Skip to content
2000
image of Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation

Abstract

Introduction

Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

Method

Mice were fed a high-fat diet and administrated with BBR, followed by measurement of weight change, biochemical indicators, as well as glucose and insulin tolerance. Insulin-resistant 3T3-L1 adipocyte models were established, and the model cells were treated with BBR and IRE1 inhibitors. Cell viability was detected by cell counting kit-8 assay. Inflammatory factor secretion and glucose consumption were measured specific kits. Oil red O staining was used to observe lipid droplet formation, and protein expressions in the IRE1/GSK-3β axis were determined Western blot.

Results

BBR reduced weight, insulin resistance, levels of triglyceride, total cholesterol, free fatty acid, high-density lipoprotein, and low-density lipoprotein but improved glucose tolerance in obese mice. BBR and IRE1 inhibitors demonstrated no cytotoxicity. BBR and IRE1 inhibitors diminished secretion of tumor necrosis factor-alpha, interleukin-6, and monocyte chemoattractant protein 1, lipid droplet formation, and values of p-IRE1/IRE1 and p-GSK-3β/GSK-3β, but elevated glucose consumption in insulin-resistant adipocytes.

Conclusion

BBR improves glucose and lipid metabolism in obese mice through the reduction of IRE1/GSK-3β axis-mediated inflammation, showing the great potential of BBR in reversing insulin resistance in obesity.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303319434241113161606
2025-01-08
2025-06-20
The full text of this item is not currently available.

References

  1. Malenfant JH Obesity in the geriatric population - A global health perspective. J Glob Health Rep. 2019 3 e2019045 10.29392/joghr.3.e2019045 34027129
    [Google Scholar]
  2. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019 15 5 288 298 10.1038/s41574‑019‑0176‑8 30814686
    [Google Scholar]
  3. Gasmi A. Noor S. Menzel A. Doşa A. Pivina L. Bjørklund G. Obesity and insulin resistance: Associations with chronic inflammation, genetic and epigenetic factors. Curr. Med. Chem. 2021 28 4 800 826 10.2174/1875533XMTA57NDQgz 32838708
    [Google Scholar]
  4. Coppo M. Bandinelli M. Chiostri M. Modesti P.A. Poggesi L. Boddi M. T cell-based RAS Activity and insulin levels in obese subjects with low grade inflammation. Am. J. Med. Sci. 2022 363 5 428 434 10.1016/j.amjms.2021.09.003 34571038
    [Google Scholar]
  5. Cinti S. Mitchell G. Barbatelli G. Murano I. Ceresi E. Faloia E. Wang S. Fortier M. Greenberg A.S. Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005 46 11 2347 2355 10.1194/jlr.M500294‑JLR200 16150820
    [Google Scholar]
  6. Szukiewicz D. Molecular mechanisms for the vicious cycle between insulin resistance and the inflammatory response in obesity. Int. J. Mol. Sci. 2023 24 12 9818 10.3390/ijms24129818 37372966
    [Google Scholar]
  7. Lu Z. Li Y. Song J. Characterization and treatment of inflammation and insulin resistance in obese adipose tissue. Diabetes Metab. Syndr. Obes. 2020 13 3449 3460 10.2147/DMSO.S271509 33061505
    [Google Scholar]
  8. Kojta I. Chacińska M. Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020 12 5 1305 10.3390/nu12051305 32375231
    [Google Scholar]
  9. Suren Garg S. Kushwaha K. Dubey R. Gupta J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res. Clin. Pract. 2023 200 110691 10.1016/j.diabres.2023.110691 37150407
    [Google Scholar]
  10. Ajoolabady A Lebeaupin C Wu NN Kaufman RJ Ren J ER stress and inflammation crosstalk in obesity. 2023 43 1 5 30 10.1002/med.21921
    [Google Scholar]
  11. Han Y Tian M Wang R Guo D Zhang D Liu L. LncRNA SNHG14/miR-497a-5p/BACE1 axis modulates obesity-induced adipocyte inflammation and endoplasmic reticulum stress. 2023 37 6 e23343
    [Google Scholar]
  12. Liu Y. Yu J. Shi Y.C. Zhang Y. Lin S. The role of inflammation and endoplasmic reticulum stress in obesity-related cognitive impairment. Life Sci. 2019 233 116707 10.1016/j.lfs.2019.116707 31374234
    [Google Scholar]
  13. Xu S. Xi J. Wu T. Wang Z. The role of adipocyte endoplasmic reticulum stress in obese adipose tissue dysfunction: A review. Int. J. Gen. Med. 2023 16 4405 4418 10.2147/IJGM.S428482 37789878
    [Google Scholar]
  14. Yang L Calay ES Fan J Arduini A Kunz RC Gygi SP S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 2015 349 6247 500 506 10.1126/science.aaa0079
    [Google Scholar]
  15. Foley K.P. Chen Y. Barra N.G. Heal M. Kwok K. Tamrakar A.K. Chi W. Duggan B.M. Henriksbo B.D. Liu Y. Schertzer J.D. Inflammation promotes adipocyte lipolysis via IRE1 kinase. J. Biol. Chem. 2021 296 100440 10.1016/j.jbc.2021.100440 33610548
    [Google Scholar]
  16. Kim S. Joe Y. Kim H.J. Kim Y.S. Jeong S.O. Pae H.O. Ryter S.W. Surh Y.J. Chung H.T. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. J. Immunol. 2015 194 9 4498 4506 10.4049/jimmunol.1401399 25821218
    [Google Scholar]
  17. Wang S. Xu Z. Cai B. Chen Q. Berberine as a potential multi-target agent for metabolic diseases: A review of investigations for berberine. Endocr. Metab. Immune Disord. Drug Targets 2021 21 6 971 979 10.2174/22123873MTA52ODUh1 32914727
    [Google Scholar]
  18. Wu Y Chen Q Wen B Wu N He B Chen J. Berberine reduces Aβ42 deposition and tau hyperphosphorylation via ameliorating endoplasmic reticulum stress. Front. Pharmacol. 2021 12 640758 10.3389/fphar.2021.640758
    [Google Scholar]
  19. Li L. Zheng G. Cao C. Cao W. Yan H. Chen S. The ameliorative effect of berberine on vascular calcification by inhibiting endoplasmic reticulum stress. J. Cardiovasc. Pharmacol. 2022 80 2 294 304
    [Google Scholar]
  20. Xuan W-t Wang H Zhou P Ye T Gao H-w Ye S Berberine ameliorates rats model of combined Alzheimer’s disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. Biotech 2020 10 8 359
    [Google Scholar]
  21. Yang L. Yu S. Yang Y. Wu H. Zhang X. Lei Y. Lei Z. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice. Bioorg. Med. Chem. 2022 55 116598 10.1016/j.bmc.2021.116598 34979291
    [Google Scholar]
  22. Bai Y. Bao X. Mu Q. Fang X. Zhu R. Liu C. Mo F. Zhang D. Jiang G. Li P. Gao S. Zhao D. Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice. PeerJ 2021 9 e10598 10.7717/peerj.10598 33604164
    [Google Scholar]
  23. Shi Y. Hu J. Geng J. Hu T. Wang B. Yan W. Jiang Y. Li J. Liu S. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed. Pharmacother. 2018 107 1556 1563 10.1016/j.biopha.2018.08.148 30257374
    [Google Scholar]
  24. Evers-van Gogh I.J.A. Oteng A.B. Alex S. Hamers N. Catoire M. Stienstra R. Kalkhoven E. Kersten S. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice. Diabetologia 2016 59 3 624 633 10.1007/s00125‑015‑3822‑2 26661101
    [Google Scholar]
  25. Yang R. Wang L. Xie J. Li X. Liu S. Qiu S. Hu Y. Shen X. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in-vitro and in-vivo using cajanonic acid A. Int. J. Mol. Med. 2018 42 5 2329 2342 10.3892/ijmm.2018.3836 30226559
    [Google Scholar]
  26. Li Q. Liu T. Yang S. Zhang Z. Upregulation of miR-34a by inhibition of IRE1 α has protective effect against A β -induced injury in SH-SY5Y cells by targeting caspase-2. Oxid. Med. Cell. Longev. 2019 2019 1 10 10.1155/2019/2140427 31281568
    [Google Scholar]
  27. Lin Y.C. Lee Y.C. Lin Y.J. Lin J.C. Berberine promotes beige adipogenic signatures of 3T3-L1 cells by regulating post-transcriptional events. Cells 2019 8 6 632 10.3390/cells8060632 31234575
    [Google Scholar]
  28. Kuate D. Kengne A.P.N. Biapa C.P.N. Azantsa B.G.K. Wan Muda W.A.M.B. Tetrapleura tetraptera spice attenuates high-carbohydrate, high-fat diet-induced obese and type 2 diabetic rats with metabolic syndrome features. Lipids Health Dis. 2015 14 1 50 10.1186/s12944‑015‑0051‑0 26003803
    [Google Scholar]
  29. Saravanan S. Pari L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur. J. Pharmacol. 2015 761 279 287 10.1016/j.ejphar.2015.05.034 26007642
    [Google Scholar]
  30. Baldassano S. Amato A. Caldara G.F. Mulè F. Glucagon-like peptide-2 treatment improves glucose dysmetabolism in mice fed a high-fat diet. Endocrine 2016 54 3 648 656 10.1007/s12020‑016‑0871‑3 26832341
    [Google Scholar]
  31. Li C. Cao H. Huan Y. Ji W. Liu S. Sun S. Liu Q. Lei L. Liu M. Gao X. Fu Y. Li P. Shen Z. Berberine combined with stachyose improves glycometabolism and gut microbiota through regulating colonic microRNA and gene expression in diabetic rats. Life Sci. 2021 284 119928 10.1016/j.lfs.2021.119928 34480937
    [Google Scholar]
  32. Fang X Wu H Wang X Lian F Li M Miao R Modulation of gut microbiota and metabolites by berberine in treating mice with disturbances in glucose and lipid metabolism. Front. Pharmacol. 2022 13 870407 10.3389/fphar.2022.870407
    [Google Scholar]
  33. Hulsmans M. Geeraert B. De Keyzer D. Mertens A. Lannoo M. Vanaudenaerde B. Hoylaerts M. Benhabilès N. Tsatsanis C. Mathieu C. Holvoet P. Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome. PLoS One 2012 7 1 e30414 10.1371/journal.pone.0030414 22272346
    [Google Scholar]
  34. Xiong X.Q. Geng Z. Zhou B. Zhang F. Han Y. Zhou Y.B. Wang J.J. Gao X.Y. Chen Q. Li Y.H. Kang Y.M. Zhu G.Q. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism 2018 83 31 41 10.1016/j.metabol.2018.01.013 29374559
    [Google Scholar]
  35. Gao D. Hu S. Zheng X. Lin W. Gao J. Chang K. Zhao D. Wang X. Zhou J. Lu S. Griffiths H.R. Liu J. SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation, and insulin resistance. Antioxid. Redox Signal. 2020 32 3 193 212 10.1089/ars.2018.7628 31680537
    [Google Scholar]
  36. Kunz HE Hart CR Gries KJ Parvizi M Laurenti M Man CD Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am. J. Physiol. Endocrinol. Metab. 2021 321 1 E105 E121 10.1152/ajpendo.00070.2021
    [Google Scholar]
  37. Fang Z. Gao W. Jiang Q. Loor J.J. Zhao C. Du X. Zhang M. Song Y. Wang Z. Liu G. Li X. Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J. Dairy Sci. 2022 105 8 6895 6908 10.3168/jds.2021‑21754 35840398
    [Google Scholar]
  38. Shan B. Wang X. Wu Y. Xu C. Xia Z. Dai J. Shao M. Zhao F. He S. Yang L. Zhang M. Nan F. Li J. Liu J. Liu J. Jia W. Qiu Y. Song B. Han J.D.J. Rui L. Duan S.Z. Liu Y. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat. Immunol. 2017 18 5 519 529 10.1038/ni.3709 28346409
    [Google Scholar]
  39. Guo Q. Jin S. Hu H. Zhou Y. Yan Y. Zong H. Wang Y. He H. Oh Y. Liu C. Gu N. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem. Biophys. Res. Commun. 2017 493 1 346 351 10.1016/j.bbrc.2017.09.020 28888981
    [Google Scholar]
  40. Zhu P. Zhang J.J. Cen Y. Yang Y. Wang F. Gu K.P. Yang H-T. Wang Y-Z. Zou Z-Q. High endogenously synthesized N-3 polyunsaturated fatty acids in fat-1 mice attenuate high-fat diet-induced insulin resistance by inhibiting NLRP3 inflammasome activation via Akt/GSK-3β/TXNIP pathway. Molecules 2022 27 19 6384 10.3390/molecules27196384
    [Google Scholar]
  41. Zhou Q. Zhang L.Y. Dai M.F. Li Z. Zou C.C. Liu H. Thyroid-stimulating hormone induces insulin resistance in adipocytes via endoplasmic reticulum stress. Endocr. Connect. 2024 13 8 e230302 10.1530/EC‑23‑0302 38904465
    [Google Scholar]
  42. Sano R. Reed J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 12 3460 3470 10.1016/j.bbamcr.2013.06.028 23850759
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303319434241113161606
Loading
/content/journals/emiddt/10.2174/0118715303319434241113161606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test