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors.Bioorg. Med. Chem.201624112519252910.1016/j.bmc.2016.04.018 27108399
    [Google Scholar]
  99. PatelS.B. PatelB.D. PannecouqueC. BhattH.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives.Eur. J. Med. Chem.201611723024010.1016/j.ejmech.2016.04.019 27105027
    [Google Scholar]
  100. ChanderS. WangP. AshokP. YangL.M. ZhengY.T. MurugesanS. Rational design, synthesis, anti-HIV-1 RT and antimicrobial activity of novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one derivatives.Bioorg. Chem.201667758310.1016/j.bioorg.2016.05.009 27288643
    [Google Scholar]
  101. GuS.X. QiaoH. ZhuY.Y. A novel family of diarylpyrimidines (DAPYs) featuring a diatomic linker: Design, synthesis and anti-HIV activities.Bioorg. Med. Chem.201523206587659310.1016/j.bmc.2015.09.020 26385446
    [Google Scholar]
  102. YangS. PannecouqueC. DaelemansD. Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors.Eur. J. Med. Chem.20136513414310.1016/j.ejmech.2013.04.052 23707918
    [Google Scholar]
  103. TramutolaF. ArmentanoM.F. BertiF. New heteroaryl carbamates: Synthesis and biological screening in vitro and in mammalian cells of wild-type and mutant HIV-protease inhibitors.Bioorg. Med. Chem.20192791863187010.1016/j.bmc.2019.03.041 30922618
    [Google Scholar]
  104. GhoshA.K. WilliamsJ.N. HoR.Y. Design and synthesis of potent HIV-1 protease inhibitors containing bicyclic oxazolidinone scaffold as the P2 ligands: Structure–activity studies and biological and x-ray structural studies.J. Med. Chem.201861219722973710.1021/acs.jmedchem.8b01227 30354121
    [Google Scholar]
  105. BaiX. YangZ. ZhuM. Design and synthesis of potent HIV-1 protease inhibitors with (S)-tetrahydrofuran-tertiary amine-acetamide as P2−ligand: Structure−activity studies and biological evaluation.Eur. J. Med. Chem.2017137304410.1016/j.ejmech.2017.05.024 28554091
    [Google Scholar]
  106. GhoshA.K. BrindisiM. NyalapatlaP.R. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex.Bioorg. Med. Chem.201725195114512710.1016/j.bmc.2017.04.005 28434781
    [Google Scholar]
  107. MohammadiA.A. TaheriS. AmouzegarA. AhdenovR. HalvagarM.R. SadrA.S. Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease.J. Mol. Struct.2017113916617410.1016/j.molstruc.2017.03.029
    [Google Scholar]
  108. TongJ. WuY. BaiM. ZhanP. 3D-QSAR and molecular docking studies on HIV protease inhibitors.J. Mol. Struct.20171129172210.1016/j.molstruc.2016.09.052
    [Google Scholar]
  109. GangulyA.K. AlluriS.S. WangC-H. Structural optimization of cyclic sulfonamide based novel HIV-1 protease inhibitors to picomolar affinities guided by X-ray crystallographic analysis.Tetrahedron201470182894290410.1016/j.tet.2014.03.038
    [Google Scholar]
  110. BoniniC. ChiummientoL. Di BlasioN. Synthesis and biological evaluation of new simple indolic non peptidic HIV Protease inhibitors: The effect of different substitution patterns.Bioorg. Med. Chem.201422174792480210.1016/j.bmc.2014.06.055 25074848
    [Google Scholar]
  111. KhadraK.A. MizyedS. MarjiD. HaddadS.F. AshramM. FoudehA. Synthesis of novel p-tert-butylcalix[4]arene Schiff bases and their complexes with C60, potential HIV-Protease inhibitors.Spectrochim. Acta A Mol. Biomol. Spectrosc.2015136Pt C1869187410.1016/j.saa.2014.10.100 25467681
    [Google Scholar]
  112. SharmaM.C. Structural requirements of N -aryl-oxazolidinone-5-carboxamide derivatives for anti-HIV protease activity using molecular modelling techniques.J. Taibah Univ. Sci.20148211112310.1016/j.jtusci.2013.10.001
    [Google Scholar]
  113. IbrahimTS BokhtiaRM AL-Mahmoudy AMM, et al. Design, synthesis and biological evaluation of novel 5-((substituted quinolin-3-yl/1-naphthyl) methylene)-3-substituted imidazolidin-2,4-dione as HIV-1 fusion inhibitors.Bioorg. Chem.20209910378210.1016/j.bioorg.2020.103782 32229348
    [Google Scholar]
  114. CurreliF. AhmedS. Benedict VictorS.M. Design, synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors.Bioorg. Med. Chem.20213211600010.1016/j.bmc.2021.116000 33461144
    [Google Scholar]
  115. SunY. XuW. FanN. Design, synthesis and biological evaluation of (E)-3,4-dihydroxystyryl 4-acylaminophenethyl sulfone, sulfoxide derivatives as dual inhibitors of HIV-1 CCR5 and integrase.Bioorg. Med. Chem.20172531076108410.1016/j.bmc.2016.12.035 28082070
    [Google Scholar]
  116. HdoufaneI. StoychevaJ. TadjerA. QSAR and molecular docking studies of indole-based analogs as HIV-1 attachment inhibitors.J. Mol. Struct.2019119342944310.1016/j.molstruc.2019.05.056
    [Google Scholar]
  117. SunL. HuangT. DickA. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities.Eur. J. Med. Chem.202019011208510.1016/j.ejmech.2020.112085 32066010
    [Google Scholar]
  118. ZhaoY. ChenC.H. Morris-NatschkeS.L. LeeK.H. Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors.Eur. J. Med. Chem.202121511328710.1016/j.ejmech.2021.113287 33639343
    [Google Scholar]
  119. PęcakP. OrzechowskaB. ChrobakE. BoryczkaS. Novel betulin dicarboxylic acid ester derivatives as potent antiviral agents: Design, synthesis, biological evaluation, structure-activity relationship and in silico study.Eur. J. Med. Chem.202122511373810.1016/j.ejmech.2021.113738 34425312
    [Google Scholar]
  120. LiangT. ZhangX. LaiF. A novel bromodomain inhibitor, CPI-203, serves as an HIV-1 latency-reversing agent by activating positive transcription elongation factor b.Biochem. Pharmacol.2019164April23725110.1016/j.bcp.2019.04.005 30991051
    [Google Scholar]
  121. TrivediJ. ParveenA. RozyF. Discovery of 2-isoxazol-3-yl-acetamide analogues as heat shock protein 90 (HSP90) inhibitors with significant anti-HIV activity.Eur. J. Med. Chem.201918311169910.1016/j.ejmech.2019.111699 31561045
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265290911240611072422
Loading
/content/journals/iddt/10.2174/0118715265290911240611072422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test