Skip to content
2000
Volume 2, Issue 1
  • ISSN: 1567-2042
  • E-ISSN:

Abstract

Thrombosis is the collective term for diseases caused by the localized accumulation of circulating blood elements within the vasculature that result in vessel occlusion. Conventional antithrombotic drugs target the coagulation pathways (e.g., heparins, warfarin, ximelagatran), platelet-dependent mechanisms (e.g., clopidogrel), or thrombi in situ (e.g., streptokinase). While marketed anticoagulants are very efficacious, they can paralyze hemostasis, which is a potentially fatal condition when left untreated. Accordingly, anticoagulants are only rarely used at fully or markedly efficacious doses, e.g., high dose heparin, for short periods of time in closely watched clinical situations. Ideally, new targets for therapy would lead to the development of agents that are specific for thrombusforming mechanisms without compromising hemostasis. However, our understanding of the molecular, cellular, and physical interactions that differentiate thrombosis vs. hemostasis is limited. Even in the absence of thrombosis-specific, targeting, new drugs should preferentially inhibit the thrombotic process at doses that are relatively safe. The symptomatology of hemostatic pathway alterations can serve as basis for rational target selection. Hemostatic disorders that are compatible with human life and potentially protective against thrombosis provide useful guidance for new pharmacologic strategies. Additionally, theoretical considerations and experimental data suggest that new strategies for antithrombotic therapy might include: 1) inhibition of intrinsic coagulation pathway activity, 2) reduction of circulating platelet count, 3) inhibition of platelet protease activated receptor-4, or 4) enhancement of endogenous protein C or thrombolytic pathways might safely improve antithrombotic therapy.

Loading

Article metrics loading...

/content/journals/fmc/10.2174/1567204052931078
2005-01-01
2024-11-27
Loading full text...

Full text loading...

/content/journals/fmc/10.2174/1567204052931078
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test