Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

The seafloor is an essential ocean boundary, and the detection of seafloor information is necessary basis for seafloor scientific research. The classification and identification of seafloor geological types is necessary for researchers to conduct seafloor research, military activities, and marine platform construction.

Objective

The purpose of this patent paper is to summarize the progress of seafloor substrate classification research based on backscattering and to seek a new development direction for seafloor substrate classification research.

Methods

The literature on various types of submarine sediment attenuation geoacoustic models, backscatter intensity calculations, and submarine substrate classification is summarized, and the progress of theoretical research required for the positive and negative problems of submarine substrate classification is described that include the geoacoustic parameter models based on fluid theory, elastomer theory and poroelastic theory and submarine acoustic scattering models, including the small roughness perturbation approximation model, the Kirchhoff approximation model, the Kirchhoff approximation model and the Kirchhoff approximation model.

Results

The development of the Kirchhoff approximation model, the slight slope approximation model, the volume scattering model, and the inversion methods for seafloor substrate classification are summarized, and breakthroughs in seafloor substrate classification are sought by summarizing previous studies.

Conclusion

The classification of seafloor substrate based on backscattering intensity needs the support of a perfect geoacoustic model and scattering model, and the current research of low and medium-frequency scattering models and multi-layer seafloor scattering models are the further development direction in the future. Currently, the better performance of the prediction model, geo-acoustic parameter inversion results are more than 90% accuracy, sound velocity ratio and other parameters in the high-frequency band inversion accuracy of 98%, are able to better meet the measured data. Finally, some patented technologies are also reported.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121255396230922114637
2023-10-09
2024-12-26
Loading full text...

Full text loading...

References

  1. IvakinA.N. Sound scattering by the seafloor: Results of recent theoretical and experimental research.Acoust. Phys.201258218719110.1134/S1063771012020066
    [Google Scholar]
  2. ZhengH.X. A review of seafloor substrate classification methodsTwenty-ninth Annual Meeting of the Chinese Geophysical Society Yun NanChina20135
    [Google Scholar]
  3. LiS. YuanS. LiuS. WenJ. HuangQ. ZhangZ. Characteristics of low-frequency acoustic wave propagation in ice-covered shallow water environmentAppl. Acoust.202111
    [Google Scholar]
  4. XuC. Multi-beam bathymetric sonar subsea substrate classification technology researchPhD Thesis,. Harbin Engineering University: Harbin, ON, China,2014
    [Google Scholar]
  5. QuK. HuC.Q. ZhaoM.E. Single parameter inversion of seabed using propagation loss.J. Acous.201338472476
    [Google Scholar]
  6. SchockS.G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data.IEEE J. Oceanic Eng.20042941200121710.1109/JOE.2004.841421
    [Google Scholar]
  7. SaraI. TonielliR. MartinoG.D. GuarinoA. MolissoF. SacchiM. High-resolution seafloor sedimentological mapping: The case study of Bagnoli-Coroglio site, Gulf of Pozzuoli (Napoli), Italy.Chem. Ecol.2020361128
    [Google Scholar]
  8. PillayT. CawthraH.C. LombardA.T. Characterisation of seafloor substrate using advanced processing of multibeam bathymetry, backscatter, and sidescan sonar in Table Bay, South Africa.Mar. Geol.202042910633210.1016/j.margeo.2020.106332
    [Google Scholar]
  9. SiemesK. SnellenM. Amiri-SimkooeiA.R. SimonsD.G. HermandJ.P. Predicting spatial variability of sediment properties from hydrographic data for geoacoustic inversion.IEEE J. Oceanic Eng.201035476677810.1109/JOE.2010.2066711
    [Google Scholar]
  10. LeightonT.G. DoganH. FoxP. MantoukaA. BestA.I. RobbG.B.R. WhiteP.R. Acoustic propagation in gassy intertidal marine sediments: An experimental study.J. Aoust. Soc. Am.20211504270510.1121/10.0006530
    [Google Scholar]
  11. BuckinghamM.J. Wave speed and attenuation profiles in a stratified marine sediment: Geo-acoustic modeling of seabed layering using the viscous grain shearing theory.J. Acoust. Soc. Am.2020148296297410.1121/10.0001778 32873014
    [Google Scholar]
  12. ShangE.C. New advances in geoacoustic inversion in hydroacoustics.Appl. Acoust.2019July468476
    [Google Scholar]
  13. DeC. ChakrabortyB. Model-based acoustic remote sensing of seafloor characteristics.IEEE Trans. Geosci. Remote Sens.201149103868387710.1109/TGRS.2011.2139218
    [Google Scholar]
  14. ChiuL.Y.S. ChangA.Y.Y. ChenH.H. WangC.C. LouJ.Y. Error analysis on normal incidence reflectivity measurement and geoacoustic inversion of ocean surficial sediment properties.Cont. Shelf Res.202020110412310.1016/j.csr.2020.104123
    [Google Scholar]
  15. WilliamsK.L. Adding thermal and granularity effects to the effective density fluid model.J. Acoust. Soc. Am.20131335EL431EL43710.1121/1.4799761 23656105
    [Google Scholar]
  16. JacksonD.R. RichardsonM.D. High-frequency seafloor acoustics.New YorkSpringer200710.1007/978‑0‑387‑36945‑7
    [Google Scholar]
  17. BonomoA.L. ChotirosN.P. IsaksonM.J. On the validity of the effective density fluid model as an approximation of a poroelastic sediment layer.J. Acoust. Soc. Am.2015138274875710.1121/1.4926901 26328691
    [Google Scholar]
  18. ChotirosN.P. Ocean sediments and the Biot theory.J. Acoust. Soc. Am.20181443_Supplement198010.1121/1.5068645
    [Google Scholar]
  19. HamiltonE.L. Elastic properties of marine sediments.J. Geophys. Res.197176257960410.1029/JB076i002p00579
    [Google Scholar]
  20. BerrymanJ.G. Origin of Gassmann’s equations.Geophysics19996451627162910.1190/1.1444667
    [Google Scholar]
  21. JacksonD.R. APL-UW high-frequency ocean environmental acoustic models handbook.APL Lab199414991510
    [Google Scholar]
  22. GuoZ. LvX. LiuC. ChenH. CaiZ. Characterizing gas hydrate–bearing marine sediments using elastic properties—part 1: Rock physical modeling and inversion from well logs.J. Mar. Sci. Eng.20221010137910.3390/jmse10101379
    [Google Scholar]
  23. ChotirosN.P. IsaksonM.J. Acoustic virtual mass of granular media.J. Acoust. Soc. Am.20071212EL70EL7610.1121/1.2430763 17348549
    [Google Scholar]
  24. ChotirosN.P. IsaksonM.J. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.J. Acoust. Soc. Am.20081245EL296EL30110.1121/1.2987465 19045681
    [Google Scholar]
  25. BuckinghamM.J. Response to “Comments on ‘Pore fluid viscosity and the wave properties of saturated granular materials including marine sediments”.J. Acoust. Soc. Am.201012720952098 20369987
    [Google Scholar]
  26. BiotM.A. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range.J. Acoust. Soc. Am.195628217919110.1121/1.1908241
    [Google Scholar]
  27. MarshH.W. Sound reflection and scattering from the sea surface.J. Acoust. Soc. Am.196335224024410.1121/1.1918439
    [Google Scholar]
  28. BonomoA.L. IsaksonM.J. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements.J. Acoust. Soc. Am.201814342501251310.1121/1.5032205 29716256
    [Google Scholar]
  29. KuoE.Y.T. Wave scattering and transmission at irregular surfaces.J. Acoust. Soc. Am.196436112135214210.1121/1.1919334
    [Google Scholar]
  30. GraggR.F. WurmserD. GaussR.C. Small-slope scattering from rough elastic ocean floors: General theory and computational algorithm.J. Acoust. Soc. Am.200111062878290110.1121/1.1412444 11785790
    [Google Scholar]
  31. GalvezD.S. PapenmeierS. SandersL. HassH.C. FofonovaV. BartholomaeA. WiltshireK.H. Ensemble mapping and change analysis of the seafloor sediment distribution in the sylt outer reefGerman North Sea from 2016-2018,202113
    [Google Scholar]
  32. FiazM.A. Scattering from a fractal–fractal rough interface using perturbation theory.Optik2019178142410.1016/j.ijleo.2018.09.129
    [Google Scholar]
  33. JacksonD. OlsonD.R. The small-slope approximation for layered, fluid seafloors.J. Acoust. Soc. Am.20201471567310.1121/10.0000470 32006970
    [Google Scholar]
  34. DarmonM. DorvalV. BaquéF. Acoustic scattering models from rough surfaces: A brief review and recent advances.Appl. Sci.20201022830510.3390/app10228305
    [Google Scholar]
  35. SteeleS.M. LyonsA.P. Development and experimental validation of endfire synthetic aperture sonar for sediment acoustics studies.IEEE J. Oceanic Eng.202247247248210.1109/JOE.2021.3107590
    [Google Scholar]
  36. StockhausenJ.H. Scattering from the volume of an inhomogeneous Half‐Space.J. Acoust. Soc. Am.19633511_Supplement1893189310.1121/1.2142705
    [Google Scholar]
  37. ChiuL.Y.S. ChangA. LinY-T. LiuC-S. LiuC.S. Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler.IEEE J. Oceanic Eng.201540122223610.1109/JOE.2013.2296362
    [Google Scholar]
  38. ZouB. ZhaiJ. QiZ. LiZ. A comparison of three sediment acoustic models using Bayesian inversion and model selection techniques.Remote Sens.201911556210.3390/rs11050562
    [Google Scholar]
  39. BelcourtJ. DossoS.E. HollandC.W. DettmerJ. Bayesian geoacoustic inversion of seabed reflection data at the New England mud patch.J. Acoust. Soc. Am.20171424_Supplement2590259010.1121/1.5014487
    [Google Scholar]
  40. YuS. LiuB. YuK. YangZ. KanG. ZongL. Inversion of bottom parameters using a backscattering model based on the effective density fluid approximation.Appl. Acoust.202118210818710.1016/j.apacoust.2021.108187
    [Google Scholar]
  41. VenegasG.R. LyonsA.P. Measuring and modeling time-dependent changes in seabed scatter caused by near-bottom hydrodynamics and biologic processes.J. Acoust. Soc. Am.20211504_Suppl.A35110.1121/10.0008556
    [Google Scholar]
  42. YuS. LiuB. YuK. YangZ. KanG. A backscattering model for a stratified seafloor.Acta Oceanol. Sin.2017367566510.1007/s13131‑017‑1084‑1
    [Google Scholar]
  43. QuK. Submarine sedimentation classification using acoustic propagation data and unsupervised machine learningC.N. Patent 113221651A2021
    [Google Scholar]
  44. CristiniP. KomatitschD. Scattering by an elastic object in the time domain for underwater acoustic applications by means of the spectral-element method.J. Acoust. Soc. Am.20111304_Supplement233110.1121/1.3654325
    [Google Scholar]
  45. TianH. GuoS. ZhaoP. GongM. ShenC. Design and implementation of a real-time multi-beam sonar system based on FPGA and DSP.Sensors2021214142510.3390/s21041425 33670662
    [Google Scholar]
  46. JinS.H. ZhaiJ.S. LiuY.C. CuiG.S. The effect of seafloor incidence angle on multi-beam backscatter intensity and its correctionJ. Wuhan Univ. (Inf. Sci. Ed.)20113610811084
    [Google Scholar]
  47. JinS.H. XiaoF.M. BianG. WangM. SunW.C. Substrate feature parameter extraction algorithm using multi-beam backscattered intensity angular response curveWuhan Univ. (Inf. Sci. Ed.)20141214931498
    [Google Scholar]
  48. YinQ. LiJ. MaF. XiangD. ZhangF. Dual-channel convolutional neural network for bare surface soil moisture inversion based on polarimetric scattering models.Remote Sens.20211322450310.3390/rs13224503
    [Google Scholar]
  49. KnoblesD.P. Escobar-AmadoC.D. BuckinghamM.J. HodgkissW.S. WilsonP.S. NeilsenT.B. YangJ. BadieyM. Statistical inference of sound speed and attenuation dispersion of a fine-grained marine sediment.IEEE J. Oceanic Eng.202247355356410.1109/JOE.2021.3091846
    [Google Scholar]
  50. YuQ.S. Research on inversion method of seafloor parameters based on backscattering intensityPhD thesis,. Harbin Engineering University: Harbin, China,2014
    [Google Scholar]
  51. OlsonD.R. JacksonD. Scattering from layered seafloors: Comparisons between theory and integral equations.J. Acoust. Soc. Am.202014842086209510.1121/10.0002164 33138517
    [Google Scholar]
  52. WangZ. MaY. KanG. LiuB. ZhouX. ZhangX. an inversion method for geoacoustic parameters in shallow water based on bottom reflection signals.Remote Sens.20231513323710.3390/rs15133237
    [Google Scholar]
  53. ZhangX. YangP. HuangP. SunH. YingW. Wide‐bandwidth signal‐based multireceiver SAS imagery using extended chirp scaling algorithm.IET Radar Sonar & Navigation202216353154110.1049/rsn2.12200
    [Google Scholar]
  54. XueY. ZhuH. WangX. ZhengG. LiuX. WangJ. Bayesian geoacoustic parameters inversion for multi-layer seabed in shallow sea using underwater acoustic field.Front. Mar. Sci.202310105854210.3389/fmars.2023.1058542
    [Google Scholar]
/content/journals/eng/10.2174/0118722121255396230922114637
Loading
/content/journals/eng/10.2174/0118722121255396230922114637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test