Skip to content
2000
image of The Characteristics of Respiratory Compensation Strategy and Its Application Equipment Analysis

Abstract

Background

Thoracic and abdominal tumors seriously endanger people's health. In the process of accurate diagnosis and treatment, due to the existence of respiratory motion, the location of the tumor will change. to solve this problem, many experts and scholars have proposed a variety of respiratory compensation strategies. However, there is a lack of comprehensive introduction and analysis of various respiratory compensation strategies.

Objective

According to the characteristics of respiratory compensation, this paper discusses its development status and development trend, and puts forward reasonable suggestions for its future development, to provide a reference for other researchers.

Methods

Through the analysis of a large number of articles and patents. Classification, advantages and disadvantages, and main application equipment of the existing respiratory compensation strategies are introduced. Application principle, influencing factors, main application equipment, and compensation accuracy of breath holding method, abdominal pressure method, active respiratory control method, respiratory gating method and tumor real-time tracking method were compared and analyzed.

Results

Through the comparison and analysis of various respiratory compensation strategies, the characteristics, applicable conditions, and existing problems of various respiratory compensation strategies are clarified. The solutions to the existing problems are put forward, and the development trend of respiratory compensation strategies is prospected.

Conclusion

Respiratory compensation strategy plays an important role in the diagnosis and treatment of thoracic and abdominal tumors. Various existing respiratory compensation strategies can effectively compensate for respiratory movement, but they all face the problem of insufficient compensation accuracy. Therefore, it is necessary to study and improve the respiratory compensation strategy. In the future, respiratory compensation strategies will develop in the direction of better effect and more comfortable for patients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121334626241201164913
2025-01-07
2025-07-04
The full text of this item is not currently available.

References

  1. Su C.C. Chen B.S. Chen H.H. Sung W.W. Wang C.C. Tsai M.C. Improved trends in the mortality-to-incidence ratios for liver cancer in countries with high development index and health expenditures. Healthcare 2023 11 2 159 10.3390/healthcare11020159 36673528
    [Google Scholar]
  2. Nofal S. Niu J. Resong P. Jin J. Merriman K.W. Le X. Katki H. Heymach J. Antonoff M.B. Ostrin E. Wu J. Zhang J. Toumazis I. Personal history of cancer as a risk factor for second primary lung cancer: Implications for lung cancer screening. Cancer Med. 2024 13 5 e7069 10.1002/cam4.7069 38466021
    [Google Scholar]
  3. Schiza A. Fredriksson I. Sund M. Valachis A. De novo metastatic breast cancer in men vs women: A Swedish population-based cohort study. JNCI Cancer Spectr. 2023 7 4 pkad050 10.1093/jncics/pkad050 37490458
    [Google Scholar]
  4. Ramai D. Smith E.R. Wang Y. Huang Y. Obaitan I. Chandan S. Dhindsa B. Papaefthymiou A. Morris J.D. Epidemiology and socioeconomic impact of pancreatic cancer: An Analysis of the Global Burden of Disease Study 1990–2019. Dig. Dis. Sci. 2024 69 4 1135 1142 10.1007/s10620‑024‑08292‑1 38383939
    [Google Scholar]
  5. Raghavan D. Wheeler M. Doege D. Doty J.D. II Levy H. Dungan K.A. Davis L.M. Robinson J.M. Kim E.S. Mileham K.F. Oliver J. Carrizosa D. Initial results from mobile low-dose computerized tomographic lung cancer screening unit: Improved outcomes for underserved populations. Oncologist 2020 25 5 e777 e781 10.1634/theoncologist.2019‑0802 31771991
    [Google Scholar]
  6. Huang H. Luo W. Ni Y. Sun S. Wang C. Zhang L. The diagnostic efficiency of seven autoantibodies in lung cancer. Eur. J. Cancer Prev. 2020 29 4 315 320 10.1097/CEJ.0000000000000559 31764214
    [Google Scholar]
  7. Ji P. Diederichs S. Wang W. Böing S. Metzger R. Schneider P.M. Tidow N. Brandt B. Buerger H. Bulk E. Thomas M. Berdel W.E. Serve H. Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003 22 39 8031 8041 10.1038/sj.onc.1206928 12970751
    [Google Scholar]
  8. Mittauer K. Paliwal B. Hill P. Bayouth J.E. Geurts M.W. Baschnagel A.M. Bradley K.A. Harari P.M. Rosenberg S. Brower J.V. Wojcieszynski A.P. Hullett C. Bayliss R.A. Labby Z.E. Bassetti M.F. A new era of image guidance with magnetic resonance-guided radiation therapy for abdominal and thoracic malignancies. Cureus 2018 10 4 e2422 10.7759/cureus.2422 29872602
    [Google Scholar]
  9. Chung C. Kim Y. Park D. Transthoracic needle biopsy: How to maximize diagnostic accuracy and minimize complications. Tuberc Respir Dis 2020 83 Suppl 1 S17 S24 10.4046/trd.2020.0156
    [Google Scholar]
  10. Chen W. Chiang C.L. Dawson L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol. 2021 10 1 9 10.21037/cco‑20‑89 32576017
    [Google Scholar]
  11. Lassandro G. Picchi S.G. Corvino A. Gurgitano M. Carrafiello G. Lassandro F. Ablation of pulmonary neoplasms: review of literature and future perspectives. Pol. J. Radiol. 2023 88 216 224 10.5114/pjr.2023.127062 37234463
    [Google Scholar]
  12. Frutos Díaz-Alejo J. González Gómez I. Earl J. Ultrasounds in cancer therapy: A summary of their use and unexplored potential. Oncol. Rev. 2022 16 1 531 10.4081/oncol.2022.531 35340884
    [Google Scholar]
  13. Yu Z.H. Lin S.H. Balter P. Zhang L. Dong L. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers. Radiother. Oncol. 2012 104 1 33 38 10.1016/j.radonc.2012.04.010 22677039
    [Google Scholar]
  14. Morton N. O’Brien R. Keall P. Reynolds T. System requirements to improve adaptive 4-dimensional computed tomography (4D CT) imaging. Biomed. Phys. Eng. Express 2022 8 6 065017 10.1088/2057‑1976/ac9849 36206724
    [Google Scholar]
  15. Balter J.M. Ten Haken R.K. Lawrence T.S. Lam K.L. Robertson J.M. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int. J. Radiat. Oncol. Biol. Phys. 1996 36 1 167 174 10.1016/S0360‑3016(96)00275‑1 8823272
    [Google Scholar]
  16. Nehmeh S.A. Erdi Y.E. Pan T. Pevsner A. Rosenzweig K.E. Yorke E. Mageras G.S. Schoder H. Vernon P. Squire O. Mostafavi H. Larson S.M. Humm J.L. Four-dimensional (4D) PET/CT imaging of the thorax. Med. Phys. 2004 31 12 3179 3186 10.1118/1.1809778 15651600
    [Google Scholar]
  17. Bae B.K. Kim S.J. Kim J.C. Effects of respiratory motion on accurate four-dimensional computed tomography acquisition and plan delivery for lung stereotactic body radiation therapy. J. Korean Phys. Soc. 2024 84 4 323 334 10.1007/s40042‑023‑00986‑5
    [Google Scholar]
  18. Radmilović-Radjenović M. Sabo M. Prnova M. Šoltes L. Radjenović B. Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers 2021 13 14 3500 10.3390/cancers13143500 34298714
    [Google Scholar]
  19. Abhilash R.H. Chauhan S. Respiration-induced movement correlation for synchronous noninvasive renal cancer surgery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012 59 7 1478 1486 10.1109/TUFFC.2012.2348 22828843
    [Google Scholar]
  20. Giraud P. De Rycke Y. Dubray B. Helfre S. Voican D. Guo L. Rosenwald J.C. Keraudy K. Housset M. Touboul E. Cosset J.M. Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. Int. J. Radiat. Oncol. Biol. Phys. 2001 51 4 1081 1092 10.1016/S0360‑3016(01)01766‑7 11704333
    [Google Scholar]
  21. Wu V.W.C. Ng A.P.L. Cheung E.K.W. Intrafractional motion management in external beam radiotherapy. J. XRay Sci. Technol. 2020 27 6 1071 1086 10.3233/XST‑180472 31476194
    [Google Scholar]
  22. Guo B. Stephans K. Woody N. Antolak A. Moazzezi M. Xia P. Online verification of breath-hold reproducibility using kV-triggered imaging for liver stereotactic body radiation therapy. J. Appl. Clin. Med. Phys. 2023 24 9 e14045 10.1002/acm2.14045 37211920
    [Google Scholar]
  23. Chairmadurai A. Goel H.C. Jain S.K. Kumar P. Radiobiological analysis of stereotactic body radiation therapy for an evidence-based planning target volume of the lung using multiphase CT images obtained with a pneumatic abdominal compression apparatus: A case study. Radiological Phys. Technol. 2017 10 4 525 534 10.1007/s12194‑017‑0431‑4 29128934
    [Google Scholar]
  24. Farrugia B. Knight K. Wright C. Tacey M. Foroudi F. Chao M. Khor R. A prospective trial demonstrating the benefit of personalized selection of breath-hold technique for upper-abdominal radiation therapy using the active breathing coordinator. Int. J. Radiat. Oncol. Biol. Phys. 2021 111 5 1289 1297 10.1016/j.ijrobp.2021.08.001 34384855
    [Google Scholar]
  25. Huijskens S. Granton P. Fremeijer K. van Wanrooij C. Offereins-van Harten K. Schouwenaars-van den Beemd S. Hoogeman M.S. Sattler M.G.A. Penninkhof J. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother. Oncol. 2024 195 110229 10.1016/j.radonc.2024.110229 38492672
    [Google Scholar]
  26. Liang Z. Zhang M. Shi C. Huang Z.R. Real-time respiratory motion prediction using photonic reservoir computing. Sci. Rep. 2023 13 1 5718 10.1038/s41598‑023‑31296‑2 37029184
    [Google Scholar]
  27. Mast M. Kouwenhoven E. Roos J. van Geen S. van Egmond J. van Santvoort J. de Boer L. Florijn M. Kalidien Y. Nobel N. Rovers L. van der Togt W. de Vet S. van der Voort van Zyp N. Wenmakers F. van Wingerden J. Ceha H. Two years’ experience with inspiration breath-hold in liver SBRT. Technical Innovations & Patient Support in Radiation Oncology 2018 7 1 5 10.1016/j.tipsro.2018.04.001 32095574
    [Google Scholar]
  28. Naumann P. Batista V. Farnia B. Fischer J. Liermann J. Tonndorf-Martini E. Rhein B. Debus J. Feasibility of optical surface-guidance for position verification and monitoring of stereotactic body radiotherapy in deep-inspiration breath-hold. Front. Oncol. 2020 10 573279 10.3389/fonc.2020.573279 33102232
    [Google Scholar]
  29. Lens E. Gurney-Champion O.J. Tekelenburg D.R. van Kesteren Z. Parkes M.J. van Tienhoven G. Nederveen A.J. van der Horst A. Bel A. Abdominal organ motion during inhalation and exhalation breath-holds: Pancreatic motion at different lung volumes compared. Radiother. Oncol. 2016 121 2 268 275 10.1016/j.radonc.2016.09.012 27773445
    [Google Scholar]
  30. Turna M. Küçükmorkoç E. Rzazade R. Doğu Canoğlu M. Küçük N. Caglar H.B. Feasibility and tolerability of breath-hold in liver stereotactic body radiotherapy with surface guided radiotherapy. Technical Innovations & Patient Support in Radiation Oncology 2023 28 100223 10.1016/j.tipsro.2023.100223 38090532
    [Google Scholar]
  31. Kubas A. Chapet O. Merle P. Lorchel F. d’Hombres A. Mornex F. Dosimetric impact of breath-hold in the treatment of hepatocellular carcinoma by conformal radiation therapy. Cancer Radiother. 2009 13 1 24 29 10.1016/j.canrad.2008.09.011 19071051
    [Google Scholar]
  32. Murphy M.J. Martin D. Whyte R. Hai J. Ozhasoglu C. Le Q.T. The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2002 53 2 475 482 10.1016/S0360‑3016(01)02822‑X 12023152
    [Google Scholar]
  33. Barnes E.A. Murray B.R. Robinson D.M. Underwood L.J. Hanson J. Roa W.H.Y. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int. J. Radiat. Oncol. Biol. Phys. 2001 50 4 1091 1098 10.1016/S0360‑3016(01)01592‑9 11429237
    [Google Scholar]
  34. Eccles C. Brock K.K. Bissonnette J.P. Hawkins M. Dawson L.A. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006 64 3 751 759 10.1016/j.ijrobp.2005.05.066 16458774
    [Google Scholar]
  35. Kim A. Kalet A.M. Cao N. Hippe D.S. Fang L.C. Young L. Meyer J. Lang E.V. Mayr N.A. Effects of preparatory coaching and home practice for deep inspiration breath hold on cardiac dose for left breast radiation therapy. Clin. Oncol. (R. Coll. Radiol.) 2018 30 9 571 577 10.1016/j.clon.2018.04.009 29773446
    [Google Scholar]
  36. Huang T.J. Tien Y. Wu J.K. Huang W.T. Cheng J.C.H. Impact of breath-hold level on positional error aligned by stent/Lipiodol in Hepatobiliary radiotherapy with breath-hold respiratory control. BMC Cancer 2020 20 1 613 10.1186/s12885‑020‑07082‑y 32611378
    [Google Scholar]
  37. Onishi H. Kawakami H. Marino K. Komiyama T. Kuriyama K. Araya M. Saito R. Aoki S. Araki T. A simple respiratory indicator for irradiation during voluntary breath holding: A one-touch device without electronic materials. Radiology 2010 255 3 917 923 10.1148/radiol.10090890 20501729
    [Google Scholar]
  38. Busch S.A. Bruce C.D. Skow R.J. Pfoh J.R. Day T.A. Davenport M.H. Steinback C.D. Mechanisms of sympathetic regulation during Apnea. Physiol. Rep. 2019 7 2 e13991 10.14814/phy2.13991 30693670
    [Google Scholar]
  39. Campbell W.G. Jones B.L. Schefter T. Goodman K.A. Miften M. An evaluation of motion mitigation techniques for pancreatic SBRT. Radiother. Oncol. 2017 124 1 168 173 10.1016/j.radonc.2017.05.013 28571887
    [Google Scholar]
  40. Heinzerling J.H. Anderson J.F. Papiez L. Boike T. Chien S. Zhang G. Abdulrahman R. Timmerman R. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int. J. Radiat. Oncol. Biol. Phys. 2008 70 5 1571 1578 10.1016/j.ijrobp.2007.12.023 18374231
    [Google Scholar]
  41. Eccles C.L. Dawson L.A. Moseley J.L. Brock K.K. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int. J. Radiat. Oncol. Biol. Phys. 2011 80 3 938 946 10.1016/j.ijrobp.2010.08.003 20947263
    [Google Scholar]
  42. Wunderink W. Méndez Romero A. de Kruijf W. de Boer H. Levendag P. Heijmen B. Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. Int. J. Radiat. Oncol. Biol. Phys. 2008 71 3 907 915 10.1016/j.ijrobp.2008.03.010 18514783
    [Google Scholar]
  43. Mampuya W.A. Nakamura M. Matsuo Y. Ueki N. Iizuka Y. Fujimoto T. Yano S. Monzen H. Mizowaki T. Hiraoka M. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy. Med. Phys. 2013 40 9 091718 10.1118/1.4819940 24007151
    [Google Scholar]
  44. Hu Y. Zhou Y.K. Chen Y.X. Shi S.M. Zeng Z.C. 4D-CT scans reveal reduced magnitude of respiratory liver motion achieved by different abdominal compression plate positions in patients with intrahepatic tumors undergoing helical tomotherapy. Med. Phys. 2016 43 7 4335 4341 10.1118/1.4953190 27370148
    [Google Scholar]
  45. Lovelock D.M. Zatcky J. Goodman K. Yamada Y. The effectiveness of a pneumatic compression belt in reducing respiratory motion of abdominal tumors in patients undergoing stereotactic body radiotherapy. Technol. Cancer Res. Treat. 2014 13 3 259 267 10.7785/tcrt.2012.500379 24206202
    [Google Scholar]
  46. Hu Y. Zhou Y.K. Chen Y.X. Zeng Z.C. Magnitude and influencing factors of respiration-induced liver motion during abdominal compression in patients with intrahepatic tumors. Radiat. Oncol. 2017 12 1 9 10.1186/s13014‑016‑0762‑z 28073377
    [Google Scholar]
  47. Li W. Konishi K. Ohira K. Hirata M. Wakabayashi K. Aramaki S. Sakamoto M. Nakamura K. Development of a novel airbag system of abdominal compression for reducing respiratory motion: Preliminary results in healthy volunteers. J. Radiat. Res. (Tokyo) 2022 63 4 699 705 10.1093/jrr/rrac019 35575580
    [Google Scholar]
  48. Li W. Ye X. Huang Y. Dong Y. Chen X. Yang Y. An integrated ultrasound imaging and abdominal compression device for respiratory motion management in radiation therapy. Med. Phys. 2022 49 10 6334 6345 10.1002/mp.15928 35950934
    [Google Scholar]
  49. Kim T.H. Kim S. Kim D.S. Kang S.H. Cho M.S. Kim K.H. Shin D.S. Suh T.S. Development of real time abdominal compression force monitoring and visual biofeedback system. Phys. Med. Biol. 2018 63 5 055014 10.1088/1361‑6560/aaac8b 29393063
    [Google Scholar]
  50. Cheng M.X. Apparatus and manufacturing method for managing thoracic and abdominal respiratory movements by abdominal compression. C.N. Patent 113,440,738 2021.
    [Google Scholar]
  51. Huang T.C. Wang Y.C. Chiou Y.R. Kao C.H. Respiratory motion reduction in PET/CT using abdominal compression for lung cancer patients. PLoS One 2014 9 5 e98033 10.1371/journal.pone.0098033 24837352
    [Google Scholar]
  52. Daly M. McWilliam A. Radhakrishna G. Choudhury A. Eccles C.L. Radiotherapy respiratory motion management in hepatobiliary and pancreatic malignancies: A systematic review of patient factors influencing effectiveness of motion reduction with abdominal compression. Acta Oncol. 2022 61 7 833 841 10.1080/0284186X.2022.2073186 35611555
    [Google Scholar]
  53. Lee S. Zheng Y. Podder T. Biswas T. Verma V. Goss M. Colonias A. Fuhrer R. Zhai Y. Parda D. Sohn J. Tumor localization accuracy for high-precision radiotherapy during active breath-hold. Radiother. Oncol. 2019 137 145 152 10.1016/j.radonc.2019.04.036 31103912
    [Google Scholar]
  54. Gagel B. Demirel C. Kientopf A. Pinkawa M. Piroth M. Stanzel S. Breuer C. Asadpour B. Jansen T. Holy R. Wildberger J.E. Eble M.J. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest. Int. J. Radiat. Oncol. Biol. Phys. 2007 67 3 742 749 10.1016/j.ijrobp.2006.09.052 17197133
    [Google Scholar]
  55. McNair H.A. Brock J. Symonds-Tayler J.R.N. Ashley S. Eagle S. Evans P.M. Kavanagh A. Panakis N. Brada M. Feasibility of the use of the Active Breathing Co ordinator™ (ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC). Radiother. Oncol. 2009 93 3 424 429 10.1016/j.radonc.2009.09.012 19854526
    [Google Scholar]
  56. Scotti V. Marrazzo L. Saieva C. Agresti B. Meattini I. Desideri I. Cecchini S. Bertocci S. Franzese C. De Luca Cardillo C. Zei G. Loi M. Greto D. Mangoni M. Bonomo P. Livi L. Biti G.P. Impact of a breathing-control system on target margins and normal-tissue sparing in the treatment of lung cancer: experience at the radiotherapy unit of Florence University. Radiol. Med. (Torino) 2014 119 1 13 19 10.1007/s11547‑013‑0307‑6 24234184
    [Google Scholar]
  57. Hui M.C.M. Chiu G. Wong S. Lien S.L. An analysis of the impact of different levels of inspiratory volume using active breathing control on the intrafraction motion and dose coverage of target volumes in patients undergoing thoracic radiotherapy. J. Med. Imaging Radiat. Sci. 2023 54 4 653 661 10.1016/j.jmir.2023.07.020 37620180
    [Google Scholar]
  58. Wong J.W. Sharpe M.B. Jaffray D.A. Kini V.R. Robertson J.M. Stromberg J.S. Martinez A.A. The use of active breathing control (ABC) to reduce margin for breathing motion. Int. J. Radiat. Oncol. Biol. Phys. 1999 44 4 911 919 10.1016/S0360‑3016(99)00056‑5 10386650
    [Google Scholar]
  59. Li C.Y. Zhu T. An active breathing control system. C.N. Patent 106,237,548 2016.
  60. Koshani R. Balter J.M. Hayman J.A. Henning G.T. van Herk M. Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). Int. J. Radiat. Oncol. Biol. Phys. 2006 65 5 1553 1559 10.1016/j.ijrobp.2006.04.027 16863932
    [Google Scholar]
  61. Guckenberger M. Kavanagh A. Webb S. Brada M. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept – A compromise between small safety margins and long duty cycles. Radiother. Oncol. 2011 98 3 317 322 10.1016/j.radonc.2011.01.008 21354640
    [Google Scholar]
  62. Mageras G. Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin. Radiat. Oncol. 2004 14 1 65 75 10.1053/j.semradonc.2003.10.009 14752734
    [Google Scholar]
  63. Zeng C. Li X. Lu W. Reyngold M. Gewanter R.M. Cuaron J.J. Yorke E. Li T. Accuracy and efficiency of respiratory gating comparable to deep inspiration breath hold for pancreatic cancer treatment. J. Appl. Clin. Med. Phys. 2021 22 1 218 225 10.1002/acm2.13137 33378792
    [Google Scholar]
  64. Furukawa T. Inaniwa T. Sato S. Shirai T. Mori S. Takeshita E. Mizushima K. Himukai T. Noda K. Moving target irradiation with fast rescanning and gating in particle therapy. Med. Phys. 2010 37 9 4874 4879 10.1118/1.3481512 20964205
    [Google Scholar]
  65. Meyers S.M. Kisling K. Atwood T.F. Ray X. A standardized workflow for respiratory-gated motion management decision-making. J. Appl. Clin. Med. Phys. 2022 23 8 e13705 10.1002/acm2.13705 35737295
    [Google Scholar]
  66. Berson A.M. Emery R. Rodriguez L. Richards G.M. Ng T. Sanghavi S. Barsa J. Clinical experience using respiratory gated radiation therapy: Comparison of free-breathing and breath-hold techniques. Int. J. Radiat. Oncol. Biol. Phys. 2004 60 2 419 426 10.1016/j.ijrobp.2004.03.037 15380575
    [Google Scholar]
  67. Massaccesi M. Cusumano D. Boldrini L. Dinapoli N. Fionda B. Teodoli S. Azario L. Mattiucci G.C. Balducci M. Cellini F. Valentini V. A new frontier of image guidance: Organs at risk avoidance with MRI-guided respiratory-gated intensity modulated radiotherapy: Technical note and report of a case. J. Appl. Clin. Med. Phys. 2019 20 6 194 198 10.1002/acm2.12575 31055870
    [Google Scholar]
  68. Gut P. Krieger M. Lomax T. Weber D.C. Hrbacek J. Combining rescanning and gating for a time-efficient treatment of mobile tumors using pencil beam scanning proton therapy. Radiother. Oncol. 2021 160 82 89 10.1016/j.radonc.2021.03.041 33839206
    [Google Scholar]
  69. Ehrbar S. Perrin R. Peroni M. Bernatowicz K. Parkel T. Pytko I. Klöck S. Guckenberger M. Tanadini-Lang S. Weber D.C. Lomax A. Respiratory motion-management in stereotactic body radiation therapy for lung cancer – A dosimetric comparison in an anthropomorphic lung phantom (LuCa). Radiother. Oncol. 2016 121 2 328 334 10.1016/j.radonc.2016.10.011 27817945
    [Google Scholar]
  70. Pettersson N. Simpson D. Atwood T. Hattangadi-Gluth J. Murphy J. Cerviño L. Automatic patient positioning and gating window settings in respiratory-gated stereotactic body radiation therapy for pancreatic cancer using fluoroscopic imaging. J. Appl. Clin. Med. Phys. 2018 19 2 74 82 10.1002/acm2.12258 29377561
    [Google Scholar]
  71. McConnell K. Kirby N. Rasmussen K. Gutierrez A.N. Papanikolaou N. Stanley D. Variability of breast surface positioning using an active breathing coordinator for a deep inspiration breath hold technique. Cureus 2021 13 6 e15649 10.7759/cureus.15649 34306859
    [Google Scholar]
  72. Ostyn M. Weiss E. Rosu-Bubulac M. Respiratory cycle characterization and optimization of amplitude-based gating parameters for prone and supine lung cancer patients. Biomed. Phys. Eng. Express 2020 6 3 035002 10.1088/2057‑1976/ab779d 33438647
    [Google Scholar]
  73. Li X.A. Stepaniak C. Gore E. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med. Phys. 2006 33 1 145 154 10.1118/1.2147743 16485421
    [Google Scholar]
  74. Nasseri S. Farzaneh M.J.K. Momennezhad M. Salek R. Design and construction of a laser-based respiratory gating system for implementation of deep inspiration breathe hold technique in radiotherapy clinics. J. Med. Signals Sens. 2018 8 4 253 262 10.4103/jmss.JMSS_35_18 30603618
    [Google Scholar]
  75. Zhou H. Shen J. Li B. Chen J. Zhu X. Ge Y. Wang Y. Analysis of precision in tumor tracking based on optical positioning system during radiotherapy. J. XRay Sci. Technol. 2016 24 3 443 455 10.3233/XST‑160562 27257880
    [Google Scholar]
  76. Kini V.R. Vedam S.S. Keall P.J. Patil S. Chen C. Mohan R. Patient training in respiratory-gated radiotherapy. Med. Dosim. 2003 28 1 7 11 10.1016/S0958‑3947(02)00136‑X 12747612
    [Google Scholar]
  77. Otani Y. Fukuda I. Tsukamoto N. Kumazaki Y. Sekine H. Imabayashi E. Kawaguchi O. Nose T. Teshima T. Dokiya T. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy. Med. Phys. 2010 37 12 6178 6186 10.1118/1.3512798 21302774
    [Google Scholar]
  78. Bukhari W. Hong S-M. Real-time prediction and gating of respiratory motion using an extended Kalman filter and Gaussian process regression. Phys. Med. Biol. 2015 60 1 233 252 10.1088/0031‑9155/60/1/233 25489980
    [Google Scholar]
  79. Li L. A method and device for CT respiratory gating. C.N. Patent 115,624,345 2023.
  80. Zhang M. Cheng W.L. Li Y.T. A method and device for CT respiratory gating. C.N. Patent 113,971,659 2022.
  81. Grootjans W. Rietbergen D.D.D. van Velden F.H.P. Added value of respiratory gating in positron emission tomography for the clinical management of lung cancer patients. Semin. Nucl. Med. 2022 52 6 745 758 10.1053/j.semnuclmed.2022.04.006 35643531
    [Google Scholar]
  82. Kim J.S. Park C.R. Yoon S.H. Lee J.A. Kim T.Y. Yang H.J. Improvement of image quality using amplitude-based respiratory gating in PET-computed tomography scanning. Nucl. Med. Commun. 2021 42 5 553 565 10.1097/MNM.0000000000001368 33625179
    [Google Scholar]
  83. Chang Z. Liu T. Cai J. Chen Q. Wang Z. Yin F.F. Evaluation of integrated respiratory gating systems on a Novalis Tx system. J. Appl. Clin. Med. Phys. 2011 12 3 71 79 10.1120/jacmp.v12i3.3495 21844863
    [Google Scholar]
  84. Wiersma R.D. McCabe B.P. Belcher A.H. Jensen P.J. Smith B. Aydogan B. Technical Note: High temporal resolution characterization of gating response time. Med. Phys. 2016 43 6Part1 2802 2806 10.1118/1.4948500 27277028
    [Google Scholar]
  85. Dunn L. Kron T. Johnston P.N. McDermott L.N. Taylor M.L. Callahan J. Franich R.D. A programmable motion phantom for quality assurance of motion management in radiotherapy. Australas. Phys. Eng. Sci. Med. 2012 35 1 93 100 10.1007/s13246‑011‑0114‑0 22119931
    [Google Scholar]
  86. Seregni M. Pella A. Riboldi M. Orecchia R. Cerveri P. Baroni G. Real-time tumor tracking with an artificial neural networks-based method: A feasibility study. Phys. Med. 2013 29 1 48 59 10.1016/j.ejmp.2011.11.005 22209110
    [Google Scholar]
  87. Valentine K. Cabrera T. Roberge D. Implanting metal fiducials to guide stereotactic liver radiation: McGill experience and review of current devices, techniques and complications. Technol. Cancer Res. Treat. 2014 13 3 253 258 10.7785/tcrt.2012.500378 24066955
    [Google Scholar]
  88. Loh J. Baker K. Sridharan S. Greer P. Wratten C. Capp A. Gallagher S. Martin J. Infections after fiducial marker implantation for prostate radiotherapy: Are we underestimating the risks? Radiat. Oncol. 2015 10 1 38 10.1186/s13014‑015‑0347‑2 25890179
    [Google Scholar]
  89. Maiorano G. Mele E. Frassanito M.C. Restini E. Athanassiou A. Pompa P.P. Ultra-efficient, widely tunable gold nanoparticle-based fiducial markers for X-ray imaging. Nanoscale 2016 8 45 18921 18927 10.1039/C6NR07021C 27812579
    [Google Scholar]
  90. Goggin L.M. Descovich M. McGuinness C. Shiao S. Pouliot J. Park C. Dosimetric comparison between 3-dimensional conformal and robotic SBRT treatment plans for accelerated partial breast radiotherapy. Technol. Cancer Res. Treat. 2016 15 3 437 445 10.1177/1533034615601280 26335703
    [Google Scholar]
  91. Sun J. Zhang A. Li W. Wang Q. Wang J. Fan Y. Sun Y. Li D. Zhang D. Duan X. Cyberknife stereotactic body radiation therapy as an effective treatment for hepatocellular carcinoma patients with decompensated cirrhosis. Front. Oncol. 2020 10 100 10.3389/fonc.2020.00100 32158688
    [Google Scholar]
  92. Zheng L. Wu H. Yang L. Lao Y. Lin Q. Yang R. A novel respiratory follow-up robotic system for thoracic-abdominal puncture. IEEE Trans. Ind. Electron. 2021 68 3 2368 2378 10.1109/TIE.2020.2973893
    [Google Scholar]
  93. Ting L.L. Chuang H.C. Liao A.H. Kuo C.C. Yu H.W. Tsai H.C. Tien D.C. Jeng S.C. Chiou J.F. Tumor motion tracking based on a four-dimensional computed tomography respiratory motion model driven by an ultrasound tracking technique. Quant. Imaging Med. Surg. 2020 10 1 26 39 10.21037/qims.2019.09.02 31956526
    [Google Scholar]
  94. Özbek Y. Bárdosi Z. Freysinger W. respiTrack: Patient-specific real-time respiratory tumor motion prediction using magnetic tracking. Int. J. CARS 2020 15 6 953 962 10.1007/s11548‑020‑02174‑3 32347464
    [Google Scholar]
  95. Giżyńska M.K. Seppenwoolde Y. Kilby W. Heijmen B.J.M. A novel external/internal tumor tracking approach to compensate for respiratory motion baseline drifts. Phys. Med. Biol. 2023 68 5 055017 10.1088/1361‑6560/acba79 36753764
    [Google Scholar]
  96. Huang P. Yu G. Lu H. Liu D. Xing L. Yin Y. Kovalchuk N. Xing L. Li D. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking. Med. Phys. 2019 46 5 2275 2285 10.1002/mp.13510 30912590
    [Google Scholar]
  97. Ting L.L. Guo M.L. Liao A.H. Cheng S.T. Yu H.W. Ramanathan S. Zhou H. Boominathan C.M. Jeng S.C. Chiou J.F. Kuo C.C. Chuang H.C. Development and evaluation of ultrasound image tracking technology based on Mask R-CNN applied to respiratory motion compensation system. Quant. Imaging Med. Surg. 2023 13 10 6827 6839 10.21037/qims‑23‑23 37869357
    [Google Scholar]
  98. Kuo C.C. Chuang H.C. Liao A.H. Yu H.W. Cai S.R. Tien D.C. Jeng S.C. Chiou J.F. Fast Fourier transform combined with phase leading compensator for respiratory motion compensation system. Quant. Imaging Med. Surg. 2020 10 5 907 920 10.21037/qims.2020.03.19 32489916
    [Google Scholar]
  99. Zhang Y. Gong C.F. Zheng W.H. Jian J.M. Wang S.B. Chen X. Ding S.G. Tumor tracking radiotherapy method and device based on deep learning. C.N. Patent 117,695,531 2024.
  100. Dai J.J. Liang X.K. Three-dimensional tumor real-time tracking method, device, computer equipment. C.N. Patent 116,664,627 2023.
/content/journals/eng/10.2174/0118722121334626241201164913
Loading
/content/journals/eng/10.2174/0118722121334626241201164913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test