Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

High-precision spindles are a vital study topic because of the growing demand for high-speed, high-precision, reliable, and long-lasting machine tools. Bearing preload is the primary means of improving the accuracy of the spindle rotor system. This patent study aims to summarize the research results, systematically analyze and evaluate the machine tool motorized spindle variable pressure preload technology, and provide a scientific basis for the practical application of the motor spindle variable pressure preload technology. This study is an in-depth analysis of the basic principles of the electric spindle preloading technology, the study of its influence mechanism on the thermal deformation, stiffness, slewing error, and life of the spindle system, and a discussion of the current shortcomings in the field of spindle preloading to provide a reference for the subsequent optimization. In the spindle system, the performance of rolling bearings and the design of bearing preload have an important impact on the spindle's accuracy and stability. The traditional preload method has yet to meet the requirements of modern high-speed machine tools. Real-time controllable preload has become the new direction of development, but the current preload technology still has certain limitations and needs to be further improved. In the future, the spindle bearing variable pressure preload technology will be more efficient and intelligent.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121303527240730055548
2024-08-06
2025-07-10
Loading full text...

Full text loading...

References

  1. WeiX.J. WangH.J. XingJ.C. XuX.L. Research on CGA-SVR-based motorized spindle wear fault diagnosis method.Journal of Electronic Measurement and Instrumentation2022366107112
    [Google Scholar]
  2. MarcoB. PaoloA. MicheleM. A review of prognostics and health management of machine tools.Int. J. Adv. Manuf. Technol.2020107628432863
    [Google Scholar]
  3. WangL.P. ZhaoQ.Z. ZhangB.B. Accuracy of an electric spindle.Qinghua Daxue Xuebao. Ziran Kexue Ban2015588746751
    [Google Scholar]
  4. ChoiC.H. LeeC.M. A variable preload device using liquid pressure for machine tools spindles.Int. J. Precis. Eng. Manuf.20121361009101210.1007/s12541‑012‑0131‑2
    [Google Scholar]
  5. PatilR.B. KothavaleB.S. WaghmodeL.Y. Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data.Proc. Inst. Mech. Eng. O. J. Risk Reliab.2019233210511710.1177/1748006X18759124
    [Google Scholar]
  6. SunG.L. Development of reliability test bench for spindle bearing set with variable preload.M.S. thesis, Jilin University, China, 2023.
    [Google Scholar]
  7. OktavianaL. TongV.C. HongS.W. Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment.J. Mech. Sci. Technol.201933283784510.1007/s12206‑019‑0140‑5
    [Google Scholar]
  8. XiongW.L. YangX.B. LuL. YuanJ.L. A review of key technologies for liquid hydrostatic electrospindles.Jixie Gongcheng Xuebao2009450911810.3901/JME.2009.09.001
    [Google Scholar]
  9. YuX. WangY. WangJ. ZhouW. BiH. WuG. GaoW. Review of research on hydrostatic bearings.Recent Pat. Mech. Eng.202114327628810.2174/2212797613999201217124359
    [Google Scholar]
  10. ShiJ.H. CaoH.R. JinX.L. Dynamics of 5-DOF aerostatic spindle with time-varying coefficients of air bearing.MSSP202217210900510.1016/j.ymssp.2022.109005
    [Google Scholar]
  11. MaamariN. KrebsA. WeikertS. Stability and dynamics of an orifice based aerostatic bearing with a compliant back plateTribol. Int201913827929610.1016/j.triboint.2019.05.047
    [Google Scholar]
  12. ZhouL. WuJ. Magnetic levitation technology for precision motion systems: A review and future perspectives.Int. J. Automot. Technol.202216438640210.20965/ijat.2022.p0386
    [Google Scholar]
  13. ŁukaszB. ŁukaszW. MartaD.K. Research and applications of active bearings: A state-of-the-art review.MSSP202115110.1016/j.ymssp.2020.107423
    [Google Scholar]
  14. HuP.F. LuoJ.L. LuoB. FengW.W. TangD.W. Study on the thermal-force coupling characteristics of high-speed motorized spindle angular contact ball bearings.MPDI202336027679
    [Google Scholar]
  15. BaiX.T. YuanZ. YanH.P. “Impact of axial loads on the sound directivity of angular contact ceramic ball bearings”, Paper presented at the IOP conference series.Mater. Sci. Eng.2018399119
    [Google Scholar]
  16. YanH. WuY. LiS. ZhangL. ZhangK. The effect of factors on the radiation noise of high-speed full ceramic angular contact ball bearings.Shock Vib.201820181910.1155/2018/1645878
    [Google Scholar]
  17. MathieuR. ClémentR. SébastienL.L. BenoitF. DidierD. Influence of spindle condition on the dynamic behavior.CIRP Annals201867141942210.1016/j.cirp.2018.03.007
    [Google Scholar]
  18. JinT.T. YanC.L. ChenC.H. YangZ.J. TianH.L. GuoJ.Y. New domain adaptation method in shallow and deep layers of the CNN for bearing fault diagnosis under different working conditions.Int. J. Adv. Manuf. Technol.202112411-12112
    [Google Scholar]
  19. ThanV.T. HuangJ.H. Nonlinear thermal effects on high-speed spindle bearings subjected to preload.Tribol. Int.20169636137210.1016/j.triboint.2015.12.029
    [Google Scholar]
  20. QiuQ. Influence law of preload force and tool pulling force on dynamic and static characteristics of machine tool motorized spindle.M.S. thesis, Shanghai Jiao Tong University, China, 2016.
    [Google Scholar]
  21. ShuaiQ. ChenX. ChenS.J. ZhangY. Influence of preload mode on the internal mechanical properties of angular contact ball bearings under elastofluid lubrication.J. Tribol.202242018594
    [Google Scholar]
  22. ChengY.W. Study on the dynamic characteristics of high-speed motorized spindle under the action of thermal coupling.M.S.thesis, Lanzhou University of Technology, China, 2016.
    [Google Scholar]
  23. ChunjiangZ. GuanghuiL. JieX. ZhengyiJ. QingxueH. JianmeiW. HailongC. A quasi-dynamic model for high-speed ball spinning.Int. J. Adv. Manuf. Technol.2018975-82447246010.1007/s00170‑018‑2126‑3
    [Google Scholar]
  24. JiangS.Y. LinS.Y. Study on the dynamics of high-speed motorized spindle rotor-bearing-housing system.Jixie Gongcheng Xuebao20215713263510.3901/JME.2021.13.026
    [Google Scholar]
  25. GuptaP. Dynamics of rolling-element bearings—Part I: Cylindrical roller bearing analysis.J. Tribol.19791013303304
    [Google Scholar]
  26. GuptaP.K. Dynamics of rolling element bearings—Part II: Cylindrical roller bearing results.J. Lubr. Technol.1979101330531110.1115/1.3453360
    [Google Scholar]
  27. GuptaP. Dynamics of rolling element bearings—Part III: Ball bearing analysis.J. Tribol.19791013312318
    [Google Scholar]
  28. CaoH. NiuL. XiS. ChenX. ChenX.F. Mechanical model development of rolling bearing-rotor systems: A review.Mech. Syst. Signal Process.2018102375810.1016/j.ymssp.2017.09.023
    [Google Scholar]
  29. XiS. CaoH. ChenX. Dynamic modeling of spindle bearing system and vibration response investigation.Mech. Syst. Signal Process.201911448651110.1016/j.ymssp.2018.05.028
    [Google Scholar]
  30. JiangS.Y. LinS.Y. Study on dynamic characteristics of motorized spindle rotor-bearing-housing system.Jixie Gongcheng Xuebao20215713263510.3901/JME.2021.13.026
    [Google Scholar]
  31. TsutsuiS. AoyamaT. InasakiI. Development of a spindle system with an adjustable preload mechanism using a piezomotorized actuator.JSME international journal.1988313593597
    [Google Scholar]
  32. ZhangJ. Study on the effect of bearing preload on the characteristics of motorized spindles.M.S. thesis, Shenyang Jianzhu University, China, 2015.
    [Google Scholar]
  33. SongL.Q. Development of dynamic and static characteristics inspection and bearing preload analysis system for motorized spindles.M.S. thesis, Harbin Institute of Technology, China, 2019.
    [Google Scholar]
  34. DongY. ChenF. LuT. QiuM. Research on thermal stiffness of machine tool spindle bearing under different initial preload and speed based on FBG sensors.Int. J. Adv. Manuf. Technol.20221191-294195110.1007/s00170‑021‑08330‑6
    [Google Scholar]
  35. LiS.S. YangT.X. LiuY.Y. ZhengZ.Q. HeG.Q. Temperature rise experiment and prediction modeling for key position of preload adjustable motorized spindle.J. Phys.: Conf. Ser.20211965012129
    [Google Scholar]
  36. JiangS. MaoH. Investigation of variable optimum preload for a machine tool spindle.Int. J. Mach. Tools Manuf.2010501192810.1016/j.ijmachtools.2009.10.001
    [Google Scholar]
  37. TruongD.S. KimB.S. RoS.K. An analysis of a thermally affected high-speed spindle with angular contact ball bearings.Tribol. Int202115710688110.1016/j.triboint.2021.106881
    [Google Scholar]
  38. LiS.H. PeiJ.P. WangY.H. WangW.N. Research on thermal-mechanical coupling modeling of controllable preload high-speed motorized spindle.MMAT202386973
    [Google Scholar]
  39. LiJ. ZhuY. YanK. YanX. HongJ. A novel approach for preload measurement and analysis of fixed position preload spindle.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2019233103619363210.1177/0954406218814045
    [Google Scholar]
  40. HongS.W. TongV.C. Rolling-element bearing modeling: A review.Int. J. Precis. Eng. Manuf.201617121729174910.1007/s12541‑016‑0200‑z
    [Google Scholar]
  41. OzturkE. KumarU. TurnerS. SchmitzT. Investigation of spindle bearing preload on dynamics and stability limit in milling.CIRP Annals201261134334610.1016/j.cirp.2012.03.134
    [Google Scholar]
  42. ZhaoG. Study on the dynamics of angular contact ball bearings in ultra-high-speed grinding motorized spindlesM.S. thesis, Henan University of Technology, China, 2018.
    [Google Scholar]
  43. HuangW.D. GanC.B. YangS.S. XuL.H. Analysis of high-speed motorized spindle angular contact ball bearing stiffness and its effect on critical speed of motorized spindle.Vibration and Shock201736101925
    [Google Scholar]
  44. YangZ. ChenH. YuT. Effects of rolling bearing configuration on stiffness of machine tool spindle.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2018232577578510.1177/0954406217693659
    [Google Scholar]
  45. JiangY. ZhuT. DengS. Combined analysis of stiffness and fatigue life of deep groove ball bearings under interference fits, preloads and tilting moments.J. Mech. Sci. Technol.202337253955310.1007/s12206‑023‑0101‑x
    [Google Scholar]
  46. GuoX.D. WangY.S. Study of bearing preload force-system inherent frequency and span relationship.Bearings2013043033
    [Google Scholar]
  47. ZhangZ.Y. Controlled preload method of motorized spindle and its performance research.M.S. thesis, Xi'an University of Technology, China, 2017.
    [Google Scholar]
  48. SunZ.L. TianY. FengJ.L. Effects of bearing preload and span on spindle dynamic characteristics.DFM20184430433
    [Google Scholar]
  49. FengM.H. Research on piezoelectric ceramic-based preload adjustable device for motorized spindle bearings.M.S.thesis, Shenyang Jianzhu University. ON, China, 2015.
    [Google Scholar]
  50. TurekP. Determination of the natural frequency of the model spindle system with active regulation of the initial tension of the bearings.Lubricants202197686810.3390/lubricants9070068
    [Google Scholar]
  51. GuoH. WangY.W. ZhangL. Analysis of influence of bearing preload on rigidity and service life of electric spindle.MEA202306911
    [Google Scholar]
  52. ChenD. ZhaoY. LiuJ. Characterization and evaluation of rotation accuracy of hydrostatic spindle under the influence of unbalance.Shock Vib.2020202011610.1155/2020/5181453
    [Google Scholar]
  53. LeeK.B. ZvervI. KimJ.D. Model of rotation accuracy of high-speed spindles on ball bearings.Engineering201027477484
    [Google Scholar]
  54. SarhanA.A. HassanM. MatsubaraA. HamdiM. Compensation of machine tool spindle error motions in the radial direction for accurate monitoring of cutting forces utilizing sensitive displacement sensorsPWCE21905355392011
    [Google Scholar]
  55. HossainM.J. SunX.Y. YaoZ.Q. Effect of preload on bearing contact state and rotational performance of motorized spindles."Mech. Eng. Res202036034449
    [Google Scholar]
  56. TurekP. SkoczyńskiW. Model research on the influence of bearing preload change on the frequency and form if natural vibrations of the spindle system.ASTRJ202014428429710.12913/22998624/127991
    [Google Scholar]
  57. DongY. ZhouZ. LiuM. Bearing preload optimization for machine tool spindle by the influencing multiple parameters on the bearing performance.Adv. Mech. Eng.20179210.1177/1687814016689040
    [Google Scholar]
  58. LouS.Y. Analysis of preload characteristics of motorized spindle bearing and its optimization study.M.S. thesis, Xi'an University of Technology, China, 2021.
    [Google Scholar]
  59. HeP.P. Research on service performance prediction of spindle bearings under variable preload.Ph.D. thesis, Xi'an University of Technology, China, 2021.
    [Google Scholar]
  60. HagiuG.D. GafitanuM.D. Preload-service life correlation for ball bearings on machine tool main spindles.Wear19941721798310.1016/0043‑1648(94)90302‑6
    [Google Scholar]
  61. ZhangJ. FangB. HongJ. ZhuY. Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing.Tribol. Int.201711436537210.1016/j.triboint.2017.04.029
    [Google Scholar]
  62. ZhangT. ChenX. GuJ. WangZ. Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings.Chin. J. Aeronauti.201831359760710.1016/j.cja.2017.07.006
    [Google Scholar]
  63. LiG. WangS. HeJ. WuK. ZhouC. Compilation of load spectrum of machining center spindle and application in fatigue life prediction.J. Mech. Sci. Technol.20193341603161310.1007/s12206‑019‑0312‑3
    [Google Scholar]
  64. ZhangY. ZhangM. WangY. XieL. Fatigue Life analysis of ball bearings and a shaft system considering the combined bearing preload and angular misalignment.Appl. Sci.2020108275010.3390/app10082750
    [Google Scholar]
  65. ZhangY. ZhangM. XieL. ZhangK. The effect of the uncertain initial angular misalignment on fatigue life of spindle-bearing system.Forsch. Ingwes.2020851118
    [Google Scholar]
  66. YingJ. YangZ.J. ChenC.H. YaoG.X. HuW. TianH.L. Lifetime analysis of motorized spindle bearings based on dynamic model.Int. J. Adv. Manuf. Technol.202112411-12111
    [Google Scholar]
  67. CaoH. HolkupT. AltintasY. A comparative study on the dynamics of high speed spindles with respect to different preload mechanisms.Int. J. Adv. Manuf. Technol.2011579-1287188310.1007/s00170‑011‑3356‑9
    [Google Scholar]
  68. KitamuraK. TaniguchiK. Preload control apparatus for bearings with shape memory alloy springs.U.S. Patent, 5,094,5511992
    [Google Scholar]
  69. ChenZ.N. LeK.X. QuanY.X. Research on a new⁃ type bearing preload control⁃ ler for precision machine tool spindles.Zhongguo Jixie Gongcheng1993435256
    [Google Scholar]
  70. YangQ. WangK.S. MengL.X. ZhaoH.L. Design method of automatic adjustment of bearing preload based on thermal characteristic of materials.Jixie Gongcheng Xuebao200844918318710.3901/JME.2008.09.183
    [Google Scholar]
  71. KimD.H. LeeC.M. A study on the development of a new conceptual automatic variable preload system for a spindle bearing.Int. J. Adv. Manuf. Technol.2013655-881782410.1007/s00170‑012‑4219‑8
    [Google Scholar]
  72. KimD.H. LeeC-M. Development of an automatic variable preload device using uniformly distributed eccentric mass for a high-speed spindle.Int. J. Precis. Eng. Manuf.201718101419142310.1007/s12541‑017‑0169‑2
    [Google Scholar]
  73. LiuT. MengL.C. ZhangJ.H. GaoW.G. A bearing set with active temperature and preload adjustmentC.N. Patent, 1,103,322,31B,20212021
    [Google Scholar]
  74. PengG.X. Modeling and control method of output force hysteresis effect of piezomotorized actuatorM.S. thesisHarbin Institute of Technology, China2021
    [Google Scholar]
  75. CiouY.S. LeeC.Y. Controllable preload spindle with a piezoelectric actuator for machine tools.Int. J. Mach. Tools Manuf.2019139606310.1016/j.ijmachtools.2019.01.004
    [Google Scholar]
  76. DaiY. ZhanS.Q. WangJ.H. XuanL.Y. WangG. Modeling of thermal errors in variable-pressure preload motorized spindles based on bonding diagrams.J. Instrum.202142054248
    [Google Scholar]
  77. ZhouJ.Z. DingW.M. DongJ.J. ZhaoH.A. A bearing preload mechanism with adjustable preload forceC.N. Patent, 2,147,886,50U,20212021
    [Google Scholar]
  78. KimD.H. LeeC.M. Development of variable preload system for machine tool spindle using giant magnetostrictive material terfenol-d actuator.J. Intell. Mater. Syst. Struct.202031202304231110.1177/1045389X20935573
    [Google Scholar]
  79. HwangY.K. ParkI.H. PaikK.S. LeeC.M. Development of a variable preload spindle by using an electromagnetic actuator.Int. J. Precis. Eng. Manuf.201415220120710.1007/s12541‑014‑0326‑9
    [Google Scholar]
  80. SuW.J. HongJ. WanS.K. ZhangJ.H. LiX.H. QiuZ.H. An electromagnetic controlled preloading device for spindle bearingC.N. Patent, 1,050,214,02B,20212021
    [Google Scholar]
  81. De-xingZ. WeifangC. MiaomiaoL. An optimized thermal network model to estimate thermal performances on a pair of angular contact ball bearings under oil-air lubrication.Appl. Therm. Eng.201813132833910.1016/j.applthermaleng.2017.12.019
    [Google Scholar]
  82. ZhangJ. FangB. ZhuY. HongJ. A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms.Mechanism Mach. Theory201711511710.1016/j.mechmachtheory.2017.03.012
    [Google Scholar]
  83. ZhangJ. FangB. HongJ. WanS. ZhuY. A general model for preload calculation and stiffness analysis for combined angular contact ball bearings.J. Sound Vibrat.201741143544910.1016/j.jsv.2017.09.019
    [Google Scholar]
  84. HwangY.K. LeeC.M. A review on the preload technology of the rolling bearing for the spindle of machine tools.Int. J. Precis. Eng. Manuf.201011349149810.1007/s12541‑010‑0058‑4
    [Google Scholar]
  85. WangJ.Q. Influence of angular contact ball bearing arrangement on bearings.MEA202106197201
    [Google Scholar]
  86. LiT. KolarP. LiX.Y. WuJ. Research development of preload technology on angular contact ball bearing of high speed spindle: A review.Int. J. Precis. Eng. Manuf.20202161163118510.1007/s12541‑019‑00289‑5
    [Google Scholar]
  87. LinS.J. XuT. TanH.H. ZhangL. ZhangS.H. Optimization method of preload force of motorized spindle bearing based on dual scale regulation.EMET20215008113117
    [Google Scholar]
  88. GramaS.N. MathurA. AralaguppiR. SubramanianT. Optimization of high speed machine tool spindle to minimize thermal distortion.Procedia CIRP20175845746210.1016/j.procir.2017.03.253
    [Google Scholar]
  89. PaulsonN.R. SadeghiF. HabchiW. A coupled finite element EHL and continuum damage mechanics model for rolling contact fatigue.Tribol. Int.201710717318310.1016/j.triboint.2016.11.024
    [Google Scholar]
  90. LeiZ.W. Analysis of mechanical characteristics of high-speed motorized spindle ball bearing and research on optimal preload force.M.S. thesis, Guangdong University of Technology, China, 2014.
    [Google Scholar]
  91. CaoJ.M. Research on preload law of high speed motorized spindle bearing and development of controlled electromagnetic preload system.M.S. thesis, Hunan University. China, 2020.
    [Google Scholar]
  92. HanZ.F. LiY.F. ANSYS-based analysis of preload and interference fit of motorized spindle bearings.Machinery201037121517
    [Google Scholar]
  93. ZhangK. WangZ. BaiX. ShiH. WangQ. Effect of preload on the dynamic characteristics of ceramic bearings based on a dynamic thermal coupling model.Adv. Mech. Eng.202012110.1177/1687814020903851
    [Google Scholar]
  94. X.Yan "Optimization of preload force of motorized spindle bearings based on spin-to-roll ratio",Mechanics and Electronics202038121418
    [Google Scholar]
  95. HwangY.K. LeeC.M. Development of a simple determination method of variable preloads for high speed spindles in machine tools.Int. J. Precis. Eng. Manuf.201516112713410.1007/s12541‑015‑0016‑2
    [Google Scholar]
  96. HeP. GaoF. LiY. WuW. ZhangD. Research on optimization of spindle bearing preload based on the efficiency coefficient method.Ind. Lubr. Tribol.202173233534110.1108/ILT‑06‑2020‑0205
    [Google Scholar]
  97. TongV.C. HwangJ. ShimJ. OhJ-S. HongS-W. Multi-objective optimization of machine tool spindle-bearing system.Int. J. Precis. Eng. Manuf.202021101885190210.1007/s12541‑020‑00389‑7
    [Google Scholar]
  98. LiS.H. GaoP. WangY.H. Intelligent control component of spindle bearing preload innovative design and performance test.MTMAMT202310164168
    [Google Scholar]
  99. XuT. XuG. ZhangQ. ZhangS. LuoA. An optimum preload method for machine tool spindle ball bearings.Proc. Inst. Mech. Eng., B J. Eng. Manuf.2016230112016202510.1177/0954405415608784
    [Google Scholar]
  100. LiS.H. QuQ.H. WangZ.N. LiS. Determination method of variable preload force of machine tool spindle based on weight method.J. Archit20193501159167
    [Google Scholar]
  101. HuG.F. Design and active control method of high speed precision spindle preload force.Ph.D. thesis, Tianjin University, China, 2018.
    [Google Scholar]
  102. ZhangY. XuX. Predicting the material removal rate during electrical discharge diamond grinding using the Gaussian process regression: A comparison with the artificial neural network and response surface methodology.Int. J. Adv. Manuf. Technol.20211135-61527153310.1007/s00170‑021‑06701‑7
    [Google Scholar]
  103. YunZ. XuX.J. Machine learning cutting force, surface roughness, and tool life in high speed turning processes.Manuf. Lett.20218489
    [Google Scholar]
  104. ZhangY. XuX. Machine learning surface roughnesses in turning processes of brass metals.Int. J. Adv. Manuf. Technol.20221213-42437244410.1007/s00170‑022‑09498‑1
    [Google Scholar]
  105. ZhangY. XuX. Predicting springback radii and angles in air bending of high-strength sheet steel through gaussian process regressions.IJIDeM202216386387010.1007/s12008‑022‑00945‑7
    [Google Scholar]
  106. XiaohuL. HuanfengL. YanfeiZ. JunH. Investigation of non-uniform preload on the static and rotational performances for spindle bearing system.Int. J. Mach. Tools Manuf.2016106112110.1016/j.ijmachtools.2016.04.003
    [Google Scholar]
  107. LiX. ZhangY. HongJ. ZhaoH. LiH. Experiment analysis of spindle performance with rolling bearing under non-uniform preload.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2016230173135314610.1177/0954406215605867
    [Google Scholar]
  108. WuW. HongJ. LiY. LiX. Investigation of non-uniform preload effect on stiffness behavior of angular contact ball bearings.Adv. Mech. Eng.20179310.1177/1687814017694118
    [Google Scholar]
  109. LiX. LiH. HongJ. ZhangY. Heat analysis of ball bearing under nonuniform preload based on five degrees of freedom quasi-static model.Proc. Inst. Mech. Eng., Part J J. Eng. Tribol.2016230670972810.1177/1350650115611155
    [Google Scholar]
  110. SinghS. GoyalK. GoyaR. Performance of Ni3Al and TiO2 coatings on T91 boiler tube steel in simulated boiler environment at 900°C.STM Journals2016322734
    [Google Scholar]
  111. SinghS. GoyalK. GoyaR. Performance of Ni3Al and TiO2 coatings on T22 boiler tube steel in simulated boiler environment in laboratory.Jixie Gongcheng Xuebao20174615461
    [Google Scholar]
  112. GoyalR. SidhuB.S. ChawlaV. Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel.Int. J. Adv. Manuf. Technol.2017929-123225323510.1007/s00170‑017‑0405‑z
    [Google Scholar]
  113. GoyalK. SidhuV.P. GoyalR. "Hot corrosion study of high velocity oxy-fuel (HVOF) sprayed coatings on boiler tube steel in actual coal fired boiler." Pakistan journal of scientific and industrial research series a.Physical Sciences2018310.52763/PJSIR.PHYS.SCI.61.3.2018.149.155
    [Google Scholar]
  114. SinghS. GoyalK. Development of CNT reinforced Al2O3-TiO2 coatings for boiler tubes to improve hot corrosion resistance.J. Electrochem. Sci. Eng.2022125937945
    [Google Scholar]
/content/journals/eng/10.2174/0118722121303527240730055548
Loading
/content/journals/eng/10.2174/0118722121303527240730055548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test