Skip to content
2000
image of Abnormal Elevation of the Expression of Costimulatory Molecule CD226 in Graves' Disease: Two Cross-Sectional Studies

Abstract

Objective

This study aimed to explore the differential expression of the co-stimulatory molecule CD226 in lymphocytes from patients with New-Onset Graves' Disease (NOGD) and its correlation with clinical indicators.

Methods

Sixty-eight participants were recruited for the discovery experiment (NOGD: healthy control (HC) = 39:29). Peripheral Blood Mononuclear Cells (PBMCs) were isolated. Flow cytometry was performed to detect CD226 expression on multiple lymphocyte subtypes. CD226 mRNA expression in PBMCs was detected by qPCR. Fifty-eight participants were recruited for the validation experiment (NOGD: HC=35:23). CD4+ T cells were isolated, and the level of CD226 mRNA in CD4+ T cells was detected. Five cases of each of Graves' disease (GD) thyroid and control thyroid were collected for CD226 immunohistochemical staining.

Results

CD226 expression was the highest in monocytes (NOGD: 94.1% vs. HC: 94.8%) and the lowest in CD8+ T cells (NOGD: 65.3% vs. HC: 64.9%). Compared with HC, CD226 expression on the CD4+ T cells increased in the peripheral blood of NOGD patients and correlated with TPO-Ab. Meanwhile, CD226 mRNA levels were elevated in CD4+ T cells and positively correlated with TR-Ab. CD226 expression was significantly increased in the thyroid tissues of GD patients.

Conclusion

This study demonstrates for the first time the elevated expression of CD226 in CD4+ T cells and thyroid tissue of NOGD. The abnormal elevation of CD226 is correlated with clinical indicators. It suggests that the co-stimulatory molecule CD226 is involved in the pathogenesis of GD.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303337480250107052116
2025-02-12
2025-05-07
The full text of this item is not currently available.

References

  1. Hoang T.D. Stocker D.J. Chou E.L. Burch H.B. 2022 update on clinical management of graves disease and thyroid eye disease. Endocrinol. Metab. Clin. North Am. 2022 51 2 287 304 10.1016/j.ecl.2021.12.004 35662442
    [Google Scholar]
  2. Lane L.C. Wood C.L. Cheetham T. Graves’ disease: Moving forwards. Arch. Dis. Child. 2023 108 4 276 281 10.1136/archdischild‑2022‑323905 35831126
    [Google Scholar]
  3. Lee S.Y. Pearce E.N. Hyperthyroidism. JAMA 2023 330 15 1472 1483 10.1001/jama.2023.19052 37847271
    [Google Scholar]
  4. Grixti L. Lane L.C. Pearce S.H. The genetics of Graves’ disease. Rev. Endocr. Metab. Disord. 2024 25 1 203 214 10.1007/s11154‑023‑09848‑8 38108994
    [Google Scholar]
  5. Xian W. Wu D. Liu B. Hong S. Huo Z. Xiao H. Li Y. Graves disease and inflammatory bowel disease: A bidirectional mendelian randomization. J. Clin. Endocrinol. Metab. 2023 108 5 1075 1083 10.1210/clinem/dgac683 36459455
    [Google Scholar]
  6. Banta K.L. Xu X. Chitre A.S. Au-Yeung A. Takahashi C. O’Gorman W.E. Wu T.D. Mittman S. Cubas R. Comps-Agrar L. Fulzele A. Bennett E.J. Grogan J.L. Hui E. Chiang E.Y. Mellman I. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. Immunity 2022 55 3 512 526.e9 10.1016/j.immuni.2022.02.005 35263569
    [Google Scholar]
  7. Zhou R. Chen S. Wu Q. Liu L. Wang Y. Mo Y. Zeng Z. Zu X. Xiong W. Wang F. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett. 2023 573 216381 10.1016/j.canlet.2023.216381 37660884
    [Google Scholar]
  8. Feng M. Wu Z. Zhou Y. Wei Z. Tian E. Mei S. Zhu Y. Liu C. He F. Li H. Xie C. Jin J. Dong J. Yang D. Yu K. Qian J. Lambrechts D. Wang M.W. Zhu D. BCL9 regulates CD226 and CD96 checkpoints in CD8+ T cells to improve PD-1 response in cancer. Signal Transduct. Target. Ther. 2021 6 1 313 10.1038/s41392‑021‑00730‑0 34417435
    [Google Scholar]
  9. Zhong T. Li X. Lei K. Tang R. Deng Q. Love P.E. Zhou Z. Zhao B. Li X. TGF-β-mediated crosstalk between TIGIT+ Tregs and CD226+CD8+ T cells in the progression and remission of type 1 diabetes. Nat. Commun. 2024 15 1 8894 10.1038/s41467‑024‑53264‑8 39406740
    [Google Scholar]
  10. Lozano E. Joller N. Cao Y. Kuchroo V.K. Hafler D.A. The CD226/CD155 interaction regulates the proinflammatory (Th1/Th17)/anti-inflammatory (Th2) balance in humans. J. Immunol. 2013 191 7 3673 3680 10.4049/jimmunol.1300945 23980210
    [Google Scholar]
  11. Qin Y. Chen L. Fei Q. Shao X. Lv W. Yang J. Xu F. Shi J. Upregulation of CD226 on subsets of T cells and NK cells is associated with upregulated adhesion molecules and cytotoxic factors in patients with tuberculosis. Int. Immunopharmacol. 2023 120 110360 10.1016/j.intimp.2023.110360 37244120
    [Google Scholar]
  12. Šunina M. Alnek K. Kisand K. Uibo R. Human CD4 + and CD8 + T lymphocyte subpopulations have significantly different surface expression patterns of CD226 and TIGIT molecules. Scand. J. Immunol. 2021 94 3 e13089 10.1111/sji.13089 35971920
    [Google Scholar]
  13. Thirawatananond P. Brown M.E. Sachs L.K. Arnoletti J.M. Yeh W.I. Posgai A.L. Shapiro M.R. Chen Y.G. Brusko T.M. Treg-specific CD226 deletion reduces diabetes incidence in NOD mice by improving regulatory T-cell stability. Diabetes 2023 72 11 1629 1640 10.2337/db23‑0307 37625150
    [Google Scholar]
  14. Morandi E. Adoue V. Bernard I. Friebel E. Nunez N. Aubert Y. Masson F. Dejean A.S. Becher B. Astier A. Martinet L. Saoudi A. Impact of the multiple sclerosis-associated genetic variant CD226 Gly307Ser on human CD8 T-cell functions. Neurol. Neuroimmunol. Neuroinflamm. 2024 11 6 e200306 10.1212/NXI.0000000000200306 39231385
    [Google Scholar]
  15. Vázquez-Reyes A. Zambrano-Zaragoza J.F. Agraz-Cibrián J.M. Ayón-Pérez M.F. Gutiérrez-Silerio G.Y. Del Toro-Arreola S. Alejandre-González A.G. Ortiz-Martínez L. Haramati J. Tovar-Ocampo I.C. Victorio-De los Santos M. Gutiérrez-Franco J. Genetic variant of DNAM-1 rs763361 C>T is associated with ankylosing spondylitis in a Mexican population. Curr. Issues Mol. Biol. 2024 46 4 2819 2826 10.3390/cimb46040176 38666906
    [Google Scholar]
  16. Zhao Q. Maynard C.L. Mucus, commensals, and the immune system. Gut Microbes 2022 14 1 2041342 10.1080/19490976.2022.2041342 35239459
    [Google Scholar]
  17. Chaker L. Cooper D.S. Walsh J.P. Peeters R.P. Hyperthyroidism. Lancet 2024 403 10428 768 780 10.1016/S0140‑6736(23)02016‑0 38278171
    [Google Scholar]
  18. Gallo D. Mortara L. Veronesi G. Cattaneo S.A.M. Genoni A. Gallazzi M. Peruzzo C. Lasalvia P. Moretto P. Bruno A. Passi A. Pini A. Nauti A. Lavizzari M.A. Marinò M. Lanzolla G. Tanda M.L. Bartalena L. Piantanida E. Add-on effect of selenium and vitamin D combined supplementation in early control of graves’ disease hyperthyroidism during methimazole treatment. Front. Endocrinol. (Lausanne) 2022 13 886451 10.3389/fendo.2022.886451 35784564
    [Google Scholar]
  19. Petranović Ovčariček P. Görges R. Giovanella L. Autoimmune thyroid diseases. Semin. Nucl. Med. 2024 54 2 219 236 10.1053/j.semnuclmed.2023.11.002 38044176
    [Google Scholar]
  20. Wiersinga W.M. Poppe K.G. Effraimidis G. Hyperthyroidism: Aetiology, pathogenesis, diagnosis, management, complications, and prognosis. Lancet Diabetes Endocrinol. 2023 11 4 282 298 10.1016/S2213‑8587(23)00005‑0 36848916
    [Google Scholar]
  21. Hirao N. Iijima T. Tanuma D. Ohira E. Kurai H. Shinzawa T. Kase M. Sakurai S. Tomaru T. Jojima T. Usui I. Aso Y. Effects of treatment with methimazole on circulating CD4 + and CD8 + T cells positive for programed cell death protein‐1 and on subsets of CD4 + T cells in untreated hyperthyroid patients with Graves’ disease. Clin. Endocrinol. (Oxf.) 2022 97 6 841 848 10.1111/cen.14788 35692119
    [Google Scholar]
  22. Xin Z. Hua L. Shi T-T. Liu H-Y. Zhu X-R. Xie R.R. Sun R. Cao X. Yang J.K. Integrated proteomics and metabolomics analyses of serum in chinese patients with severe and active graves’ orbitopathy: A cross-sectional study. Endocr. Metab. Immune Disord. Drug Targets 2023 23 9 1151 1161 10.2174/1871530323666230221120711 36809953
    [Google Scholar]
  23. Goto M. Takahashi H. Yoshida R. Age-associated CD4+ T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci Immunol. 2024 9 93 eadk1643 10.1126/sciimmunol.adk1643 38330141
    [Google Scholar]
  24. Veatch J.R. Lee S.M. Shasha C. Singhi N. Szeto J.L. Moshiri A.S. Kim T.S. Smythe K. Kong P. Fitzgibbon M. Jesernig B. Bhatia S. Tykodi S.S. Hall E.T. Byrd D.R. Thompson J.A. Pillarisetty V.G. Duhen T. McGarry Houghton A. Newell E. Gottardo R. Riddell S.R. Neoantigen-specific CD4+ T cells in human melanoma have diverse differentiation states and correlate with CD8+ T cell, macrophage, and B cell function. Cancer Cell 2022 40 4 393 409.e9 10.1016/j.ccell.2022.03.006 35413271
    [Google Scholar]
  25. Wei X. Niu X. T follicular helper cells in autoimmune diseases. J. Autoimmun. 2023 134 102976 10.1016/j.jaut.2022.102976 36525939
    [Google Scholar]
  26. Sato Y. Jain A. Ohtsuki S. Okuyama H. Sturmlechner I. Takashima Y. Le K.P.C. Bois M.C. Berry G.J. Warrington K.J. Goronzy J.J. Weyand C.M. Stem-like CD4 + T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 2023 15 712 eadh0380 10.1126/scitranslmed.adh0380 37672564
    [Google Scholar]
  27. Gadjalova I. Heinze J.M. Goess M.C. Hofmann J. Buck A. Weber M.C. Blissenbach B. Kampick M. Krut O. Steiger K. Janssen K.P. Neumann P.A. Ruland J. Keppler S.J. B cell-mediated CD4 T-cell costimulation via CD86 exacerbates pro-inflammatory cytokine production during autoimmune intestinal inflammation. Mucosal Immunol. 2024 17 1 67 80 10.1016/j.mucimm.2023.10.005 37918715
    [Google Scholar]
  28. Elia G. Fallahi P. Ragusa F. Paparo S.R. Mazzi V. Benvenga S. Antonelli A. Ferrari S.M. Precision medicine in Graves' disease and ophthalmopathy. Front Pharmacol. 2021 12 754386 10.3389/fphar.2021.754386 34776972
    [Google Scholar]
  29. Fallahi P. Ferrari S.M. Elia G. Ragusa F. Paparo S.R. Patrizio A. Camastra S. Miccoli M. Cavallini G. Benvenga S. Antonelli A. Cytokines as targets of novel therapies for Graves’ ophthalmopathy. Front. Endocrinol. (Lausanne) 2021 12 654473 10.3389/fendo.2021.654473 33935970
    [Google Scholar]
  30. Janyga S. Marek B. Kajdaniuk D. Ogrodowczyk-Bobik M. Urbanek A. Bułdak Ł. CD4+ cells in autoimmune thyroid disease. Endokrynol. Pol. 2021 72 5 572 583 10.5603/EP.a2021.0076 34647609
    [Google Scholar]
  31. Luo R.G. Wu Y.F. Lu H.W. Weng D. Xu J.Y. Wang L.L. Zhang L.S. Zhao C.Q. Li J.X. Yu Y. Jia X.M. Xu J.F. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur. Respir. J. 2024 63 5 2400386 10.1183/13993003.00386‑2024 38514095
    [Google Scholar]
  32. Patoine D. Bouchard K. Blais-Lecours P. Courtemanche O. Huppé C.A. Marsolais D. Bissonnette E.Y. Lauzon-Joset J.F. CD200Fc limits dendritic cell and B-cell activation during chronic allergen exposures. J. Leukoc. Biol. 2023 114 1 84 91 10.1093/jleuko/qiad042 37032534
    [Google Scholar]
  33. Xu C. Zhang T. Wang H. Zhu L. Ruan Y. Huang Z. Wang J. Zhu H. Huang C. Pan M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J. Autoimmun. 2024 142 103128 10.1016/j.jaut.2023.103128 37939532
    [Google Scholar]
  34. Song Z. Yuan W. Zheng L. Wang X. Kuchroo V.K. Mohib K. Rothstein D.M. B Cell IL-4 drives Th2 responses in vivo, ameliorates allograft rejection, and promotes allergic airway disease. Front. Immunol. 2022 13 762390 10.3389/fimmu.2022.762390 35359977
    [Google Scholar]
  35. Omma T. Yücel Ç. Sertoğlu E. Firat S.N. Çulha C. Özgürtaş T. The role of IL-6 and osteoprotegerin in bone metabolism in patients with Graves’ disease. Turk. J. Med. Sci. 2022 52 2 338 345 10.55730/1300‑0144.5320 36161625
    [Google Scholar]
  36. Yao Z. Guo F. Tan Y. Zhang Y. Geng Y. Yang G. Wang S. Causal relationship between inflammatory cytokines and autoimmune thyroid disease: A bidirectional two-sample Mendelian randomization analysis. Front Immunol. 2024 15 1334772 10.3389/fimmu.2024.1334772 38571956
    [Google Scholar]
  37. Xie B. Xiong W. Zhang F. Wang N. Luo Y. Chen Y. Cao J. Chen Z. Ma C. Chen H. The miR-103a-3p/TGFBR3 axis regulates TGF-β-induced orbital fibroblast activation and fibrosis in thyroid-eye disease. Mol. Cell. Endocrinol. 2023 559 111780 10.1016/j.mce.2022.111780 36179941
    [Google Scholar]
  38. Wang Y. Fang S. Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2023 37 2 101743 10.1016/j.beem.2023.101743 36841747
    [Google Scholar]
  39. Hansen M. Cheever A. Weber K. O’Neill K. Characterizing the interplay of lymphocytes in Graves’ disease. Int. J. Mol. Sci. 2023 24 7 6835 10.3390/ijms24076835 37047805
    [Google Scholar]
  40. Torimoto K. Okada Y. Nakayamada S. Kubo S. Kurozumi A. Narisawa M. Tanaka Y. Comprehensive immunophenotypic analysis reveals the pathological involvement of Th17 cells in Graves’ disease. Sci. Rep. 2022 12 1 16880 10.1038/s41598‑022‑19556‑z 36207336
    [Google Scholar]
  41. Chen A. Huang L. Zhang L. Helper T. Correction: Helper T cell 17 and regulatory T cell levels in peripheral blood of newly diagnosed patients with autoimmune thyroid disease: A meta-analysis. Horm. Metab. Res. 2023 55 1 e2 10.1055/a‑2117‑7652 36332627
    [Google Scholar]
  42. Lu Y. Xing C. Zhang C. Lv X. Liu G. Chen F. Hou Z. Zhang D. Promotion of IL‑17/NF‑κB signaling in autoimmune thyroid diseases. Exp. Ther. Med. 2022 25 1 51 10.3892/etm.2022.11750 36588813
    [Google Scholar]
  43. Janyga S. Kajdaniuk D. Czuba Z. Ogrodowczyk-Bobik M. Urbanek A. Kos-Kudła B. Marek B. Interleukin (IL)-23, IL-31, and IL-33 play a role in the course of autoimmune endocrine diseases. Endocr. Metab. Immune Disord. Drug Targets 2024 24 5 585 595 10.2174/1871530323666230908143521 37694787
    [Google Scholar]
  44. Zake T. Kalere I. Upmale-Engela S. Svirskis S. Gersone G. Skesters A. Groma V. Konrade I. Plasma levels of Th17‐associated cytokines and selenium status in autoimmune thyroid diseases. Immun. Inflamm. Dis. 2021 9 3 792 803 10.1002/iid3.433 33943012
    [Google Scholar]
  45. Muruganandam M. Ariza-Hutchinson A. Patel R.A. Sibbitt W.L. Jr Biomarkers in the pathogenesis, diagnosis, and treatment of systemic sclerosis. J. Inflamm. Res. 2023 16 4633 4660 10.2147/JIR.S379815 37868834
    [Google Scholar]
  46. Sakano Y. Sakano K. Hurrell B.P. Helou D.G. Shafiei-Jahani P. Kazemi M.H. Li X. Shen S. Hilser J.R. Hartiala J.A. Allayee H. Barbers R. Akbari O. Blocking CD226 regulates type 2 innate lymphoid cell effector function and alleviates airway hyperreactivity. J. Allergy Clin. Immunol. 2024 153 5 1406 1422.e6 10.1016/j.jaci.2024.01.003 38244725
    [Google Scholar]
  47. Conner M. Hance K.W. Yadavilli S. Smothers J. Waight J.D. Emergence of the CD226 Axis in Cancer Immunotherapy. Front. Immunol. 2022 13 914406 10.3389/fimmu.2022.914406 35812451
    [Google Scholar]
  48. Nakamura-Shinya Y. Iguchi-Manaka A. Murata R. Sato K. Vo A.V. Kanemaru K. Shibuya A. Shibuya K. DNAM-1 promotes inflammation-driven tumor development via enhancing IFN-γ production. Int. Immunol. 2022 34 3 149 157 10.1093/intimm/dxab099 34672321
    [Google Scholar]
  49. Wang B. Iriguchi S. Waseda M. Ueda N. Ueda T. Xu H. Minagawa A. Ishikawa A. Yano H. Ishi T. Ito R. Goto M. Takahashi R. Uemura Y. Hotta A. Kaneko S. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 2021 5 5 429 440 10.1038/s41551‑021‑00730‑z 34002062
    [Google Scholar]
  50. Li Z. Ma R. Tang H. Guo J. Shah Z. Zhang J. Liu N. Cao S. Marcucci G. Artis D. Caligiuri M.A. Yu J. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell 2024 187 3 624 641.e23 10.1016/j.cell.2023.12.015 38211590
    [Google Scholar]
  51. Ma J. Hu W. Zhang D. Xie J. Duan C. Liu Y. Wang Y. Xu X. Cheng K. Jin B. Zhang Y. Zhuang R. CD226 knockout alleviates high-fat diet induced obesity by suppressing proinflammatory macrophage phenotype. J. Transl. Med. 2021 19 1 477 10.1186/s12967‑021‑03150‑4 34823548
    [Google Scholar]
  52. Murillo O. Moreira J.D. Kujur W. Velasco-Alzate K. Sen Santara S. Konduru N.V. Mulik S. Costimulatory CD226 signaling regulates proliferation of memory-like NK cells in healthy individuals with latent Mycobacterium tuberculosis infection. Int. J. Mol. Sci. 2022 23 21 12838 10.3390/ijms232112838 36361628
    [Google Scholar]
  53. Chiang E.Y. Mellman I. TIGIT-CD226-PVR axis: Advancing immune checkpoint blockade for cancer immunotherapy. J. Immunother. Cancer 2022 10 4 e004711 10.1136/jitc‑2022‑004711 35379739
    [Google Scholar]
  54. Cichocki F. Zhang B. Wu C.Y. Chiu E. Day A. O’Connor R.S. Yackoubov D. Simantov R. McKenna D.H. Cao Q. Defor T.E. Janakiram M. Wangen R. Cayci Z. Snyder N. Kumar A. Grzywacz B. Hwang J. Geffen Y. Miller J.S. Maakaron J. Bachanova V. Nicotinamide enhances natural killer cell function and yields remissions in patients with non-Hodgkin lymphoma. Sci. Transl. Med. 2023 15 705 eade3341 10.1126/scitranslmed.ade3341 37467318
    [Google Scholar]
  55. Wang R. Bao W. Pal M. Liu Y. Yazdanbakhsh K. Zhong H. Intermediate monocytes induced by IFN-γ inhibit cancer metastasis by promoting NK cell activation through FOXO1 and interleukin-27. J. Immunother. Cancer 2022 10 1 e003539 10.1136/jitc‑2021‑003539 35091454
    [Google Scholar]
  56. Luu T.T. Søndergaard J.N. Peña-Pérez L. Kharazi S. Krstic A. Meinke S. Schmied L. Frengen N. Heshmati Y. Kierczak M. Bouderlique T. Wagner A.K. Gustafsson C. Chambers B.J. Achour A. Kutter C. Höglund P. Månsson R. Kadri N. FOXO1 and FOXO3 cooperatively regulate innate lymphoid cell development. Front. Immunol. 2022 13 854312 10.3389/fimmu.2022.854312 35757763
    [Google Scholar]
  57. Hu X. Jia X. Xu C. Wei Y. Wang Z. Liu G. You Q. Lu G. Gong W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism 2021 120 154800 10.1016/j.metabol.2021.154800 34051224
    [Google Scholar]
  58. Wang X. Wang S. Xu X. Jiang Y. Ren L. Zhang H. Li Z. Liu X. Hu X. Ren Y. The effect of Toxoplasma gondii infection on galectin-9 expression in decidual macrophages contributing to dysfunction of decidual NK cells during pregnancy. Parasit. Vectors 2024 17 1 299 10.1186/s13071‑024‑06379‑2 38987795
    [Google Scholar]
  59. Ivanova D.L. Thompson S.B. Klarquist J. Harbell M.G. Kilgore A.M. Lasda E.L. Hesselberth J.R. Hunter C.A. Kedl R.M. Vaccine adjuvant-elicited CD8+ T cell immunity is co-dependent on T-bet and FOXO1. Cell Rep. 2023 42 8 112911 10.1016/j.celrep.2023.112911 37516968
    [Google Scholar]
  60. Kraus E.E. Kakuk-Atkins L. Farinas M.F. Jeffers M. Lovett-Racke A.E. Yang Y. Regulation of autoreactive CD4 T cells by FoxO1 signaling in CNS autoimmunity. J. Neuroimmunol. 2021 359 577675 10.1016/j.jneuroim.2021.577675 34403862
    [Google Scholar]
  61. Jiang M. Fang H. Dang E. Zhang J. Qiao P. Yu C. Yang A. Wang G. Small extracellular vesicles containing miR-381-3p from keratinocytes promote T helper type 1 and T helper type 17 polarization in psoriasis. J. Invest. Dermatol. 2021 141 3 563 574 10.1016/j.jid.2020.07.009 32712160
    [Google Scholar]
  62. Ara A. Xu A. Ahmed K.A. Leary S.C. Islam M.F. Wu Z. Chibbar R. Xiang J. The energy sensor AMPKα1 is critical in rapamycin-inhibition of mTORC1-S6K-induced T-cell memory. Int. J. Mol. Sci. 2021 23 1 37 10.3390/ijms23010037 35008461
    [Google Scholar]
  63. Yu L. Guan Y. Li L. Lu N. Zhang C. The transcription factor Eomes promotes expression of inhibitory receptors on hepatic CD8 + T cells during HBV persistence. FEBS J. 2022 289 11 3241 3261 10.1111/febs.16342 34986510
    [Google Scholar]
  64. Ojanen M.J.T. Caro F.M. Aittomäki S. Ploquin M.J. Ortutay Z. Pekkarinen M. Kesseli J. Vähätupa M. Määttä J. Nykter M. Junttila I.S. Järvinen T.A.H. O´Shea J.J. Biron C.A. Pesu M. FURIN regulates cytotoxic T‐lymphocyte effector function and memory cell transition in mice. Eur. J. Immunol. 2023 53 6 2250246 10.1002/eji.202250246 37015057
    [Google Scholar]
  65. Ara A. Wu Z. Xu A. Ahmed K.A. Leary S.C. Islam M.F. Chibbar R. Wu Y. Xiang J. The Critical Role of AMPKα1 in Regulating Autophagy and Mitochondrial Respiration in IL-15-Stimulated mTORC1Weak Signal-Induced T Cell Memory: An Interplay between Yin (AMPKα1) and Yang (mTORC1) Energy Sensors in T Cell Differentiation. Int. J. Mol. Sci. 2022 23 17 9534 10.3390/ijms23179534 36076931
    [Google Scholar]
  66. Delpoux A. Marcel N. Hess Michelini R. Katayama C.D. Allison K.A. Glass C.K. Quiñones-Parra S.M. Murre C. Loh L. Kedzierska K. Lappas M. Hedrick S.M. Doedens A.L. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 2021 34 4 108674 10.1016/j.celrep.2020.108674 33503413
    [Google Scholar]
  67. Pintor S. Lopez A. Flores D. Lozoya B. Soti B. Pokhrel R. Negrete J. Persans M.W. Gilkerson R. Gunn B. Keniry M. FOXO1 promotes the expression of canonical WNT target genes in examined basal‐like breast and glioblastoma multiforme cancer cells. FEBS Open Bio 2023 13 11 2108 2123 10.1002/2211‑5463.13696 37584250
    [Google Scholar]
  68. Chi J.N. Yang J.Y. Hsueh C.H. Tsai C.Y. Chuang H.C. Tan T.H. MAP4K3/GLK inhibits Treg differentiation by direct phosphorylating IKKβ and inducing IKKβ-mediated FoxO1 nuclear export and Foxp3 downregulation. Theranostics 2022 12 13 5744 5760 10.7150/thno.72148 35966593
    [Google Scholar]
  69. Mazzieri A. Basta G. Calafiore R. Luca G. GLP-1 RAs and SGLT2i: Two antidiabetic agents associated with immune and inflammation modulatory properties through the common AMPK pathway. Front. Immunol. 2023 14 1163288 10.3389/fimmu.2023.1163288 38053992
    [Google Scholar]
  70. Shao Y. Dong Y. Wang W. Chen Z. Hao C. Yang Y. Zhang J. The function and mechanism of dopamine in the activation of CD4 + T cell. Immunopharmacol. Immunotoxicol. 2022 44 3 410 420 10.1080/08923973.2022.2052894 35285388
    [Google Scholar]
  71. Soheilifar M.H. Vaseghi H. Seif F. Ariana M. Ghorbanifar S. Habibi N. Papari Barjasteh F. Pornour M. Concomitant overexpression of mir‐182‐5p and mir‐182‐3p raises the possibility of IL‐17–producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta‐analysis and experimental study. Cancer Sci. 2021 112 2 589 603 10.1111/cas.14764 33283362
    [Google Scholar]
  72. Li H. Xie L. Zhu L. Li Z. Wang R. Liu X. Huang Z. Chen B. Gao Y. Wei L. He C. Ju R. Liu Y. Liu X. Zheng Y. Su W. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat. Commun. 2022 13 1 5866 10.1038/s41467‑022‑33502‑7 36195600
    [Google Scholar]
  73. Yang X. Zhu X. Sheng J. Fu Y. Nie D. You X. Chen Y. Yang X. Ling Q. Zhang H. Li X. Hu S. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat. Commun. 2024 15 1 5961 10.1038/s41467‑024‑50392‑z 39013878
    [Google Scholar]
  74. Xu Q. Zhang X. Li T. Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol. Med. 2022 28 1 144 10.1186/s10020‑022‑00574‑6 36463128
    [Google Scholar]
  75. Chen X. Hu J. Wang Y. Lee Y. Zhao X. Lu H. Zhu G. Wang H. Jiang Y. Liu F. Chen Y. Kim B.S. Zhou Q. Liu X. Wang X. Chang S.H. Dong C. The FoxO4/DKK3 axis represses IFN-γ expression by Th1 cells and limits antimicrobial immunity. J. Clin. Invest. 2022 132 18 e147566 10.1172/JCI147566 36106640
    [Google Scholar]
  76. Negi S. Tandel N. Sharma P. Kumar R. Tyagi R.K. Aceclofenac and methotrexate combination therapy could influence Th1/Th17 axis to modulate rheumatoid-arthritis-induced inflammation. Drug Discov. Today 2023 28 8 103671 10.1016/j.drudis.2023.103671 37330038
    [Google Scholar]
  77. Zhang Y. Xie Y. Zhang X. Duan C. Ma J. Wang Y. Wu Y. Shan N. Cheng K. Zhuang R. Bian K. CD226 implicated in Akt-dependent apoptosis of CD4+ T cell contributes to asthmatic pathogenesis. Cell Death Dis. 2024 15 9 705 10.1038/s41419‑024‑07080‑z 39349422
    [Google Scholar]
  78. Zhang D. Liu Y. Ma J. Xu Z. Duan C. Wang Y. Li X. Han J. Zhuang R. Competitive binding of CD226/TIGIT with poliovirus receptor regulates macrophage polarization and is involved in vascularized skin graft rejection. Am. J. Transplant. 2023 23 7 920 934 10.1016/j.ajt.2023.04.007 37054890
    [Google Scholar]
  79. Wang N. Yi H. Fang L. Jin J. Ma Q. Shen Y. Li J. Liang S. Xiong J. Li Z. Zeng H. Jiang F. Jin B. Chen L. CD226 attenuates treg proliferation via Akt and Erk signaling in an EAE model. Front Immunol. 2020 11 1883 10.3389/fimmu.2020.01883 32983109
    [Google Scholar]
  80. Deng C. Chen Y. Li W. Peng L. Luo X. Peng Y. Zhao L. Wu Q. Zhang W. Zhang X. Fei Y. Alteration of CD226/TIGIT immune checkpoint on T cells in the pathogenesis of primary Sjögren’s syndrome. J. Autoimmun. 2020 113 102485 10.1016/j.jaut.2020.102485 32466852
    [Google Scholar]
  81. Ding S. Zhao P. Song S. Yang Y. Peng C. Chang X. Liu C. A novel enzyme-linked immunosorbent assay tool to evaluate plasma soluble CD226 in primary Sjögren’s syndrome. Anal. Biochem. 2024 692 115573 10.1016/j.ab.2024.115573 38768695
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303337480250107052116
Loading
/content/journals/emiddt/10.2174/0118715303337480250107052116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test