Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Disulfidptosis is a new type of regulatory cell death (RCD), but the pathophysiological functions and mechanisms of disulfidptosis-related genes (DRGs) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) remain to be examined.

Aims

This study explored the mutation status of DRGs in CESC.

Objective

After analyzing the mutation profiles of DRGs in CESC, this study established a prognostic model for CESC and also explored the differences in immune infiltration (accumulation of immune system cells in tissues or organs), related enriched pathways, and drug sensitivity between high-risk and low-risk CESC groups.

Methods

The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were accessed to source related data. The mutation profiles of DRGs in CESC were analyzed using Mutect2 software, and disulfidptosis scores were calculated by ssGSEA. WGCNA was performed to identify modular genes, which were further filtered and used to formulate a risk model by applying the survival and glmnet packages. Low- and high-risk groups of CESC patients were classified using the survminer package. GSEA was performed to conduct pathway analysis, and immune infiltration was assessed using the MCPcounter package, ESTIMATE, and TIMER algorithms. Finally, immunotherapy response and drug sensitivity were analyzed using the TIDE method and the pRRophetic package, respectively.

Results

Except for , and were found to be the DRGs significantly mutated in CESC. The six genes were integrated to develop a RiskScore model with a relatively high Area Under the Curve (AUC) value. Significant differences between the two risk groups were determined, indicating that the model was highly reliable. Notably, the low-risk group was enriched in energy metabolism-correlated pathways, while the high-risk group was primarily enriched in immune-correlated pathways. The high-risk group showed higher immune cell activity, higher TIDE score, and more B cells than the low-risk group. Drug sensitivity study revealed that the high-risk group was more sensitive to chemotherapy drugs.

Conclusion

This study provides novel insights into CESC prognosis, immunotherapy, and drug development, contributing to the clinical treatment for CESC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303374396250129111340
2025-02-12
2026-02-16
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303374396.html?itemId=/content/journals/emiddt/10.2174/0118715303374396250129111340&mimeType=html&fmt=ahah

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. SmallW.Jr BaconM.A. BajajA. ChuangL.T. FisherB.J. HarkenriderM.M. JhingranA. KitchenerH.C. MileshkinL.R. ViswanathanA.N. GaffneyD.K. Cervical cancer: A global health crisis.Cancer2017123132404241210.1002/cncr.3066728464289
    [Google Scholar]
  3. CharakornC. ThadaniponK. ChaijindaratanaS. RattanasiriS. NumthavajP. ThakkinstianA. The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: A systematic review and meta-analysis.Gynecol. Oncol.2018150119020010.1016/j.ygyno.2018.03.05629606483
    [Google Scholar]
  4. JohnsonC.A. JamesD. MarzanA. ArmaosM. Cervical cancer: An overview of pathophysiology and management.Semin. Oncol. Nurs.201935216617410.1016/j.soncn.2019.02.00330878194
    [Google Scholar]
  5. GaoW. MaQ. TangC. ZhanY. DuanY. NiH. XuY. Microenvironment and related genes predict outcomes of patients with cervical cancer: Evidence from TCGA and bioinformatic analysis.Biocell202044459760510.32604/biocell.2020.011328
    [Google Scholar]
  6. VuM. YuJ. AwoludeO.A. ChuangL. Cervical cancer worldwide.Curr. Probl. Cancer201842545746510.1016/j.currproblcancer.2018.06.00330064936
    [Google Scholar]
  7. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  8. PaikE.S. LimM.C. KimM.H. KimY.H. SongE.S. SeongS.J. SuhD.H. LeeJ.M. LeeC. ChoiC.H. Prognostic model for survival and recurrence in patients with early-stage cervical cancer: A Korean gynecologic oncology group study (KGOG 1028).Cancer Res. Treat.202052132033310.4143/crt.2019.12431401822
    [Google Scholar]
  9. ShahrajabianM.H. SunW. Survey on Multi-omics, and Multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  10. YiY. ZhengJ. ZhouY. LiuZ. WengD. Role of pyroptotic cell death in the pathogenesis of NASH.Biocell202044171110.32604/biocell.2020.08686
    [Google Scholar]
  11. KaratiD. KumarD. Molecular insight into the apoptotic mechanism of cancer cells: An explicative review.Curr. Mol. Pharmacol.202417e1876142927322310.2174/011876142927322323112407222338389419
    [Google Scholar]
  12. LiuX. ZhuangL. GanB. Disulfidptosis: Disulfide stress– induced cell death.Trends Cell Biol.202434432733710.1016/j.tcb.2023.07.00937574347
    [Google Scholar]
  13. LiuX. NieL. ZhangY. YanY. WangC. ColicM. OlszewskiK. HorbathA. ChenX. LeiG. MaoC. WuS. ZhuangL. PoyurovskyM.V. James YouM. HartT. BilladeauD.D. ChenJ. GanB. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.Nat. Cell Biol.202325340441410.1038/s41556‑023‑01091‑236747082
    [Google Scholar]
  14. HongS. ZhangY. WangD. WangH. ZhangH. JiangJ. ChenL. Disulfidptosis-related lncRNAs signature predicting prognosis and immunotherapy effect in lung adenocarcinoma.Aging202416119972998910.18632/aging.20591138862217
    [Google Scholar]
  15. ZhengP. ZhouC. DingY. DuanS. Disulfidptosis: A new target for metabolic cancer therapy.J. Exp. Clin. Cancer Res.202342110310.1186/s13046‑023‑02675‑437101248
    [Google Scholar]
  16. MengY. ChenX. DengG. Disulfidptosis: A new form of regulated cell death for cancer treatment.Mol. Biomed.2023411810.1186/s43556‑023‑00132‑437318660
    [Google Scholar]
  17. HeJ. WangX. ChenK. ZhangM. WangJ. The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment.Biochem. Pharmacol.202220511524110.1016/j.bcp.2022.11524136084707
    [Google Scholar]
  18. GuY. AlbuquerqueC.P. BraasD. ZhangW. VillaG.R. BiJ. IkegamiS. MasuiK. GiniB. YangH. GahmanT.C. ShiauA.K. CloughesyT.F. ChristofkH.R. ZhouH. GuanK.L. MischelP.S. mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT.Mol. Cell2017671128138.e710.1016/j.molcel.2017.05.03028648777
    [Google Scholar]
  19. WangY. DengY. XieH. CaoS. Hub gene of disulfidptosis-related immune checkpoints in breast cancer.Med. Oncol.202340822210.1007/s12032‑023‑02073‑y37402987
    [Google Scholar]
  20. QiC. MaJ. SunJ. WuX. DingJ. The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma.Aging202315115075509510.18632/aging.20478237315289
    [Google Scholar]
  21. FengZ. ZhaoQ. DingY. XuY. SunX. ChenQ. ZhangY. MiaoJ. ZhuJ. Identification a unique disulfidptosis classification regarding prognosis and immune landscapes in thyroid carcinoma and providing therapeutic strategies.J. Cancer Res. Clin. Oncol.202314913111571117010.1007/s00432‑023‑05006‑437347261
    [Google Scholar]
  22. YangL. LiuJ. LiS. LiuX. ZhengF. XuS. FuB. XiongJ. Based on disulfidptosis, revealing the prognostic and immunological characteristics of renal cell carcinoma with tumor thrombus of vena cava and identifying potential therapeutic target AJAP1.J. Cancer Res. Clin. Oncol.2023149129787980410.1007/s00432‑023‑04877‑x37247081
    [Google Scholar]
  23. LiuH. HeS. TanL. LiM. ChenC. TanR. Disulfidptosis-related long non-coding RNAs predict prognosis and indicate therapeutic response in non-small cell lung carcinoma.Oncologie202426115116510.1515/oncologie‑2023‑0384
    [Google Scholar]
  24. ZhouS. LiuJ. WanA. ZhangY. QiX. Epigenetic regulation of diverse cell death modalities in cancer: A focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis.J. Hematol. Oncol.20241712210.1186/s13045‑024‑01545‑638654314
    [Google Scholar]
  25. Van der AuweraG.A. CarneiroM.O. HartlC. PoplinR. del AngelG. Levy-MoonshineA. JordanT. ShakirK. RoazenD. ThibaultJ. BanksE. GarimellaK.V. AltshulerD. GabrielS. DePristoM.A. From FastQ data to high confidence variant calls: The genome analysis Toolkit best practices pipeline.Curr. Protoc. Bioinformatics.201343111011.10.111.10.33
    [Google Scholar]
  26. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  27. TherneauT.J.R.p.v. A package for survival analysis in S.R Package version2015272014
    [Google Scholar]
  28. FriedmanJ. HastieT. TibshiraniR. NarasimhanB. TayK. SimonN. QianJ. Package ‘glmnet’.CRAN R Repositary2021595
    [Google Scholar]
  29. KoldeR. Package ‘pheatmap’R Package Version201517790
    [Google Scholar]
  30. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  31. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  32. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  33. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  34. ShenW. SongZ. ZhongX. HuangM. ShenD. GaoP. QianX. WangM. HeX. WangT. LiS. SongX. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.iMeta202213e3610.1002/imt2.3638868713
    [Google Scholar]
  35. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  36. MomenimovahedZ. MazidimoradiA. AmiriS. NooraieZ. AllahgholiL. SalehiniyaH. Temporal trends of cervical cancer between 1990 and 2019, in Asian countries by geographical region and socio-demographic index, and comparison with global data.Oncologie202325211914810.1515/oncologie‑2022‑1009
    [Google Scholar]
  37. ArbynM. WeiderpassE. BruniL. de SanjoséS. SaraiyaM. FerlayJ. BrayF. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis.Lancet Glob. Health202082e191e20310.1016/S2214‑109X(19)30482‑631812369
    [Google Scholar]
  38. MacheskyL.M. Deadly actin collapse by disulfidptosis.Nat. Cell Biol.202325337537610.1038/s41556‑023‑01100‑436918690
    [Google Scholar]
  39. XieJ. DengX. XieY. ZhuH. LiuP. DengW. NingL. TangY. SunY. TangH. CaiM. XieX. ZouY. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer.MedComm202453e50210.1002/mco2.50238420162
    [Google Scholar]
  40. WuY. YangM. FanJ. PengY. DengL. DingY. YangR. ZhouJ. MiaoD. FuQ. Deficiency of osteoblastic Arl6ip5 impaired osteoblast differentiation and enhanced osteoclastogenesis via disturbance of ER calcium homeostasis and induction of ER stress-mediated apoptosis.Cell Death Dis.2014510e1464e146410.1038/cddis.2014.42725321471
    [Google Scholar]
  41. ChoO. KimD.W. CheongJ.Y. Screening plasma exosomal RNAs as diagnostic markers for cervical cancer: An analysis of patients who underwent primary chemoradiotherapy.Biomolecules20211111169110.3390/biom1111169134827689
    [Google Scholar]
  42. TurnbullJ. TiberiaE. PereiraS. ZhaoX. PenceaN. WheelerA.L. YuW.Q. IvovicA. NaranianT. IsraelianN. DraginovA. PiliguianM. FranklandP.W. WangP. AckerleyC.A. GiaccaA. MinassianB.A. Deficiency of a glycogen synthase-associated protein, Epm2aip1, causes decreased glycogen synthesis and hepatic insulin resistance.J. Biol. Chem.201328848346273463710.1074/jbc.M113.48319824142699
    [Google Scholar]
  43. ChallaB. FrankelW.L. KnightD. PearlmanR. HampelH. ChenW. EPM2AIP1 immunohistochemistry is inadequate as a surrogate marker for MLH1 promoter hypermethylation testing in colorectal cancer.Hum. Pathol.2024150747710.1016/j.humpath.2024.06.01738945374
    [Google Scholar]
  44. FroeseD.S. MichaeliA. McCorvieT.J. KrojerT. SasiM. MelaevE. GoldblumA. ZatsepinM. LossosA. ÁlvarezR. EscribáP.V. MinassianB.A. von DelftF. KakhlonO. YueW.W. Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design.Hum. Mol. Genet.201524205667567610.1093/hmg/ddv28026199317
    [Google Scholar]
  45. DingZ. YangH.W. XiaT.S. WangB. DingQ. Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction.Int. J. Mol. Med.201536247348410.3892/ijmm.2015.223726046131
    [Google Scholar]
  46. ZhangJ. Jun ChoS. ChenX. RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability.Proc. Natl. Acad. Sci. USA2010107219614961910.1073/pnas.091259410720457941
    [Google Scholar]
  47. JiangY. XuE. ZhangJ. ChenM. FloresE. ChenX. The Rbm38-p63 feedback loop is critical for tumor suppression and longevity.Oncogene201837212863287210.1038/s41388‑018‑0176‑529520104
    [Google Scholar]
  48. YeJ. LiangR. BaiT. LinY. MaiR. WeiM. YeX. LiL. WuF. RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201837121210.1186/s13046‑018‑0852‑x30176896
    [Google Scholar]
  49. YangL. ZhangY. LingC. HengW. RNPC1 inhibits non-small cell lung cancer progression via regulating miR-181a/CASC2 axis.Biotechnol. Lett.201840354355010.1007/s10529‑017‑2504‑129288351
    [Google Scholar]
  50. ChengG. JiC. YangN. MengL. DingY. WeiJ. RNA-binding protein RBM38: Acting as a tumor suppressor in colorectal cancer.Int. J. Clin. Exp. Med.20169471157126
    [Google Scholar]
  51. ZouC. WanY. HeL. ZhengJ.H. MeiY. ShiJ. ZhangM. DongZ. ZhangD. RBM38 in cancer: Role and mechanism.Cell. Mol. Life Sci.202178111712810.1007/s00018‑020‑03593‑w32642788
    [Google Scholar]
  52. ZhouM. HanY. JiangJ. Ulk4 promotes Shh signaling by regulating Stk36 ciliary localization and Gli2 phosphorylation.eLife202312RP8863710.7554/eLife.88637.338096226
    [Google Scholar]
  53. LangB. PuJ. HunterI. LiuM. Martin-GranadosC. ReillyT.J. GaoG-D. GuanZ-L. LiW-D. ShiY-Y. HeG. HeL. StefánssonH. St ClairD. BlackwoodD.H. McCaigC.D. ShenS. Recurrent deletions of ULK4 in schizophrenia: A gene crucial for neuritogenesis and neuronal motility.J. Cell Sci.2014127Pt 363064024284070
    [Google Scholar]
  54. LeeS.U. MaedaT. POK/ZBTB proteins: An emerging family of proteins that regulate lymphoid development and function.Immunol. Rev.2012247110711910.1111/j.1600‑065X.2012.01116.x22500835
    [Google Scholar]
  55. LimJ.H. Zinc finger and BTB domain-containing protein 3 is essential for the growth of cancer cells.BMB Rep.201447740541010.5483/BMBRep.2014.47.7.07524856827
    [Google Scholar]
  56. YamaguchiR. PerkinsG. Animal models for studying tumor microenvironment (TME) and resistance to lymphocytic infiltration.Cancer Biol. Ther.201819974575410.1080/15384047.2018.147072229723108
    [Google Scholar]
  57. NajafiM. FarhoodB. MortezaeeK. Extracellular matrix (ECM) stiffness and degradation as cancer drivers.J. Cell. Biochem.201912032782279010.1002/jcb.2768130321449
    [Google Scholar]
  58. MohanV. DasA. SagiI. Emerging roles of ECM remodeling processes in cancer.Semin. Cancer Biol.20206219220010.1016/j.semcancer.2019.09.00431518697
    [Google Scholar]
  59. BiteauB. HochmuthC.E. JasperH. Maintaining tissue homeostasis: Dynamic control of somatic stem cell activity.Cell Stem Cell20119540241110.1016/j.stem.2011.10.00422056138
    [Google Scholar]
  60. SutherlandT.E. DyerD.P. AllenJ.E. The extracellular matrix and the immune system: A mutually dependent relationship.Science20233796633eabp896410.1126/science.abp896436795835
    [Google Scholar]
  61. LiX. BecharaR. ZhaoJ. McGeachyM.J. GaffenS.L. IL-17 receptor–based signaling and implications for disease.Nat. Immunol.201920121594160210.1038/s41590‑019‑0514‑y31745337
    [Google Scholar]
  62. ZhaoJ. ChenX. HerjanT. LiX. The role of interleukin-17 in tumor development and progression.J. Exp. Med.20202171e2019029710.1084/jem.2019029731727782
    [Google Scholar]
  63. SarvariaA. MadrigalJ.A. SaudemontA. B cell regulation in cancer and anti-tumor immunity.Cell. Mol. Immunol.201714866267410.1038/cmi.2017.3528626234
    [Google Scholar]
  64. TokunagaR. NaseemM. LoJ.H. BattaglinF. SoniS. PucciniA. BergerM.D. ZhangW. BabaH. LenzH.J. B cell and B cell-related pathways for novel cancer treatments.Cancer Treat. Rev.201973101910.1016/j.ctrv.2018.12.00130551036
    [Google Scholar]
  65. YamadaY. NambaK. FujiiT. Cardiac muscle thin filament structures reveal calcium regulatory mechanism.Nat. Commun.202011115310.1038/s41467‑019‑14008‑131919429
    [Google Scholar]
  66. EstevesF. RueffJ. KranendonkM. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family.J. Xenobiot.20211139411410.3390/jox1103000734206277
    [Google Scholar]
  67. Nolfi-DoneganD. BraganzaA. ShivaS. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement.Redox Biol.20203710167410.1016/j.redox.2020.10167432811789
    [Google Scholar]
  68. KlingeS. WoolfordJ.L.Jr Ribosome assembly coming into focus.Nat. Rev. Mol. Cell Biol.201920211613110.1038/s41580‑018‑0078‑y30467428
    [Google Scholar]
  69. TabuchiC. SulH.S. Signaling pathways regulating thermogenesis.Front. Endocrinol.20211259502010.3389/fendo.2021.59502033841324
    [Google Scholar]
  70. WebsterR.M. The immune checkpoint inhibitors: Where are we now?Nat. Rev. Drug Discov.2014131288388410.1038/nrd447625345674
    [Google Scholar]
  71. TekgucM. WingJ.B. OsakiM. LongJ. SakaguchiS. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells.Proc. Natl. Acad. Sci. USA202111830e202373911810.1073/pnas.202373911834301886
    [Google Scholar]
  72. ZhouX. WangY. ZhengJ. WangS. LiuC. YaoX. RenY. WangX. Integrative study reveals the prognostic and immunotherapeutic value of CD274 and PDCD1LG2 in pan-cancer.Front. Genet.20221399030110.3389/fgene.2022.99030136276934
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303374396250129111340
Loading
/content/journals/emiddt/10.2174/0118715303374396250129111340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test