Skip to content
2000
image of Tanshinone IIA Regulates NRF2/NLRP3 Signal Pathway to Restrain Oxidative Stress and Inflammation in Uric Acid-Induced HK-2 Fibrotic Models

Abstract

Introduction

This study aims to investigate the function and potential mechanism of Tanshinone IIA in uric acid-induced HK-2 fibrosis models.

Materials and Methods

An model of fibrosis was constructed using uric acid stimulation. RT-qPCR and Western blot were used to evaluate the levels of inflammatory cytokines. The detection of ROS and ELISA assay were used to analyze the changes in oxidative stress.

Results

Tanshinone IIA inhibited the increase in inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-18 and the formation of NLRP3 inflammasome induced by uric acid stimulation. In addition, Tanshinone IIA treatment reduced the production of ROS and MDA, promoting the expression of SOD and CAT, thereby protecting HK-2 cells from oxidative stress damage. Besides, the expression of TGF-β, FN, and COL-1 was significantly reduced by the treatment of Tanshinone IIA. Mechanistically, Tanshinone IIA inhibited the expression of inflammatory cytokines and the formation of the NLRP3 inflammasome by targeting NRF2.

Conclusion

Tanshinone IIA exerts a protective role in uric acid-induced HK-2 fibrosis models by targeting the NRF2-NLRP3 signaling pathway to reduce the occurrence of inflammation and oxidative stress.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303315786240926075342
2024-10-28
2025-01-18
Loading full text...

Full text loading...

References

  1. Ullah Z. Yue P. Mao G. Zhang M. Liu P. Wu X. Zhao T. Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int. J. Biol. Macromol. 2024 278 Pt 3 134832 10.1016/j.ijbiomac.2024.134832 39168219
    [Google Scholar]
  2. Zhang M. Zhu X. Wu J. Huang Z. Zhao Z. Zhang X. Xue Y. Wan W. Li C. Zhang W. Wang L. Zhou M. Zou H. Wang L. Prevalence of hyperuricemia among chinese adults: findings from two nationally representative cross-sectional surveys in 2015–16 and 2018–19. Front. Immunol. 2022 12 791983 10.3389/fimmu.2021.791983 35197964
    [Google Scholar]
  3. Joosten L.A.B. Crişan T.O. Bjornstad P. Johnson R.J. Asymptomatic hyperuricaemia: A silent activator of the innate immune system. Nat. Rev. Rheumatol. 2020 16 2 75 86 10.1038/s41584‑019‑0334‑3 31822862
    [Google Scholar]
  4. Dincer HE Dincer AP Levinson DJ Asymptomatic hyperuricemia: To treat or not to treat. Cleve Clin J Med. 2002 69 8 594 10.3949/ccjm.69.8.594
    [Google Scholar]
  5. Wang S. Fang Y. Yu X. Guo L. Zhang X. Xia D. The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion. Biomed. Pharmacother. 2019 111 162 168 10.1016/j.biopha.2018.12.050 30579255
    [Google Scholar]
  6. Domański I. Kozieł A. Kuderska N. Wójcik P. Dudzik T. Dudzik Ł. Hyperuricemia – Consequences of not initiating therapy. Benefits and drawbacks of treatment. Reumatologia 2024 62 3 207 213 10.5114/reum/189998 39055725
    [Google Scholar]
  7. Anders H.J. Li Q. Steiger S. Asymptomatic hyperuricaemia in chronic kidney disease: Mechanisms and clinical implications. Clin. Kidney J. 2023 16 6 928 938 10.1093/ckj/sfad006 37261000
    [Google Scholar]
  8. Zhang F. Yin J. Liu L. Liu S. Zhang G. Kong Y. Wang Y. Wang N. Chen X. Wang F. IL-17C neutralization protects the kidney against acute injury and chronic injury. EBioMedicine 2023 92 104607 10.1016/j.ebiom.2023.104607 37263138
    [Google Scholar]
  9. Garsen M. Buijsers B. Sol M. Gockeln L. Sonneveld R. van Kuppevelt T.H. de Graaf M. van den Born J. Kamps J.A.A.M. van Raalte D.H. van der Meer R.W. Lamb H.J. Hillebrands J.L. Rabelink T.J. Maciej-Hulme M.L. Krenning G. Nijenhuis T. van der Vlag J. Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria. EBioMedicine 2023 90 104506 10.1016/j.ebiom.2023.104506 36889064
    [Google Scholar]
  10. Bienaimé F. Muorah M. Metzger M. Broeuilh M. Houiller P. Flamant M. Haymann J.P. Vonderscher J. Mizrahi J. Friedlander G. Stengel B. Terzi F. Vrtovsnik F. Daugas E. Flamant M. Vidal-Petiot E. Jacquot C. Karras A. Roueff S. Thervet E. Houillier P. Courbebaisse M. Eladari et Gérard Maruani D. Urena-Torres P. Boffa J-J. Ronco P. Fessi H. Rondeau E. Letavernier E. Tabibzadeh N. Haymann J-P. NephroTest Study Group Combining robust urine biomarkers to assess chronic kidney disease progression. EBioMedicine 2023 93 104635 10.1016/j.ebiom.2023.104635 37285616
    [Google Scholar]
  11. Bai H. Zhang Z. Zhu M. Sun Y. Wang Y. Li B. Wang Q. Kuang H. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine. Front. Pharmacol. 2024 15 1428558 10.3389/fphar.2024.1428558 39101136
    [Google Scholar]
  12. Gherghina M.E. Peride I. Tiglis M. Neagu T.P. Niculae A. Checherita I.A. Uric acid and oxidative stress—relationship with cardiovascular, metabolic, and renal impairment. Int. J. Mol. Sci. 2022 23 6 3188 10.3390/ijms23063188 35328614
    [Google Scholar]
  13. Shen S. He F. Cheng C. Xu B. Sheng J. Uric acid aggravates myocardial ischemia–reperfusion injury via ROS/NLRP3 pyroptosis pathway. Biomed. Pharmacother. 2021 133 110990 10.1016/j.biopha.2020.110990 33232925
    [Google Scholar]
  14. Nair A.R. Lee W.K. Smeets K. Swennen Q. Sanchez A. Thévenod F. Cuypers A. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch. Toxicol. 2015 89 12 2273 2289 10.1007/s00204‑014‑1401‑9 25388156
    [Google Scholar]
  15. Lin Y. Luo T. Weng A. Huang X. Yao Y. Fu Z. Li Y. Liu A. Li X. Chen D. Pan H. Gallic acid alleviates gouty arthritis by inhibiting nlrp3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol. 2020 11 580593 10.3389/fimmu.2020.580593 33365024
    [Google Scholar]
  16. Billingham L.K. Stoolman J.S. Vasan K. Rodriguez A.E. Poor T.A. Szibor M. Jacobs H.T. Reczek C.R. Rashidi A. Zhang P. Miska J. Chandel N.S. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 2022 23 5 692 704 10.1038/s41590‑022‑01185‑3 35484407
    [Google Scholar]
  17. Wu M. Han W. Song S. Du Y. Liu C. Chen N. Wu H. Shi Y. Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol. Cell. Endocrinol. 2018 478 115 125 10.1016/j.mce.2018.08.002 30098377
    [Google Scholar]
  18. Li Z. Xu S. Liu P. Salvia miltiorrhizaBurge (Danshen): A golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol. Sin. 2018 39 5 802 824 10.1038/aps.2017.193 29698387
    [Google Scholar]
  19. Guo R. Li L. Su J. Li S. Duncan S.E. Liu Z. Fan G. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des. Devel. Ther. 2020 14 4735 4748 10.2147/DDDT.S266911 33192051
    [Google Scholar]
  20. Zhang X.W. Zhou M. An L. Zhang P. Li P. Chen J. Lipophilic extract and tanshinone IIA derived from Salvia miltiorrhiza attenuate uric acid nephropathy through suppressing oxidative stress-activated mapk pathways. Am. J. Chin. Med. 2020 48 6 1455 1473 10.1142/S0192415X20500718 32933312
    [Google Scholar]
  21. Wu X. Liu L. Xie H. Liao J. Zhou X. Wan J. Yu K. Li J. Zhang Y. Tanshinone IIA prevents uric acid nephropathy in rats through NF-κB inhibition. Planta Med. 2012 78 9 866 873 10.1055/s‑0031‑1298487 22588836
    [Google Scholar]
  22. Weiliang ZR Effects of Tanshinone IIA on mitochondrial damage and related inflammatory factors in uric acid induced renal tubular epithelial cell fibrosis model. Chinese Med. Mater. 2023 46 1 207 211
    [Google Scholar]
  23. Li H. Zhang H. Yan F. He Y. Ji A. Liu Z. Li M. Ji X. Li C. Kidney and plasma metabolomics provide insights into the molecular mechanisms of urate nephropathy in a mouse model of hyperuricemia. Biochim. Biophys. Acta Mol. Basis Dis. 2022 1868 6 166374 10.1016/j.bbadis.2022.166374 35276331
    [Google Scholar]
  24. Russo E. Viazzi F. Pontremoli R. Barbagallo C.M. Bombelli M. Casiglia E. Cicero A.F.G. Cirillo M. Cirillo P. Desideri G. D’Elia L. Ferri C. Galletti F. Gesualdo L. Giannattasio C. Iaccarino G. Leoncini G. Mallamaci F. Maloberti A. Masi S. Mengozzi A. Mazza A. Muiesan M.L. Nazzaro P. Palatini P. Parati G. Rattazzi M. Rivasi G. Salvetti M. Tikhonoff V. Tocci G. Ungar A. Verdecchia P. Virdis A. Volpe M. Grassi G. Borghi C. Working Group on UricAcid and Cardiovascular Risk of the Italian Society of Hypertension Association of uric acid with kidney function and albuminuria: The uric acid right for heart health (URRAH) project. J. Nephrol. 2022 35 1 211 221 10.1007/s40620‑021‑00985‑4 33755930
    [Google Scholar]
  25. Orgah J.O. He S. Wang Y. Jiang M. Wang Y. Orgah E.A. Duan Y. Zhao B. Zhang B. Han J. Zhu Y. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol. Res. 2020 153 104654 10.1016/j.phrs.2020.104654 31945473
    [Google Scholar]
  26. Isaka Y. Takabatake Y. Takahashi A. Saitoh T. Yoshimori T. Hyperuricemia-induced inflammasome and kidney diseases. Nephrol. Dial. Transplant. 2016 31 6 890 896 10.1093/ndt/gfv024 25829326
    [Google Scholar]
  27. Ramis M. Esteban S. Miralles A. Tan D.X. Reiter R. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: A review. Curr. Med. Chem. 2015 22 22 2690 2711 10.2174/0929867322666150619104143 26087763
    [Google Scholar]
  28. Gorrini C. Harris I.S. Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013 12 12 931 947 10.1038/nrd4002 24287781
    [Google Scholar]
  29. Mittler R. ROS are good. Trends Plant Sci. 2017 22 1 11 19 10.1016/j.tplants.2016.08.002 27666517
    [Google Scholar]
  30. Rapa S.F. Di Iorio B.R. Campiglia P. Heidland A. Marzocco S. Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2019 21 1 263 10.3390/ijms21010263 31906008
    [Google Scholar]
  31. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  32. Xiao L. Dai Z. Tang W. Liu C. Tang B. Astragaloside I.V. Astragaloside IV alleviates cerebral ischemia‐reperfusion injury through NLRP3 inflammasome‐mediated pyroptosis inhibition via activating Nrf2. Oxid. Med. Cell. Longev. 2021 2021 1 9925561 10.1155/2021/9925561 35003524
    [Google Scholar]
  33. Wu J. Liu X. Fan J. Chen W. Wang J. Zeng Y. Feng X. Yu X. Yang X. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway. Toxicology 2014 318 22 31 10.1016/j.tox.2014.01.008 24530882
    [Google Scholar]
  34. Yang Y. Cai F. Zhou N. Liu S. Wang P. Zhang S. Zhang Y. Zhang A. Jia Z. Huang S. Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on NRF2. Clin. Transl. Med. 2021 11 4 e382 10.1002/ctm2.382 33931960
    [Google Scholar]
  35. Vaziri N.D. Liu S. Farzaneh S.H. Nazertehrani S. Khazaeli M. Zhao Y.Y. Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease. Free Radic. Biol. Med. 2015 86 374 381 10.1016/j.freeradbiomed.2015.04.022 25930007
    [Google Scholar]
  36. Aminzadeh M.A. Reisman S.A. Vaziri N.D. Khazaeli M. Yuan J. Meyer C.J. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica 2014 44 6 570 578 10.3109/00498254.2013.852705 24195589
    [Google Scholar]
  37. Kwon K. Jung J. Sahu A. Tae G. Nanoreactor for cascade reaction between SOD and CAT and its tissue regeneration effect. J. Control. Release 2022 344 160 172 10.1016/j.jconrel.2022.02.033 35247490
    [Google Scholar]
  38. Sul O.J. Ra S.W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 2021 26 22 6949 10.3390/molecules26226949 34834040
    [Google Scholar]
  39. Li G. Liu C. Yang L. Feng L. Zhang S. An J. Li J. Gao Y. Pan Z. Xu Y. Liu J. Wang Y. Yan J. Cui J. Qi Z. Yang L. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway. Cell Biol. Toxicol. 2023 39 3 621 639 10.1007/s10565‑023‑09790‑0 36640193
    [Google Scholar]
  40. Jing B. Chen Z. Si W. Zhao J. Zhao G. Zhang D. (+)-Catechin attenuates CCI -induced neuropathic pain in male rats by promoting the Nrf2 antioxidant pathway to inhibit ROS / TLR4 / NF - κB -mediated activation of the NLRP3 inflammasome. J. Neurosci. Res. 2024 102 8 e25372 10.1002/jnr.25372 39086264
    [Google Scholar]
  41. Jiang X. Liu T. Xia Y. Gan H. Ren W. Du X. Activation of the Nrf2/ARE signaling pathway ameliorates hyperlipidemia-induced renal tubular epithelial cell injury by inhibiting mtROS-mediated NLRP3 inflammasome activation. Front. Immunol. 2024 15 1342350 10.3389/fimmu.2024.1342350 38720901
    [Google Scholar]
  42. Guo H. Callaway J.B. Ting J.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015 21 7 677 687 10.1038/nm.3893 26121197
    [Google Scholar]
  43. Hutton H.L. Ooi J.D. Holdsworth S.R. Kitching A.R. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 2016 21 9 736 744 10.1111/nep.12785 27011059
    [Google Scholar]
  44. Eming S.A. Wynn T.A. Martin P. Inflammation and metabolism in tissue repair and regeneration. Science 2017 356 6342 1026 1030 10.1126/science.aam7928 28596335
    [Google Scholar]
  45. Pang Y. Zhang P. Lu R. Li H. Li J. Fu H. Cao Y.W. Fang G. Liu B. Wu J. Zhou J. Zhou Y. Andrade-oliveira salvianolic Acid B modulates caspase-1–mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front. Pharmacol. 2020 11 541426 10.3389/fphar.2020.541426 33013384
    [Google Scholar]
  46. Gu Y. Liang Z. Wang H. Jin J. Zhang S. Xue S. Chen J. He H. Duan K. Wang J. Chang X. Qiu C. Tanshinone IIA protects H9c2 cells from oxidative stress-induced cell death via microRNA-133 upregulation and Akt activation. Exp. Ther. Med. 2016 12 2 1147 1152 10.3892/etm.2016.3400 27446335
    [Google Scholar]
  47. Wang T. Wang C. Wu Q. Zheng K. Chen J. Lan Y. Qin Y. Mei W. Wang B. Evaluation of tanshinone IIA developmental toxicity in zebrafish embryos. Molecules 2017 22 4 660 10.3390/molecules22040660 28430131
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303315786240926075342
Loading
/content/journals/emiddt/10.2174/0118715303315786240926075342
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: restrain oxidative stress ; NLRP3 ; HK-2 fibrosis models ; NRF2 ; Uric acid ; Tanshinone IIA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test