Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding (), hormone response elements (), ligand binding (), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It’s signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303313528240523101940
2024-05-31
2025-01-17
Loading full text...

Full text loading...

References

  1. MohammadabadiM.R. MozafariM.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form.J. Drug Deliv. Sci. Technol.20184744545310.1016/j.jddst.2018.08.019
    [Google Scholar]
  2. BlackadarC.B. Historical review of the causes of cancer.World J. Clin. Oncol.201671548610.5306/wjco.v7.i1.5426862491
    [Google Scholar]
  3. BarazandehH. KissaneD.W. SaeediN. GordonM. A systematic review of the relationship between early maladaptive schemas and borderline personality disorder/traits.Pers. Individ. Dif.20169413013910.1016/j.paid.2016.01.021
    [Google Scholar]
  4. AshrafizadehM. HushmandiK. Rahmani MoghadamE. ZarrinV. Hosseinzadeh KashaniS. BokaieS. NajafiM. TavakolS. MohammadinejadR. NabaviN. HsiehC.L. ZarepourA. ZareE.N. ZarrabiA. MakvandiP. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer.Bioengineering2020739110.3390/bioengineering703009132784981
    [Google Scholar]
  5. BandaraV. CappA. AhmedG. ArmJ. MartinJ. Assessment and predictors of fatigue in men with prostate cancer receiving radiotherapy and androgen deprivation therapy.J. Med. Imaging Radiat. Oncol.201963568369010.1111/1754‑9485.1292231588674
    [Google Scholar]
  6. DerweeshI.H. BagrodiaA. DiBlasioC.J. WakeR.W. Adverse effects of androgen deprivation therapy in prostate cancer: Current management issues.Indian J. Urol.200925216917610.4103/0970‑1591.5290719672340
    [Google Scholar]
  7. IzardJ.P. SiemensD.R. Androgen deprivation therapy and mental health: Impact on depression and cognition.Eur. Urol. Focus2020661162116410.1016/j.euf.2019.11.01031911085
    [Google Scholar]
  8. TsouP-H. LanT-C. TamK-W. HuangT-W. Essential of immediate exercises on cancer-related fatigue in patients with prostate cancer receiving androgen deprivation therapy: A meta-analysis of randomized controlled trials.Semin. Oncol. Nurs.202239315136836494260
    [Google Scholar]
  9. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA2021713209249
    [Google Scholar]
  10. GrecoF. TafuriA. PanunzioA. Beomonte ZobelB. MallioC.A. Relationship between androgen deprivation therapy and abdominal adipose tissue.Uro20222427027610.3390/uro2040030
    [Google Scholar]
  11. WatanabeD. KimuraT. YamashitaA. MinowaT. MiuraK. MizushimaA. The influence of androgen deprivation therapy on hip geometric properties and bone mineral density in Japanese men with prostate cancer and its relationship with the visceral fat accumulation.Aging Male20202351158116410.1080/13685538.2020.171374131959023
    [Google Scholar]
  12. ChanJ.S.K. LeeY.H.A. LiuK. HuiJ.M.H. DeeE.C. NgK. SattiD.I. TangP. TseG. NgC.F. Long‐term cardiovascular burden in prostate cancer patients receiving androgen deprivation therapy.Eur. J. Clin. Invest.2023534e1393210.1111/eci.1393236468787
    [Google Scholar]
  13. LauferN. ZilberN. JeczmienP. GiladR. GurS. MunitzH. Effect of implementation of mental health services within primary care on GP detection and treatment of mental disorders in Israel.Isr. J. Health Policy Res.2023121410.1186/s13584‑023‑00553‑036717940
    [Google Scholar]
  14. VasiliuO. The current state of research for psychobiotics use in the management of psychiatric disorders–A systematic literature review.Front. Psychiatry202314107473610.3389/fpsyt.2023.107473636911130
    [Google Scholar]
  15. BelkacemiY. CoraggioG. BrunelA. JouhaudA. IngelsA. JolyC. HadhriA. HassaniW. LoganadaneG. SaldanaC. OuidirN. VegaB. DebbiK. TailleA.L. Effect of serelys homme on the incidence and severity of vasomotor symptoms and quality-of-life impairments in patients receiving hormone therapy and radiation for localized prostate cancer: Results of the ESCULAPE phase 2 prospective study.Adv. Radiat. Oncol.20238510125510.1016/j.adro.2023.10125537408674
    [Google Scholar]
  16. Braga-BasariaM. TravisonT.G. TaplinM-E. LinA. DufourA.B. HabtemariamD. Gaining metabolic insight in older men undergoing androgen deprivation therapy for prostate cancer (the ADT & Metabolism Study): Protocol of a longitudinal, observational, cohort study.PLoS ONE2023182e0281508
    [Google Scholar]
  17. CintraA.R. LinharesB.L. Da RochaE.L. Linhares-FilhoJ. Da TrindadeK.M. MonteiroM.M.F. LopesM.D.S.R. PalmeiraH.T. Da SilvaM.J. BessaJ.Jr MirandaE.P. RegesR. (297) Evaluation of endothelial function and metabolic profile in patients with prostate cancer undergoing androgen deprivation therapy.J. Sex. Med.202320Suppl. 1qdad060.27810.1093/jsxmed/qdad060.278
    [Google Scholar]
  18. HahnA.W. SiddiquiB.A. LeoJ. DondossolaE. BashamK.J. MirantiC.K. Cancer cell-extrinsic roles for the androgen receptor in prostate cancer.Endocrinology20231646bqad07810.1210/endocr/bqad078
    [Google Scholar]
  19. ChiK.N. ChowdhuryS. BjartellA. ChungB.H. Pereira de Santana GomesA.J. GivenR. JuárezA. MerseburgerA.S. ÖzgüroğluM. UemuraH. YeD. Brookman-MayS. MundleS.D. McCarthyS.A. LarsenJ.S. SunW. BevansK.B. ZhangK. BandyopadhyayN. AgarwalN. Apalutamide in patients with metastatic castration-sensitive prostate cancer: Final survival analysis of the randomized, double-blind, phase III TITAN study.J. Clin. Oncol.202139202294230310.1200/JCO.20.0348833914595
    [Google Scholar]
  20. LopezP. NewtonR.U. TaaffeD.R. Winters-StoneK. BuffartL.M. GalvãoD.A. Effects and moderators of exercise medicine on cardiometabolic outcomes in men with prostate cancer previously or currently undergoing androgen deprivation therapy: An individual patient data meta-analysis.Crit. Rev. Oncol. Hematol.202318610399510.1016/j.critrevonc.2023.10399537080399
    [Google Scholar]
  21. MasudaH. Renal impairment: A major adverse event in prostate cancer patients treated with androgen deprivation therapy.Anticancer Res.202343130530910.21873/anticanres.1616436585176
    [Google Scholar]
  22. SachsG.S. YeungP.P. RekedaL. KhanA. AdamsJ.L. FavaM. Cariprazine for the adjunctive treatment of major depressive disorder: Results of a randomized phase 3 placebo-controlled study (study 301).CNS Spectr.202328225425510.1017/S1092852923001980
    [Google Scholar]
  23. SoodA. BaishnabS. GautamI. ChoudharyP. LangD.K. JauraR.S. SinghT.G. Exploring various novel diagnostic and therapeutic approaches in treating diabetic retinopathy.Inflammopharmacology202331277378610.1007/s10787‑023‑01143‑x36745243
    [Google Scholar]
  24. HammadM. Temsirolimus: Safety and efficacy in the treatment of renal cell carcinoma.Clin. Med. Rev. Oncol.20113293710.4137/CMRO.S1632
    [Google Scholar]
  25. Mannan BaigA. KhanN.A. EffendiV. RanaZ. AhmadH.R. AbbasF. Differential receptor dependencies.Anticancer. Drugs.2017281758710.1097/CAD.000000000000043227606721
    [Google Scholar]
  26. SalaheldinY.A. MahmoudS.S.M. NgowiE.E. GbordzorV.A. LiT. WuD-D. Role of RONS and eIFs in cancer progression.Oxid. Med. Cell. Longev.2021552205410.1155/2021/5522054
    [Google Scholar]
  27. WangP. LiuJ. TanX. YangF. McCabeJ. ZhangJ. Pharmacokinetics and drug–drug interaction of ocedurenone (KBP-5074) in vitro and in vivo.Eur. J. Drug Metab. Pharmacokinet.202348439741010.1007/s13318‑023‑00837‑537357226
    [Google Scholar]
  28. DrozdzikM. Lapczuk-RomanskaJ. WenzelC. SkalskiL. Szeląg-PieniekS. PostM. ParusA. SyczewskaM. KurzawskiM. OswaldS. Protein abundance of drug metabolizing enzymes in human hepatitis C livers.Int. J. Mol. Sci.2023245454310.3390/ijms2405454336901973
    [Google Scholar]
  29. FotiR.S. Cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets.Drug Metab. Dispos.202351893694910.1124/dmd.122.00101137041085
    [Google Scholar]
  30. Charni-NatanM. Aloni-GrinsteinR. OsherE. RotterV. Liver and steroid hormones—Can a touch of p53 make a difference?Front. Endocrinol.20191037410.3389/fendo.2019.0037431244779
    [Google Scholar]
  31. LefebvreP. StaelsB. Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease.Nat. Rev. Endocrinol.2021171166267010.1038/s41574‑021‑00538‑634417588
    [Google Scholar]
  32. SayafK. ZanottoI. RussoF.P. GabbiaD. De MartinS. The nuclear receptor PXR in chronic liver disease.Cells20211116110.3390/cells1101006135011625
    [Google Scholar]
  33. ZhouJ. WangY. WuD. WangS. ChenZ. XiangS. ChanF.L. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer.Oncogene202140152625263410.1038/s41388‑021‑01737‑133750894
    [Google Scholar]
  34. ZhouL. SongZ. HuJ. LiuL. HouY. ZhangX. YangX. ChenK. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3.Theranostics202111284186010.7150/thno.4938433391508
    [Google Scholar]
  35. ChenJ. ChouF. YehS. OuZ. ShyrC. HuangC. XiangZ. SunY. MessingE. ZuX. ChangC. Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gαi protein/MAPK/MMP9 intracellular signaling.Oncogene202039357458610.1038/s41388‑019‑0964‑631506605
    [Google Scholar]
  36. da Silva GuimarãesG. CordeiroA.O. GazollaM.C. VecchiL. Pereira ZoiaM.A. de Vasconcelos AzevedoF.V.P. Moreira CamposI. de Souza CostaD. Soares MotaS.T. Alves RibeiroM. GoulartL.R. da Silva FilhoA.A. AraújoT.G. 4-nerolidylcatechol (4-NC) and docetaxel synergize in controlling androgen- independent prostate cancer cells.Curr. Top. Med. Chem.2023231194395510.2174/156802662366623020709525336748811
    [Google Scholar]
  37. KulikM. BotheM. KibarG. FuchsA. SchöneS. PrekovicS. Mayayo-PeraltaI. ChungH.R. ZwartW. HelsenC. ClaessensF. MeijsingS.H. Androgen and glucocorticoid receptor direct distinct transcriptional programs by receptor-specific and shared DNA binding sites.Nucleic Acids Res.20214973856387510.1093/nar/gkab18533751115
    [Google Scholar]
  38. LinH.Y. SongG. LeiF. LiD. QuY. Avian corticosteroid-binding globulin: Biological function and regulatory mechanisms in physiological stress responses.Front. Zool.20211812210.1186/s12983‑021‑00409‑w33926473
    [Google Scholar]
  39. PotdarR. GartrellB.A. GivenR. KarshL. FrankelJ. NennoK. O’MalleyLeFebvreK. BhaumikA. McCarthyS. McGowanT. PieczonkaC. Concomitant use of oral anticoagulants in patients with advanced prostate cancer receiving apalutamide: A post-hoc analysis of TITAN and SPARTAN studies.Am. J. Cancer Res.202212144545035141028
    [Google Scholar]
  40. ZurthC. KoskinenM. FrickeR. PrienO. KorjamoT. GraudenzK. DennerK. BairleinM. von BühlerC.J. WilkinsonG. GieschenH. Drug–drug interaction potential of darolutamide: in vitro and clinical studies.Eur. J. Drug Metab. Pharmacokinet.201944674775910.1007/s13318‑019‑00577‑531571146
    [Google Scholar]
  41. VieraW. SamaniegoI. CamachoD. HabibiN. RonL. SediquiN. ÁlvarezJ. ViteriP. SotomayorA. MerinoJ. Vásquez-CastilloW. BritoB. Phytochemical characterization of a tree tomato (Solanum betaceum Cav.) breeding population grown in the inter-andean valley of ecuador.Plants202211326810.3390/plants1103026835161251
    [Google Scholar]
  42. HaddenM. GoodmanA. GuoC. GuzzoP.R. HendersonA.J. PattamanaK. RuenzM. SargentB.J. SwensonB. YetL. LiuJ. HeS. SebhatI.K. LinL.S. TamvakopoulosC. PengQ. KanY. PalyhaO. KellyT.M. GuanX.M. MetzgerJ.M. ReitmanM.L. NargundR.P. Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity.Bioorg. Med. Chem. Lett.20102092912291510.1016/j.bmcl.2010.03.02820347296
    [Google Scholar]
  43. ZhaoM. MaJ. LiM. ZhangY. JiangB. ZhaoX. HuaiC. ShenL. ZhangN. HeL. QinS. Cytochrome P450 enzymes and drug metabolism in humans.Int. J. Mol. Sci.202122231280810.3390/ijms22231280834884615
    [Google Scholar]
  44. SilvaH.S.A. RomeiroR.S. MounteerA. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents.J. Phytopathol.20031511424610.1046/j.1439‑0434.2003.00678.x
    [Google Scholar]
  45. CamachoL. Zabala-LetonaA. CortazarA.R. AstobizaI. Dominguez-HerreraA. ErcillaA. CrespoJ. VieraC. Fernández-RuizS. Martinez-GonzalezA. TorranoV. Martín-MartínN. Gomez-MuñozA. CarracedoA. Identification of androgen receptor metabolic correlome reveals the repression of ceramide kinase by androgens.Cancers20211317430710.3390/cancers1317430734503116
    [Google Scholar]
  46. ChenZ. LinX. WangY. XieH. ChenF. Dysregulated expression of androgen metabolism genes and genetic analysis in hypospadias.Mol. Genet. Genomic Med.202088e134610.1002/mgg3.134632515122
    [Google Scholar]
  47. MahC.Y. NassarZ.D. SwinnenJ.V. ButlerL.M. Lipogenic effects of androgen signaling in normal and malignant prostate.Asian J. Urol.20207325827010.1016/j.ajur.2019.12.00332742926
    [Google Scholar]
  48. BastosD.A. AntonarakisE.S. Darolutamide for castration-resistant prostate cancer.OncoTargets Ther.2019128769877710.2147/OTT.S19724431695432
    [Google Scholar]
  49. LawalB. KuoY.C.Jnr SumitraM.R. WuA.T.H. HuangH.S. In vivo pharmacokinetic and anticancer studies of HH-N25, a selective inhibitor of topoisomerase I, and hormonal signaling for treating breast cancer.J. Inflamm. Res.2021144901491310.2147/JIR.S32940134588796
    [Google Scholar]
  50. OmoboyowaD.A. BalogunT.A. SaibuO.A. ChukwudozieO.S. AlausaA. OlubodeS.O. AborodeA.T. BatihaG.E. BodunD.S. MusaS.O. Structure-based discovery of selective CYP17A1 inhibitors for Castration-resistant prostate cancer treatment.Biol. Meth. Protoc.202271bpab02610.1093/biomethods/bpab02635146123
    [Google Scholar]
  51. AlbanoG.D. AmicoF. CocimanoG. LibertoA. MagliettaF. EspositoM. RosiG.L. Di NunnoN. SalernoM. MontanaA. Adverse effects of anabolic-androgenic steroids: A literature review.Healthcare2021919710.3390/healthcare901009733477800
    [Google Scholar]
  52. BarrientosG. LlanosP. Basualto-AlarcónC. EstradaM. Androgen-regulated cardiac metabolism in aging men.Front. Endocrinol.20201131610.3389/fendo.2020.0031632499759
    [Google Scholar]
  53. ChallaA.A. CalawayA.C. CullenJ. GarciaJ. DesaiN. WeintraubN.L. DeswalA. KuttyS. VallakatiA. AddisonD. BaligaR. CampbellC.M. GuhaA. Cardiovascular toxicities of androgen deprivation therapy.Curr. Treat. Options Oncol.20212264710.1007/s11864‑021‑00846‑z33866442
    [Google Scholar]
  54. TárragaS. LisónP. López-GresaM.P. TorresC. RodrigoI. BellésJ.M. ConejeroV. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid.J. Exp. Bot.201061154325433810.1093/jxb/erq23420729481
    [Google Scholar]
  55. RickmanJ.C. BarretD.M. BruhnC.M. Review nutritional comparison of fresh, frozen and canned fruits and vegetables.J. Sci. Food Agric.200787940944
    [Google Scholar]
  56. ConeE.B. ReeseS. MarcheseM. NabiJ. McKayR.R. KilbridgeK.L. TrinhQ.D. Cardiovascular toxicities associated with abiraterone compared to enzalutamide–A pharmacovigilance study.EClinicalMedicine20213610088710.1016/j.eclinm.2021.10088734308305
    [Google Scholar]
  57. KenkM. GrégoireJ. CotéM.A. ConnellyK.A. DavisM.K. DresserG. GhoshN. GoodmanS. JohnsonC. FleshnerN. Optimizing screening and management of cardiovascular health in prostate cancer.Can. Urol. Assoc. J.2020149E458E46410.5489/cuaj.668532569573
    [Google Scholar]
  58. FengZ. GraffJ.N. Next-generation androgen receptor-signaling inhibitors for prostate cancer: Considerations for older patients.Drugs Aging202138211112310.1007/s40266‑020‑00809‑333559101
    [Google Scholar]
  59. FervahaG. IzardJ.P. TrippD.A. RajanS. LeongD.P. SiemensD.R. Depression and prostate cancer: A focused review for the clinician.Urologic Oncology: Seminars and Original Investigations201937428228810.1016/j.urolonc.2018.12.020
    [Google Scholar]
  60. KumarJ. JazayeriS.B. GautamS. NorezD. AlamM.U. TanneruK. Comparative efficacy of apalutamide darolutamide and enzalutamide for treatment of non-metastatic castrate-resistant prostate cancer: A systematic review and network meta-analysis.Urol. Oncol. Semin. Orig. Investig.2020381182683410.1016/j.urolonc.2020.03.022
    [Google Scholar]
  61. MaguireR. DrummondF.J. HanlyP. GavinA. SharpL. Problems sleeping with prostate cancer: Exploring possible risk factors for sleep disturbance in a population-based sample of survivors.Support. Care Cancer20192793365337310.1007/s00520‑018‑4633‑z30627919
    [Google Scholar]
  62. RoyS. MaloneS. GrimesS. MorganS.C. Impact of concomitant medications on biochemical outcome in localised prostate cancer treated with radiotherapy and androgen deprivation therapy.Clin. Oncol. (R. Coll. Radiol.)202133318119010.1016/j.clon.2020.09.00532994091
    [Google Scholar]
  63. SathianathenN.J. Alarid-EscuderoF. KuntzK.M. LawrentschukN. BoltonD.M. MurphyD.G. KimS.P. KonetyB.R. A cost-effectiveness analysis of systemic therapy for metastatic hormone-sensitive prostate cancer.Eur. Urol. Oncol.20192664965510.1016/j.euo.2019.01.00431411985
    [Google Scholar]
  64. WibowoE. WassersugR.J. RobinsonJ.W. MatthewA. McLeodD. WalkerL.M. How are patients with prostate cancer managing androgen deprivation therapy side effects?Clin. Genitourin. Cancer2019173e408e41910.1016/j.clgc.2018.12.00630745202
    [Google Scholar]
  65. ShigemuraK. FujisawaM. Current status of holmium laser enucleation of the prostate.Int. J. Urol.201825320621110.1111/iju.1350729205507
    [Google Scholar]
  66. AmisE.S. Anatomy and Physiology of the Prostate.Radiology of the Lower Urinary Tract, Medical RadiologyBerlin, HeidelbergSpringer1994167169
    [Google Scholar]
  67. ErenB. ErenF. GuzelsoyM. AydýnO. Ectopic prostate presenting as a mass in bladder.Indian J. Urol.200824456456510.4103/0970‑1591.4427019468520
    [Google Scholar]
  68. ParekhS. TewariA. V10-01 A comprehensive review of neuroanatomy, prostate anatomy and peri-prostatic structures.J. Urol.2023209Suppl. 4e92610.1097/JU.0000000000003328.01
    [Google Scholar]
  69. RahardjoH.E. ÜckertS. KuczykM.A. HedlundP. Expression and distribution of the transient receptor potential cationic channel ankyrin 1 (TRPA1) in the human seminal vesicles.Health Science Report202361e987
    [Google Scholar]
  70. VickramS. RohiniK. SrinivasanS. Nancy VeenakumariD. ArchanaK. AnbarasuK. JeyanthiP. ThanigaivelS. GulothunganG. RajendiranN. SrikumarP.S. Role of zinc (Zn) in human reproduction: A journey from initial spermatogenesis to childbirth.Int. J. Mol. Sci.2021224218810.3390/ijms2204218833671837
    [Google Scholar]
  71. KumariS. TevatiyaS. RaniJ. Das DeT. ChauhanC. SharmaP. SahR. SinghS. PandeyK.C. PandeV. DixitR. A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi.Sci. Rep.2022121259710.1038/s41598‑022‑06531‑x35173215
    [Google Scholar]
  72. SmallE.J. SaadF. ChowdhuryS. OudardS. HadaschikB.A. GraffJ.N. OlmosD. MainwaringP.N. LeeJ.Y. UemuraH. De PorreP. SmithA.A. ZhangK. Lopez-GitlitzA. SmithM.R. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer.Ann. Oncol.201930111813182010.1093/annonc/mdz39731560066
    [Google Scholar]
  73. RibeiroJ.C. BragaP.C. MartinsA.D. SilvaB.M. AlvesM.G. OliveiraP.F. Antioxidants present in reproductive tract fluids and their relevance for fertility.Antioxidants2021109144110.3390/antiox1009144134573073
    [Google Scholar]
  74. Rodriguez-MartinezH. MartinezE.A. CalveteJ.J. Peña VegaF.J. RocaJ. seminal plasma: relevant for fertility?Int. J. Mol. Sci.2021229436810.3390/ijms2209436833922047
    [Google Scholar]
  75. LiuC. ZhouJ. ZhangS. FuJ. LiY. HaoY. Mesenchymal stem cells-derived IL-6 promotes invasion and metastasis of oral squamous cell carcinoma via JAK-STAT3 signalling.Oral Dis202430420972109
    [Google Scholar]
  76. NadaH. SivaramanA. LuQ. MinK. KimS. GooJ.I. ChoiY. LeeK. Perspective for discovery of small molecule IL-6 inhibitors through study of structure–activity relationships and molecular docking.J. Med. Chem.20236674417443310.1021/acs.jmedchem.2c0195736971365
    [Google Scholar]
  77. YangJ.L. LinW.L. TaiS.B. CiouY.S. ChungC.L. ChenJ.J. LiuP.F. LinM.W. ChenC.L. Suppression of TGFβ-induced interleukin-6 secretion by sinulariolide from soft corals through attenuation of the p38–NF-kB pathway in carcinoma cells.Int. J. Mol. Sci.202324141165610.3390/ijms24141165637511415
    [Google Scholar]
  78. ZhengX.Q. KongX.Q. HeY. WangY.J. XieL. LiuL.L. LinL.R. YangT.C. Treponema pallidum recombinant protein Tp47 enhanced interleukin-6 secretion in human dermal fibroblasts through the toll-like receptor 2 via the p38, PI3K/Akt, and NF-κB signalling pathways.Biochim. Biophys. Acta Mol. Cell Res.20231870711954010.1016/j.bbamcr.2023.11954037468070
    [Google Scholar]
  79. VickramS. RohiniK. AnbarasuK. DeyN. JeyanthiP. ThanigaivelS. IssacP.K. ArockiarajJ. Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: A prospective review.Int. J. Biol. Macromol.2022209Pt A95196210.1016/j.ijbiomac.2022.04.07935447263
    [Google Scholar]
  80. SzczykutowiczJ. KałużaA. Kaźmierowska-NiemczukM. Ferens-SieczkowskaM. The potential role of seminal plasma in the fertilization outcomes.BioMed Res. Int.2019201911010.1155/2019/539780431531356
    [Google Scholar]
  81. BarnardM. MostaghelE.A. AuchusR.J. StorbeckK.H. The role of adrenal derived androgens in castration resistant prostate cancer.J. Steroid Biochem. Mol. Biol.202019710550610.1016/j.jsbmb.2019.10550631672619
    [Google Scholar]
  82. de BonoJ.S. LogothetisC.J. MolinaA. FizaziK. NorthS. ChuL. ChiK.N. JonesR.J. GoodmanO.B.Jr SaadF. StaffurthJ.N. MainwaringP. HarlandS. FlaigT.W. HutsonT.E. ChengT. PattersonH. HainsworthJ.D. RyanC.J. SternbergC.N. EllardS.L. FléchonA. SalehM. ScholzM. EfstathiouE. ZiviA. BianchiniD. LoriotY. ChieffoN. KheohT. HaqqC.M. ScherH.I. COU-AA-301 Investigators Abiraterone and increased survival in metastatic prostate cancer.N. Engl. J. Med.2011364211995200510.1056/NEJMoa101461821612468
    [Google Scholar]
  83. ShafiA.A. YenA.E. WeigelN.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer.Pharmacol. Ther.2013140322323810.1016/j.pharmthera.2013.07.00323859952
    [Google Scholar]
  84. ChenF. ZhaoX. Prostate cancer: Current treatment and prevention strategies.Iran. Red Crescent Med. J.201315427928410.5812/ircmj.649924082997
    [Google Scholar]
  85. ChenN. ZhouQ. The evolving Gleason grading system.Chin. J. Cancer Res.2016281586427041927
    [Google Scholar]
  86. EpsteinJ.I. ZelefskyM.J. SjobergD.D. NelsonJ.B. EgevadL. Magi-GalluzziC. VickersA.J. ParwaniA.V. ReuterV.E. FineS.W. EasthamJ.A. WiklundP. HanM. ReddyC.A. CiezkiJ.P. NybergT. KleinE.A. A contemporary prostate cancer grading system: A validated alternative to the gleason score.Eur. Urol.201669342843510.1016/j.eururo.2015.06.04626166626
    [Google Scholar]
  87. ZhangN. HuangD. RuanX. NgA.T.L. TsuJ.H.L. JiangG. HuangJ. ZhanY. NaR. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer.Drug Resist. Updat.20236710091210.1016/j.drup.2022.10091236623445
    [Google Scholar]
  88. PencikJ. PhilippeC. SchledererM. AtasE. PecoraroM. Grund-GröschkeS. LiW. TraczA. HeideggerI. LaggerS. TrachtováK. OberhuberM. HeitzerE. AksoyO. NeubauerH.A. WingelhoferB. OrlovaA. WitzenederN. DillingerT. RedlE. GreinerG. D’AndreaD. ÖstmanJ.R. TangermannS. HermanovaI. SchäferG. SternbergF. PohlE.E. SternbergC. VaradyA. HorvathJ. StoiberD. MalcolmT.I. TurnerS.D. ParkesE.E. HantuschB. EggerG. Rose-JohnS. PoliV. JainS. ArmstrongC.W.D. HoermannG. GoffinV. AbergerF. MorigglR. CarracedoA. McKinneyC. KennedyR.D. KlockerH. SpeicherM.R. TangD.G. MoazzamiA.A. HeeryD.M. HackerM. KennerL. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway.Mol. Cancer202322113310.1186/s12943‑023‑01825‑837573301
    [Google Scholar]
  89. ChilukuriS. MallickI. AgrawalA. MaitreP. ArunsinghM. JamesF.V. KatariaT. NarangK. GurramB.C. AnandA.K. UtrejaN. DuttaD. PavamaniS. MitraS. MallikS. MahaleN. ChandraM. ChinnachamyA.N. ShahidT. RaghunathanM.S. KannanV. MohantyS.K. BasuT. HotwaniC. PanigrahiG. MurthyV. Multi-institutional clinical outcomes of biopsy gleason grade group 5 prostate cancers treated with contemporary high-dose radiation and long-term androgen deprivation therapy.Clin. Oncol. (R. Coll. Radiol.)202335745446210.1016/j.clon.2023.03.01837061457
    [Google Scholar]
  90. EpsteinJ.I. EgevadL. AminM.B. DelahuntB. SrigleyJ.R. HumphreyP.A. Grading Committee The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma.Am. J. Surg. Pathol.201640224425210.1097/PAS.000000000000053026492179
    [Google Scholar]
  91. CostelloL.C. FengP. MilonB. TanM. FranklinR.B. Role of zinc in the pathogenesis and treatment of prostate cancer: Critical issues to resolve.Prostate Cancer Prostatic Dis.20047211111710.1038/sj.pcan.450071215175662
    [Google Scholar]
  92. WakweV.C. OdumE.P. AmadiC. The impact of plasma zinc status on the severity of prostate cancer disease.Investig. Clin. Urol.201960316216810.4111/icu.2019.60.3.16231098423
    [Google Scholar]
  93. ShorningB.Y. DassM.S. SmalleyM.J. PearsonH.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling.Int. J. Mol. Sci.20202112450710.3390/ijms2112450732630372
    [Google Scholar]
  94. ShiL. YanY. HeY. YanB. PanY. OrmeJ.J. ZhangJ. XuW. PangJ. HuangH. Mutated SPOP E3 ligase promotes 17βHSD4 protein degradation to drive androgenesis and prostate cancer progression.Cancer Res.202181133593360610.1158/0008‑5472.CAN‑20‑325833762355
    [Google Scholar]
  95. LuY HidakaH FeldmanLJ Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism.Planta19961991824
    [Google Scholar]
  96. LeungJ.K. SadarM.D. Non-genomic actions of the androgen receptor in prostate cancer.Front. Endocrinol.20178210.3389/fendo.2017.0000228144231
    [Google Scholar]
  97. DengQ. ZhangZ. WuY. YuW. ZhangJ. JiangZ. ZhangY. LiangH. GuiY. Non-genomic action of androgens is mediated by rapid phosphorylation and regulation of androgen receptor trafficking.Cell. Physiol. Biochem.201743122323610.1159/00048034328854419
    [Google Scholar]
  98. ForadoriC.D. WeiserM.J. HandaR.J. Non-genomic actions of androgens.Front. Neuroendocrinol.200829216918110.1016/j.yfrne.2007.10.00518093638
    [Google Scholar]
  99. Congregado RuizB. Rivero BelenchónI. Lendínez CanoG. Medina LópezR.A. Strategies to re-sensitize castration-resistant prostate cancer to antiandrogen therapy.Biomedicines2023114110510.3390/biomedicines1104110537189723
    [Google Scholar]
  100. ZhangH. ZhouY. XingZ. SahR.K. HuJ. HuH. Androgen metabolism and response in prostate cancer anti-androgen therapy resistance.Int. J. Mol. Sci.202223211352110.3390/ijms23211352136362304
    [Google Scholar]
  101. HeY. XuW. XiaoY.T. HuangH. GuD. RenS. Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials.Signal Transduct. Target. Ther.20227119810.1038/s41392‑022‑01042‑735750683
    [Google Scholar]
  102. XuL. ChenJ. LiuW. LiangC. HuH. HuangJ. Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer.Asian J. Urol.201961919810.1016/j.ajur.2018.11.00230775252
    [Google Scholar]
  103. KarantanosT. CornP.G. ThompsonT.C. Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate resistance and novel therapeutic approaches.Oncogene201332495501551110.1038/onc.2013.20623752182
    [Google Scholar]
  104. AlbuquerqueA.C.C. BezerraK.S. de Fátima ViannaJ. BatistaS.O. de Lima NetoJ.X. de Oliveira CamposD.M. In silico evaluation of the binding energies of androgen receptor agonists in wild-type and mutational models.J. Phys. Chem. B.20231272250055017
    [Google Scholar]
  105. D’AmicoR. GenoveseT. CordaroM. SiracusaR. GugliandoloE. PeritoreA.F. InterdonatoL. CrupiR. CuzzocreaS. Di PaolaR. FuscoR. ImpellizzeriD. Palmitoylethanolamide/baicalein regulates the androgen receptor signaling and NF-κB/Nrf2 pathways in benign prostatic hyperplasia.Antioxidants2021107101410.3390/antiox1007101434202665
    [Google Scholar]
  106. FujitaK. NonomuraN. Role of androgen receptor in prostate cancer: A review.World J. Mens Health201937328829510.5534/wjmh.18004030209899
    [Google Scholar]
  107. KargboR.B. PROTAC compounds targeting androgen receptor for cancer therapeutics: Prostate cancer and kennedy’s disease.ACS Med. Chem. Lett.20201161092109310.1021/acsmedchemlett.0c0023632550986
    [Google Scholar]
  108. Montazeri-NajafabadyN. ChatrabnousN. ArabnezhadM.R. AzarpiraN. Anti‐androgenic effect of astaxanthin in LNCaP cells is mediated through the aryl hydrocarbon‐androgen receptors cross talk.J. Food Biochem.2021454e1370210.1111/jfbc.1370233694182
    [Google Scholar]
  109. SnaterseG. MiesR. van WeerdenW.M. FrenchP.J. JonkerJ.W. HoutsmullerA.B. Androgen receptor mutations modulate activation by 11-oxygenated androgens and glucocorticoids.Prostate Cancer Prostatic Dis.202226293301
    [Google Scholar]
  110. GelmannE.P. Molecular biology of the androgen receptor.J. Clin. Oncol.200220133001301510.1200/JCO.2002.10.01812089231
    [Google Scholar]
  111. MangelsdorfD.J. ThummelC. BeatoM. HerrlichP. SchützG. UmesonoK. BlumbergB. KastnerP. MarkM. ChambonP. EvansR.M. The nuclear receptor superfamily: The second decade.Cell199583683583910.1016/0092‑8674(95)90199‑X8521507
    [Google Scholar]
  112. JensterG. van der KorputH.A.G.M. van VroonhovenC. van der KwastT.H. TrapmanJ. BrinkmannA.O. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization.Mol. Endocrinol.19915101396140410.1210/mend‑5‑10‑13961775129
    [Google Scholar]
  113. FerraldeschiR. WeltiJ. LuoJ. AttardG. de BonoJ.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects.Oncogene201534141745175710.1038/onc.2014.11524837363
    [Google Scholar]
  114. WenS. NiuY. HuangH. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer.Asian J. Urol.20207320321810.1016/j.ajur.2019.11.00133024699
    [Google Scholar]
  115. GlassC.K. RosenfeldM.G. The coregulator exchange in transcriptional functions of nuclear receptors.Genes Dev.200014212114110.1101/gad.14.2.12110652267
    [Google Scholar]
  116. BerrevoetsC.A. DoesburgP. SteketeeK. TrapmanJ. BrinkmannA.O. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2).Mol. Endocrinol.19981281172118310.1210/mend.12.8.01539717843
    [Google Scholar]
  117. DoesburgP. KuilC.W. BerrevoetsC.A. SteketeeK. FaberP.W. MulderE. BrinkmannA.O. TrapmanJ. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor.Biochemistry19973651052106410.1021/bi961775g9033395
    [Google Scholar]
  118. FerrariniA. RupérezF.J. ErazoM. MartínezM.P. Villar-ÁlvarezF. Peces-BarbaG. González-MangadoN. TroncosoM.F. Ruiz-CabelloJ. BarbasC. Fingerprinting‐based metabolomic approach with LC ‐ MS to sleep apnea and hypopnea syndrome: A pilot study.Electrophoresis201334192873288110.1002/elps.20130008123775633
    [Google Scholar]
  119. WestabyD. La MazaM.D.L.D.F.D. PaschalisA. Jimenez-VacasJ.M. WeltiJ. De BonoJ. A new old target: Androgen receptor signaling and advanced prostate cancer.Annu. Rev. Pharmacol. Toxicol.20216213115334449248
    [Google Scholar]
  120. MostaghelE.A. MontgomeryB. NelsonP.S. Castration-resistant prostate cancer: Targeting androgen metabolic pathways in recurrent disease.Urol. Oncol. Semin. Orig. Investig.200927251257
    [Google Scholar]
  121. McEwanI.J. BrinkmannA.O. Molecular mechanisms of androgen action: A historical perspective.Methods. Mol. Biol.2011776324
    [Google Scholar]
  122. HeinleinC.A. ChangC. Androgen receptor (AR) coregulators: An overview.Endocr. Rev.200223217520010.1210/edrv.23.2.046011943742
    [Google Scholar]
  123. KulaevaO.I. GaykalovaD.A. StuditskyV.M. Transcription through chromatin by RNA polymerase II: Histone displacement and exchange.Mutat. Res.20076181-211612910.1016/j.mrfmmm.2006.05.04017313961
    [Google Scholar]
  124. MurawskaM. BrehmA. CHD chromatin remodelers and the transcription cycle.Transcription20112624425310.4161/trns.2.6.1784022223048
    [Google Scholar]
  125. ClaessensF. DenayerS. Van TilborghN. KerkhofsS. HelsenC. HaelensA. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling.Nucl. Recept. Signal.200861nrs.0600810.1621/nrs.0600818612376
    [Google Scholar]
  126. GrosseA. BartschS. BaniahmadA. Androgen receptor-mediated gene repression.Mol. Cell. Endocrinol.20123521-2465610.1016/j.mce.2011.06.03221784131
    [Google Scholar]
  127. Gubbels BuppM.R. JorgensenT.N. Androgen-Induced Immunosuppression.Front. Immunol.2018979410.3389/fimmu.2018.0079429755457
    [Google Scholar]
  128. HeemersH.V. VerhoevenG. SwinnenJ.V. Androgen activation of the sterol regulatory element-binding protein pathway: Current insights.Mol. Endocrinol.200620102265227710.1210/me.2005‑047916455816
    [Google Scholar]
  129. BellvA.R. ZhengW. Growth factors as autocrine and paracrine modulators of male gonadal functions.J. Reprod. Fertil. Ltd.1989852771793
    [Google Scholar]
  130. WangY. BikleD.D. ChangW. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development.Bone Res.20131324925910.4248/BR20130300326273506
    [Google Scholar]
  131. SwinnenJ.V. VanderhoydoncF. ElgamalA.A. EelenM. VercaerenI. JoniauS. Van PoppelH. BaertL. GoossensK. HeynsW. VerhoevenG. Selective activation of the fatty acid synthesis pathway in human prostate cancer.Int. J. Cancer200088217617910.1002/1097‑0215(20001015)88:2<176::AID‑IJC5>3.0.CO;2‑311004665
    [Google Scholar]
  132. WangY. ViscarraJ. KimS.J. SulH.S. Transcriptional regulation of hepatic lipogenesis.Nat. Rev. Mol. Cell Biol.2015161167868910.1038/nrm407426490400
    [Google Scholar]
  133. NelsonP.S. CleggN. ArnoldH. FergusonC. BonhamM. WhiteJ. HoodL. LinB. The program of androgen-responsive genes in neoplastic prostate epithelium.Proc. Natl. Acad. Sci. USA20029918118901189510.1073/pnas.18237629912185249
    [Google Scholar]
  134. SwinnenJ.V. EsquenetM. GoossensK. HeynsW. VerhoevenG. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP.Cancer Res.1997576108610909067276
    [Google Scholar]
  135. AwadD. PulliamT.L. LinC. WilkenfeldS.R. FrigoD.E. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches.Curr. Opin. Pharmacol.20184111110.1016/j.coph.2018.03.00229609138
    [Google Scholar]
  136. ZhuY. DalrympleS.L. ColemanI. ZhengS.L. XuJ. HooperJ.E. AntonarakisE.S. De MarzoA.M. MeekerA.K. NelsonP.S. IsaacsW.B. DenmeadeS.R. LuoJ. BrennenW.N. IsaacsJ.T. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors.Oncogene202039456935694910.1038/s41388‑020‑01479‑632989253
    [Google Scholar]
  137. MoraL.B. BuettnerR. SeigneJ. DiazJ. AhmadN. GarciaR. BowmanT. FalconeR. FaircloughR. CantorA. Muro-CachoC. LivingstonS. KarrasJ. Pow-SangJ. JoveR. Constitutive activation of Stat3 in human prostate tumors and cell lines: Direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells.Cancer Res.200262226659666612438264
    [Google Scholar]
  138. BruR BarceloAR PedrenMA Class III peroxidases in plant defence reactions.J. Exp. Bot.2009602377390
    [Google Scholar]
  139. BostwickD.G. Target populations and strategies for chemoprevention trials of prostate cancer.J. Cell. Biochem. Suppl.1994191911967823591
    [Google Scholar]
  140. HatsoukasJ. Patras, GreeceDepartment of Chemistry, University of Patras1989
  141. YeD. MendelsohnJ. FanZ. Androgen and epidermal growth factor down-regulate cyclin-dependent kinase inhibitor p27Kip1 and costimulate proliferation of MDA PCa 2a and MDA PCa 2b prostate cancer cells.Clin. Cancer Res.1999582171217710473102
    [Google Scholar]
  142. Abreu-MartinM.T. ChariA. PalladinoA.A. CraftN.A. SawyersC.L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer.Mol. Cell. Biol.19991975143515410.1128/MCB.19.7.514310373563
    [Google Scholar]
  143. QiuY. RaviL. KungH.J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells.Nature19983936680838510.1038/300129590694
    [Google Scholar]
  144. BhatM.A. MishraA.K. JanS. BhatM.A. KamalM.A. RahmanS. ShahA.A. JanA.T. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction.Plants202312362910.3390/plants1203062936771713
    [Google Scholar]
  145. SmithB.N. MishraR. BilletS. Placencio-HickokV.R. KimM. ZhangL. DuongF. MadhavA. ScherK. MoldawerN. OppenheimA. AngaraB. YouS. TighiouartM. PosadasE.M. BhowmickN.A. Antagonizing CD105 and androgen receptor to target stromal-epithelial interactions for clinical benefit.Mol. Ther.2023311788910.1016/j.ymthe.2022.08.01936045587
    [Google Scholar]
  146. BuiN-N. LiC-Y. WangL-Y. ChenY-A. KaoW-H. ChouL-F. Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signalling.J. Microbiol. Immunol. Infect.2023562246256
    [Google Scholar]
  147. TangD.G. Understanding and targeting prostate cancer cell heterogeneity and plasticity.Semin. Cancer Biol.202282689310.1016/j.semcancer.2021.11.00134844845
    [Google Scholar]
  148. GhildiyalR. SawantM. RenganathanA. MahajanK. KimE.H. LuoJ. DangH.X. MaherC.A. FengF.Y. MahajanN.P. Loss of long noncoding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance.Cancer Res.202282115516810.1158/0008‑5472.CAN‑20‑384534740892
    [Google Scholar]
  149. LiL. AmeriA.H. WangS. JanssonK.H. CaseyO.M. YangQ. BeshiriM.L. FangL. LakeR.G. AgarwalS. AlilinA.N. XuW. YinJ. KellyK. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis.Oncogene201938356241625510.1038/s41388‑019‑0873‑831312026
    [Google Scholar]
  150. AlpsoyA. UtturkarS.M. CarterB.C. DhimanA. Torregrosa-AllenS.E. CurrieM.P. ElzeyB.D. DykhuizenE.C. BRD9 Is a critical regulator of androgen receptor signaling and prostate cancer progression.Cancer Res.202181482083310.1158/0008‑5472.CAN‑20‑141733355184
    [Google Scholar]
  151. DingM. JiangC.Y. ZhangY. ZhaoJ. HanB.M. XiaS.J. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer.J. Exp. Clin. Cancer Res.20203912810.1186/s13046‑019‑1516‑132019578
    [Google Scholar]
  152. KoistinenH. KovanenR.M. HollenbergM.D. DufourA. RadiskyE.S. StenmanU.H. BatraJ. ClementsJ. HooperJ.D. DiamandisE. SchillingO. RannikkoA. MirttiT. The roles of proteases in prostate cancer.IUBMB Life202375649351310.1002/iub.270036598826
    [Google Scholar]
  153. LoganI.R. GaughanL. McCrackenS.R.C. SapountziV. LeungH.Y. RobsonC.N. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer.Mol. Cell. Biol.200626176502651010.1128/MCB.00147‑0616914734
    [Google Scholar]
  154. Montagnani MarelliM. MorettiR.M. ProcacciP. MottaM. LimontaP. Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling.Int. J. Oncol.200628372373016465378
    [Google Scholar]
  155. MyersR.B. OelschlagerD. ManneU. CoanP.N. WeissH. GrizzleW.E. Androgenic regulation of growth factor and growth factor receptor expression in the cwr22 model of prostatic adenocarcinoma.Int. J. Cancer199982342442910.1002/(SICI)1097‑0215(19990730)82:3<424::AID‑IJC16>3.0.CO;2‑B10399960
    [Google Scholar]
  156. LiuX.H. WileyH.S. MeikleA.W. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor.J. Clin. Endocrinol. Metab.1993776147214788263129
    [Google Scholar]
  157. RavennaL. GulinoA. LubranoC. SciarraF. Di SilverioF. D’EramoG. VaccaA. FelliM.P. MaroderM. FratiL. PetrangeliE. Androgenic and antiandrogenic control on epidermal growth factor, epidermal growth factor receptor, and androgen receptor expression in human prostate cancer cell line LNCaP.Prostate199526629029810.1002/pros.29902606047784269
    [Google Scholar]
  158. GrassoA.W. WenD. MillerC.M. RhimJ.S. PretlowT.G. KungH.J. ErbB kinases and NDF signaling in human prostate cancer cells.Oncogene199715222705271610.1038/sj.onc.12014479400997
    [Google Scholar]
  159. ZhangY. FondellJ.D. WangQ. XiaX. ChengA. LuM.L. HamburgerA.W. Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1.Oncogene200221365609561810.1038/sj.onc.120563812165860
    [Google Scholar]
  160. YehS. LinH.K. KangH.Y. ThinT.H. LinM.F. ChangC. From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells.Proc. Natl. Acad. Sci. USA199996105458546310.1073/pnas.96.10.545810318905
    [Google Scholar]
  161. UedaT. MawjiN.R. BruchovskyN. SadarM.D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells.J. Biol. Chem.200227741380873809410.1074/jbc.M20331320012163482
    [Google Scholar]
  162. MigliaccioA. CastoriaG. Di DomenicoM. de FalcoA. BilancioA. LombardiM. BaroneM.V. AmetranoD. ZanniniM.S. AbbondanzaC. AuricchioF. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation.EMBO J.200019205406541710.1093/emboj/19.20.540611032808
    [Google Scholar]
  163. KousteniS. BellidoT. PlotkinL.I. O’BrienC.A. BodennerD.L. HanL. HanK. DiGregorioG.B. KatzenellenbogenJ.A. KatzenellenbogenB.S. RobersonP.K. WeinsteinR.S. JilkaR.L. ManolagasS.C. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity.Cell2001104571973010.1016/S0092‑8674(02)08100‑X11257226
    [Google Scholar]
  164. El SheikhS.S. DominJ. AbelP. StampG. LalaniE.N. Androgen-independent prostate cancer: Potential role of androgen and ErbB receptor signal transduction crosstalk.Neoplasia2003529910910.1016/S1476‑5586(03)80001‑512659682
    [Google Scholar]
  165. LinH.K. YehS. KangH.Y. ChangC. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor.Proc. Natl. Acad. Sci. USA200198137200720510.1073/pnas.12117329811404460
    [Google Scholar]
  166. LiJ. Al-AzzawiF. Mechanism of androgen receptor action.Maturitas200963214214810.1016/j.maturitas.2009.03.00819372015
    [Google Scholar]
  167. SharmaM. ChuangW.W. SunZ. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation.J. Biol. Chem.200227734309353094110.1074/jbc.M20191920012063252
    [Google Scholar]
  168. WenY. HuM.C. MakinoK. SpohnB. BartholomeuszG. YanD.H. HungM.C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway.Cancer Res.200060246841684511156376
    [Google Scholar]
  169. WildingG. GelmannE.P. FreterC.E. Phosphoinositide metabolism in human prostate cancer cells in vitro.Prostate1990161152710.1002/pros.29901601032154736
    [Google Scholar]
  170. TriscottJ. ReistM. KüngL. MoselleF.C. LehnerM. GallonJ. RaviA. AroraG.K. de BrotS. LundquistM. Gallart-AyalaH. IvanisevicJ. PiscuoglioS. CantleyL.C. EmerlingB.M. RubinM.A. PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition.Sci. Adv.202395eade864110.1126/sciadv.ade864136724278
    [Google Scholar]
  171. ThomasE. ThankanR.S. PurushottamacharP. WeberD.J. NjarV.C.O. Targeted degradation of androgen receptor by VNPP433-3β in castration-resistant prostate cancer cells implicates interaction with E3 ligase MDM2 resulting in ubiquitin-proteasomal degradation.Cancers2023154119810.3390/cancers1504119836831540
    [Google Scholar]
  172. HoffmanA. AmielG.E. The impact of PSMA PET/CT on modern prostate cancer management and decision making—the urological perspective.Cancers20231513340210.3390/cancers1513340237444512
    [Google Scholar]
  173. LiX. ChenY. BaiL. ZhaoR. WuY. XieZ-R. Nicardipine is a putative EED inhibitor and has high selectivity and potency against chemoresistant prostate cancer in preclinical models.Br J Cancer202312988489410.1038/s41416‑023‑02359‑y
    [Google Scholar]
  174. BerenguerC.V. PereiraF. CâmaraJ.S. PereiraJ.A.M. Underlying features of prostate cancer—statistics, risk factors, and emerging methods for its diagnosis.Curr. Oncol.20233022300232110.3390/curroncol3002017836826139
    [Google Scholar]
  175. DavoudiF. MoradiA. BeckerT.M. LockJ.G. AbbeyB. FontanarosaD. Genomic and phenotypic biomarkers for precision medicine guidance in advanced prostate cancer.Curr. Treat. Options Oncol2023241451147110.1007/s11864‑023‑01121‑z
    [Google Scholar]
  176. YuX. LiuR. GaoW. WangX. ZhangY. Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment.Cell. Mol. Biol. Lett.20232813810.1186/s11658‑023‑00450‑z37161356
    [Google Scholar]
  177. WoodmanI.L. Modelling the distinct roles of epithelial and stromal androgen receptor in the regulation of prostate epithelial dynamics.Febs J.2023290225270529110.1111/febs.16900
    [Google Scholar]
  178. BlancC. MoktefiA. JollyA. de la GrangeP. GayD. NicolaiewN. SemprezF. MailléP. SoyeuxP. FirlejV. VacherotF. DestouchesD. AmicheM. TerryS. de la TailleA. Londoño-VallejoA. AlloryY. DelbéJ. Hamma-KourbaliY. The Neuropilin-1/PKC axis promotes neuroendocrine differentiation and drug resistance of prostate cancer.Br. J. Cancer2023128591892710.1038/s41416‑022‑02114‑936550208
    [Google Scholar]
  179. YendeA.S. WilliamsE.C. PletcherA. HelfandA. IbeawuchiH. NorthT.M. LathamP.S. HorvathA. ShibataM. TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer.Oncogene202342171347135910.1038/s41388‑023‑02655‑036882525
    [Google Scholar]
  180. ZhouY. YeZ. WeiW. ZhangM. HuangF. LiJ. CaiC. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis.NPJ Regen. Med.2023812310.1038/s41536‑023‑00296‑137130846
    [Google Scholar]
  181. BeshiriM. AgarwalS. YinJ.J. KellyK. Prostate organoids: Emerging experimental tools for translational research.J. Clin. Invest.202313310e16961610.1172/JCI16961637183816
    [Google Scholar]
  182. PitzenS.P. DehmS.M. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression.Cell Cycle202322111303131810.1080/15384101.2023.220650237098827
    [Google Scholar]
  183. MillerK.J. HenryI. MaylinZ. SmithC. ArunachalamE. PandhaH. AsimM. A compendium of androgen receptor variant 7 target genes and their role in castration resistant prostate cancer.Front. Oncol.202313112914010.3389/fonc.2023.112914036937454
    [Google Scholar]
  184. ManzarN. GangulyP. KhanU.K. AteeqB. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer.Semin. Cancer Biol.202389769110.1016/j.semcancer.2023.01.00436702449
    [Google Scholar]
  185. PleasanceE.D. CheethamR.K. StephensP.J. McBrideD.J. HumphrayS.J. GreenmanC.D. VarelaI. LinM.L. OrdóñezG.R. BignellG.R. YeK. AlipazJ. BauerM.J. BeareD. ButlerA. CarterR.J. ChenL. CoxA.J. EdkinsS. Kokko-GonzalesP.I. GormleyN.A. GrocockR.J. HaudenschildC.D. HimsM.M. JamesT. JiaM. KingsburyZ. LeroyC. MarshallJ. MenziesA. MudieL.J. NingZ. RoyceT. Schulz-TrieglaffO.B. SpiridouA. StebbingsL.A. SzajkowskiL. TeagueJ. WilliamsonD. ChinL. RossM.T. CampbellP.J. BentleyD.R. FutrealP.A. StrattonM.R. A comprehensive catalogue of somatic mutations from a human cancer genome.Nature2010463727819119610.1038/nature0865820016485
    [Google Scholar]
  186. MohammadinejadA. MohajeriT. AleyaghoobG. HeidarianF. Kazemi OskueeR. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies.Biotechnol. Appl. Biochem.20226962323235610.1002/bab.228834846078
    [Google Scholar]
  187. MasoudzadehN. ÖstenssonM. PerssonJ. Mashayekhi GoyonloV. AgbajoguC. TaslimiY. Erfanian SalimR. ZahedifardF. MizbaniA. Malekafzali ArdekaniH. GunnB.M. RafatiS. HarandiA.M. Molecular signatures of anthroponotic cutaneous leishmaniasis in the lesions of patients infected with Leishmania tropica.Sci. Rep.20201011619810.1038/s41598‑020‑72671‑733004861
    [Google Scholar]
  188. Jafari KaregarS. AryaeianN. HajiluianG. SuzukiK. ShidfarF. SalehiM. AshtianiB.H. FarhangniaP. DelbandiA.A. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: A multicentral-triple blind randomized clinical trial.Front. Nutr.202310123884610.3389/fnut.2023.123884637794975
    [Google Scholar]
  189. Mostafavi HosseiniF. AshourpourM. TaheriS. Tavakoli YarakiM. SalamiS. ShahsavariZ. KazerouniF. Novel Derivatives of Tetrahydrobenzo (g) Imidazo[α-1,2] Quinoline Induce Apoptosis via ROS Production in the Glioblastoma Multiforme Cells, U-87MG.Asian Pac. J. Cancer Prev.202223113885389310.31557/APJCP.2022.23.11.388536444602
    [Google Scholar]
  190. Mohamadipoor SaadatabadiL. MohammadabadiM. Amiri GhanatsamanZ. BabenkoO. StavetskaR. KalashnikO. KucherD. Kochuk-YashchenkoO. Asadollahpour NanaeiH. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds.BMC Vet. Res.202117136910.1186/s12917‑021‑03077‑434861880
    [Google Scholar]
  191. BordbarM.M. SamadiniaH. SheiniA. HalabianR. ParvinS. GhaneiM. BagheriH. A colorimetric electronic tongue based on bi-functionalized AuNPs for fingerprint detection of cancer markers.Sens. Actuators B Chem.202236813217010.1016/j.snb.2022.132170
    [Google Scholar]
  192. BordbarF. MohammadabadiM. JensenJ. XuL. LiJ. ZhangL. Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using illumina bovine beadchip and next-generation sequencing analyses.Animals2022129110310.3390/ani1209110335565529
    [Google Scholar]
  193. SafaeiS. SajedR. ShariftabriziA. DorafshanS. Saeednejad ZanjaniL. Dehghan ManshadiM. MadjdZ. GhodsR. Tumor matrix stiffness provides fertile soil for cancer stem cells.Cancer Cell Int.202323114310.1186/s12935‑023‑02992‑w37468874
    [Google Scholar]
  194. SaffarH. NiliF. SarmadiS. BarazandehE. SaffarH. Evaluation of sirtuin1 overexpression by immunohistochemistry in cervical intraepithelial lesions and invasive squamous cell carcinoma.Appl. Immunohistochem. Mol. Morphol.202331212813110.1097/PAI.000000000000108836730441
    [Google Scholar]
  195. FaghihkhorasaniA. DalvandA. DerafshE. TavakoliF. YounisN.K. YasaminehS. GholizadehO. ShokriP. The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: A review of virus in cancer stem cells.Cancer Cell Int.202323125010.1186/s12935‑023‑03099‑y37880659
    [Google Scholar]
  196. MatobaY. ZarrellaD.T. PooladandaV. Azimi MohammadabadiM. KimE. KumarS. XuM. QinX. RayL.J. DevinsK.M. KumarR. KononenkoA. EisenhauerE. VeillardI.E. YamagamiW. HillS.J. SarosiekK.A. YekuO.O. SpriggsD.R. RuedaB.R. Targeting Galectin 3 illuminates its contributions to the pathology of uterine serous carcinoma.Br. J. Cancer202413091463147610.1038/s41416‑024‑02621‑x38438589
    [Google Scholar]
  197. YangY. TseA.K-W. LiP. MaQ. XiangS. NicosiaS.V. SetoE. ZhangX. BaiW. Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation.Oncogene201130192207221810.1038/onc.2010.60021242980
    [Google Scholar]
  198. EhsaniM. DavidF.O. BaniahmadA. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer.Cancers2021137153410.3390/cancers1307153433810413
    [Google Scholar]
  199. BeaucheminK.A. RibeiroG.O. RanT. Marami MilaniM.R. YangW. KhanakiH. GruningerR. TsangA. McAllisterT.A. Recombinant fibrolytic feed enzymes and ammonia fibre expansion (AFEX) pretreatment of crop residues to improve fibre degradability in cattle.Anim. Feed Sci. Technol.201925611426010.1016/j.anifeedsci.2019.114260
    [Google Scholar]
  200. Vazquez-UrrutiaJ.R. Torres-BustamanteM.I. Cerda-CruzC.R. Bravo-CuellarA. Ortiz-LazarenoP.C. The role of miRNA in prostate cancer diagnosis, prognosis and treatment response: A narrative review.Futur. Oncol.202319779310.2217/fon‑2022‑0891
    [Google Scholar]
  201. LinJ. ZhuoY. ZhangY. LiuR. ZhongW. Molecular predictors of metastasis in patients with prostate cancer.Expert Rev. Mol. Diagn.202323319921510.1080/14737159.2023.218728936860119
    [Google Scholar]
  202. SomanathP.R. ChernoffJ. CummingsB.S. PrasadS.M. HomanH.D. Targeting P21-activated kinase-1 for metastatic prostate cancer.Cancers2023158223610.3390/cancers1508223637190165
    [Google Scholar]
  203. LuG.M. JiangL.Y. HuangD.L. RongY.X. LiY.H. WeiL.X. NingY. HuangS.F. MoS. MengF.H. LiH.M. Advanced platelet-rich fibrin extract treatment promotes the proliferation and differentiation of human adipose-derived mesenchymal stem cells through activation of tryptophan metabolism.Curr. Stem Cell Res. Ther.202318112714210.2174/1574888X1666621120615093434872484
    [Google Scholar]
  204. VandanaJ.J. ManriqueC. LackoL.A. ChenS. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation.Cell Stem Cell202330557159110.1016/j.stem.2023.04.01137146581
    [Google Scholar]
  205. MoazamiyanfarR. RezaeiS. AliAshrafzadehH. Rastegar-PouyaniN. JafarzadehE. MouludiK. KhodamoradiE. ZhalehM. TaebS. NajafiM. Nobiletin in cancer therapy; mechanisms and therapy perspectives.Curr. Pharm. Des.202329221713172810.2174/138161282966623042611542437185325
    [Google Scholar]
  206. VavaA. PaccezJ.D. WangY. GuX. BhasinM.K. MyersM. SoaresN.C. LibermannT.A. ZerbiniL.F. DCUN1D1 is an essential regulator of prostate cancer proliferation and tumour growth that acts through neddylation of cullin 1, 3, 4A and 5 and deregulation of Wnt/catenin pathway.Cells20231215197310.3390/cells1215197337566052
    [Google Scholar]
  207. GogolaS. RejzerM. BahmadH.F. Abou-KheirW. OmarzaiY. PoppitiR. Epithelial-to-mesenchymal transition-related markers in prostate cancer: From bench to bedside.Cancers2023158230910.3390/cancers1508230937190236
    [Google Scholar]
  208. LiuM. ZhangY. ZhangA. DengY. GaoX. WangJ. WangY. WangS. LiuJ. ChenS. YaoW. LiuX. Compound K is a potential clinical anticancer agent in prostate cancer by arresting cell cycle.Phytomedicine202310915458410.1016/j.phymed.2022.15458436610114
    [Google Scholar]
  209. KimH.Y. LeeS.W. ChoiS.K. AshimJ. KimW. BeakS.M. ParkJ.K. HanJ.E. ChoG.J. RyooZ.Y. JeongJ. LeeY.H. JeongH. YuW. ParkS. Veratramine inhibits the cell cycle progression, migration, and invasion via ATM/ATR pathway in androgen-independent prostate cancer.Am. J. Chin. Med.20235151309133310.1142/S0192415X2350060X37385965
    [Google Scholar]
  210. GrypariI.M. TzelepiV. GyftopoulosK. DNA damage repair pathways in prostate cancer: A narrative review of molecular mechanisms, emerging biomarkers and therapeutic targets in precision oncology.Int. J. Mol. Sci.202324141141810.3390/ijms24141141837511177
    [Google Scholar]
  211. SahaA. ZhaoS. KindallA. WilderC. FriedmanC.A. ClarkR. GeorgiouG. StoneE. KidaneD. DiGiovanniJ. Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition.J. Exp. Clin. Cancer Res.202342111910.1186/s13046‑023‑02677‑237170264
    [Google Scholar]
  212. ChangT. LianZ. MaS. LiangZ. MaX. WenX. WangY. LiuR. Combination with vorinostat enhances the antitumor activity of cisplatin in castration‐resistant prostate cancer by inhibiting DNA damage repair pathway and detoxification of GSH.Prostate202383547048610.1002/pros.2447936576015
    [Google Scholar]
  213. Di ZazzoE. GalassoG. GiovannelliP. Di DonatoM. Di SantiA. CerneraG. RossiV. AbbondanzaC. MoncharmontB. SinisiA.A. CastoriaG. MigliaccioA. Prostate cancer stem cells: The role of androgen and estrogen receptors.Oncotarget20167119320810.18632/oncotarget.622026506594
    [Google Scholar]
  214. Lo IaconoM. ButtiglieroC. MonicaV. BollitoE. GarrouD. CappiaS. RapaI. VignaniF. BertagliaV. FioriC. PapottiM. VolanteM. ScagliottiG.V. PorpigliaF. TucciM. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer.Oncotarget2016712143941440410.18632/oncotarget.734326887047
    [Google Scholar]
  215. Al SalhiY. SequiM.B. ValenziF.M. FuschiA. MartocciaA. SuraciP. Cancer stem cells and prostate cancer: A narrative review.Int. J. Mol. Sci.20232497746
    [Google Scholar]
  216. ChenW.Y. Thuy DungP.V. YehH.L. ChenW.H. JiangK.C. LiH.R. ChenZ.Q. HsiaoM. HuangJ. WenY.C. LiuY.N. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.Redox Biol.20236210268610.1016/j.redox.2023.10268636963289
    [Google Scholar]
  217. NataniS. RamakrishnaM. NallavoluT. UmmanniR. MicroRNA‐147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A.Prostate2023831093694910.1002/pros.2453537069746
    [Google Scholar]
  218. CheB. ZhangW. LiW. TangK. YinJ. LiuM. XuS. HuangT. YuY. HuangK. PengZ. ZhaC. Bacterial lipopolysaccharide-related genes are involved in the invasion and recurrence of prostate cancer and are related to immune escape based on bioinformatics analysis.Front. Oncol.202313114119110.3389/fonc.2023.114119137188204
    [Google Scholar]
  219. SukochevaO.A. LiB. DueS.L. HusseyD.J. WatsonD.I. Androgens and esophageal cancer: What do we know?World J. Gastroenterol.201521206146615610.3748/wjg.v21.i20.614626034350
    [Google Scholar]
  220. FrameF.M. NobleA.R. KleinS. WalkerH.F. SumanR. KasprowiczR. MannV.M. SimmsM.S. MaitlandN.J. Tumor heterogeneity and therapy resistance - implications for future treatments of prostate cancer.J. Cancer Metastasis Treat.201731230210.20517/2394‑4722.2017.34
    [Google Scholar]
  221. KarthausW.R. HofreeM. ChoiD. LintonE.L. TurkekulM. BejnoodA. Regenerative potential of prostate luminal cells revealed by single-cell analysis.Science2020368649049750510.1126/science.aay0267
    [Google Scholar]
  222. ChanJ.M. ZaidiS. LoveJ.R. ZhaoJ.L. SettyM. WadoskyK.M. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling.Science2022377661111801191
    [Google Scholar]
  223. PatelR. FeinD. RamirezC.B. DoK. SaifM.W. PARP inhibitors in pancreatic cancer: From phase I to plenary session.Pancreas Open J.201931e5e8
    [Google Scholar]
  224. DeVoreN.M. ScottE.E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001.Nature2012482738311611910.1038/nature1074322266943
    [Google Scholar]
  225. GuoC. FigueiredoI. GurelB. NeebA. SeedG. CrespoM. CarreiraS. RekowskiJ. BuroniL. WeltiJ. BogdanD. GallagherL. SharpA. Fenor de la MazaM.D. RescignoP. WestabyD. ChandranK. RiisnaesR. FerreiraA. MirandaS. CalìB. AlimontiA. BressanS. NguyenA.H.T. ShenM.M. HawleyJ.E. ObradovicA. DrakeC.G. BertanC. BakerC. TunariuN. YuanW. de BonoJ.S. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer.Eur. Urol.202383322423810.1016/j.eururo.2022.09.00436114082
    [Google Scholar]
  226. ChenK. KostosL. AzadA.A. Future directions in systemic treatment of metastatic hormone-sensitive prostate cancer.World J. Urol.20224182021203110.1007/s00345‑022‑04135‑836029329
    [Google Scholar]
  227. FlippotR. PatrikidouA. AldeaM. ColombaE. LavaudP. AlbigèsL. NaounN. BlanchardP. TerlizziM. GarciaC. Bernard-TessierA. FuereaA. Di PalmaM. EscudierB. LoriotY. BaciarelloG. FizaziK. PARP Inhibition, a new therapeutic avenue in patients with prostate cancer.Drugs202282771973310.1007/s40265‑022‑01703‑535511402
    [Google Scholar]
  228. FizaziK. González MellaP. CastellanoD. MinattaJ.N. Rezazadeh KalebastyA. ShafferD. Vázquez LimónJ.C. Sánchez LópezH.M. ArmstrongA.J. HorvathL. BastosD.A. AminN.P. LiJ. Unsal-KacmazK. RetzM. SaadF. PetrylakD.P. PachynskiR.K. Nivolumab plus docetaxel in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer: Results from the phase II CheckMate 9KD trial.Eur. J. Cancer2022160617110.1016/j.ejca.2021.09.04334802864
    [Google Scholar]
  229. ArmstrongA.J. AzadA.A. IguchiT. SzmulewitzR.Z. PetrylakD.P. HolzbeierleinJ. VillersA. AlcarazA. AlekseevB. ShoreN.D. Gomez-VeigaF. RosbrookB. ZohrenF. YamadaS. HaasG.P. StenzlA. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer.J. Clin. Oncol.202240151616162210.1200/JCO.22.0019335420921
    [Google Scholar]
  230. Conde-EstévezD. HenríquezI. Muñoz-RodríguezJ. Rodriguez-VidaA. Treatment of non-metastatic castration-resistant prostate cancer: Facing age-related comorbidities and drug–drug interactions.Expert Opin. Drug Metab. Toxicol.202218960161310.1080/17425255.2022.212281236111393
    [Google Scholar]
  231. NanniC. ZanoniL. PultroneC. SchiavinaR. BrunocillaE. LodiF. MaliziaC. FerrariM. RigattiP. FontiC. MartoranaG. FantiS. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: Results of a prospective trial.Eur. J. Nucl. Med. Mol. Imaging20164391601161010.1007/s00259‑016‑3329‑126960562
    [Google Scholar]
  232. LingS.W. de BloisE. HooijmanE. van der VeldtA. BrabanderT. Advances in 177Lu-PSMA and 225Ac-PSMA radionuclide therapy for metastatic castration-resistant prostate cancer.Pharmaceutics20221410216610.3390/pharmaceutics1410216636297601
    [Google Scholar]
  233. HafronJ.M. WilfehrtH.M. FerroC. HarmonM. FlandersS.C. McKayR.R. Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents.Adv. Ther.20223962515253210.1007/s12325‑022‑02085‑635352309
    [Google Scholar]
  234. WildingJ.P.H. BatterhamR.L. CalannaS. DaviesM. Van GaalL.F. LingvayI. McGowanB.M. RosenstockJ. TranM.T.D. WaddenT.A. WhartonS. YokoteK. ZeuthenN. KushnerR.F. STEP 1 Study Group Once-weekly semaglutide in adults with overweight or obesity.N. Engl. J. Med.202138411989100210.1056/NEJMoa203218333567185
    [Google Scholar]
  235. AlemanyM. The roles of androgens in humans: Biology, metabolic regulation and health.Int. J. Mol. Sci.202223191195210.3390/ijms23191195236233256
    [Google Scholar]
  236. LustofinS. KamińskaA. BrzoskwiniaM. CyranJ. Kotula-BalakM. BilińskaB. HejmejA. nuclear and membrane receptors for sex steroids are involved in the regulation of delta/serrate/lag-2 proteins in rodent sertoli cells.Int. J. Mol. Sci.2022234228410.3390/ijms2304228435216398
    [Google Scholar]
  237. MalinowskiB. WicińskiM. MusiałaN. OsowskaI. SzostakM. Previous, current, and future pharmacotherapy and diagnosis of prostate cancer: A comprehensive review.Diagnostics20199416110.3390/diagnostics904016131731466
    [Google Scholar]
  238. HanX. ZhaoL. XiangW. QinC. MiaoB. McEachernD. WangY. MetwallyH. WangL. MatvekasA. WenB. SunD. WangS. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer.J. Med. Chem.20216417128311285410.1021/acs.jmedchem.1c0088234431670
    [Google Scholar]
  239. JiG. HuangC. HeS. GongY. SongG. LiX. ZhouL. Comprehensive analysis of m6A regulators prognostic value in prostate cancer.Aging20201214148631488410.18632/aging.10354932710725
    [Google Scholar]
  240. WalterB. RogenhoferS. VogelhuberM. WilkeJ. BerandA. WielandW.F. Modular therapy approach in metastatic castration-resistent prostate cancer.From Molecular to Modular Tumor Therapy. The Tumor MicroenvironmentDordrechtSpringer Netherlands201036737710.1007/978‑90‑481‑9531‑2_18
    [Google Scholar]
  241. ChoudhuryA.D. PTEN‐PI3K pathway alterations in advanced prostate cancer and clinical implications.Prostate202282S1Suppl. 1S60S7210.1002/pros.2437235657152
    [Google Scholar]
  242. ConnellyZ.M. YangS. ChenF. YehY. KhaterN. JinR. MatusikR. YuX. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors.Am. J. Clin. Exp. Urol.20186517218130510969
    [Google Scholar]
  243. DalinM.G. DesrichardA. KatabiN. MakarovV. WalshL.A. LeeK.W. WangQ. ArmeniaJ. WestL. DoganS. WangL. RamaswamiD. HoA.L. GanlyI. SolitD.B. BergerM.F. SchultzN.D. Reis-FilhoJ.S. ChanT.A. MorrisL.G.T. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer.Clin. Cancer Res.201622184623463310.1158/1078‑0432.CCR‑16‑063727103403
    [Google Scholar]
  244. HamidA.R.A.H. Molecular phenotyping of AR signaling for predicting targeted therapy in castration resistant prostate cancer.Front. Oncol.202111. 7216-59.
    [Google Scholar]
  245. JamrozeA. ChattaG. TangD.G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance.Cancer Lett.20215181910.1016/j.canlet.2021.06.00634118355
    [Google Scholar]
  246. KushwahaP.P. VermaS. KumarS. GuptaS. Role of prostate cancer stem-like cells in the development of antiandrogen resistance.Cancer Drug Resist.20225245947110.20517/cdr.2022.0735800367
    [Google Scholar]
  247. MourkiotiI. AngelopoulouA. BelogiannisK. LagopatiN. PotamianosS. KyrodimosE. GorgoulisV. PapaspyropoulosA. Interplay of developmental hippo–notch signaling pathways with the DNA damage response in prostate cancer.Cells20221115244910.3390/cells1115244935954292
    [Google Scholar]
  248. NuvolaG. SantoniM. RizzoM. RoselliniM. MollicaV. RizzoA. MarchettiA. BattelliN. MassariF. Adapting to hormone-therapy resistance for adopting the right therapeutic strategy in advanced prostate cancer.Expert Rev. Anticancer Ther.202323659360010.1080/14737140.2023.220782737185042
    [Google Scholar]
  249. PintoF. DibitettoF. RagoneseM. BassiP. Mechanisms of resistance to second-generation antiandrogen therapy for prostate cancer: Actual knowledge and perspectives.Med. Sci.20221022510.3390/medsci1002002535645241
    [Google Scholar]
  250. RamalingamS. RamamurthyV.P. NjarV.C.O. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets.J. Steroid Biochem. Mol. Biol.2017166162710.1016/j.jsbmb.2016.07.00627481707
    [Google Scholar]
  251. YamamotoY. LoriotY. BeraldiE. ZhangF. WyattA.W. NakouziN.A. MoF. ZhouT. KimY. MoniaB.P. MacLeodA.R. FazliL. WangY. CollinsC.C. ZoubeidiA. GleaveM. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth.Clin. Cancer Res.20152171675168710.1158/1078‑0432.CCR‑14‑110825634993
    [Google Scholar]
  252. BarataP.C. SartorA.O. Metastatic castration‐sensitive prostate cancer: Abiraterone, docetaxel, or….Cancer2019125111777178810.1002/cncr.3203930933324
    [Google Scholar]
  253. DaisleyB.A. ChanyiR.M. Abdur-RashidK. AlK.F. GibbonsS. ChmielJ.A. WilcoxH. ReidG. AndersonA. DewarM. NairS.M. ChinJ. BurtonJ.P. Author Correction: Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients.Nat. Commun.2020111639410.1038/s41467‑020‑20410‑x33298912
    [Google Scholar]
  254. FizaziK. FoulonS. CarlesJ. RoubaudG. McDermottR. FléchonA. TombalB. SupiotS. BertholdD. RonchinP. KacsoG. GravisG. CalabroF. BerdahJ.F. HasbiniA. SilvaM. Thiery-VuilleminA. LatorzeffI. MoureyL. LaguerreB. Abadie-LacourtoisieS. MartinE. El KouriC. EscandeA. RoselloA. MagneN. SchlurmannF. PriouF. Chand-FoucheM.E. FreixaS.V. JamaluddinM. RiegerI. BossiA. PEACE-1 investigators Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design.Lancet2022399103361695170710.1016/S0140‑6736(22)00367‑135405085
    [Google Scholar]
  255. GuanY. XiongH. FengY. LiaoG. TongT. PangJ. Revealing the prognostic landscape of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in metastatic castration-resistant prostate cancer patients treated with abiraterone or enzalutamide: A meta-analysis.Prostate. Cancer Prostatic. Dis.202023222023110.1038/s41391‑020‑0209‑332034294
    [Google Scholar]
  256. HoyleA.P. AliA. JamesN.D. CookA. ParkerC.C. de BonoJ.S. AttardG. ChowdhuryS. CrossW.R. DearnaleyD.P. BrawleyC.D. GilsonC. InglebyF. GillessenS. AebersoldD.M. JonesR.J. MathesonD. MillmanR. MasonM.D. RitchieA.W.S. RussellM. DouisH. ParmarM.K.B. SydesM.R. ClarkeN.W. STAMPEDE Investigators Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer.Eur. Urol.201976671972810.1016/j.eururo.2019.08.00631447077
    [Google Scholar]
  257. KhalafD.J. AnnalaM. TaavitsainenS. FinchD.L. OjaC. VergidisJ. ZulfiqarM. SunderlandK. AzadA.A. KollmannsbergerC.K. EiglB.J. NoonanK. WadhwaD. AttwellA. KeithB. EllardS.L. LeL. GleaveM.E. WyattA.W. ChiK.N. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: A multicentre, randomised, open-label, phase 2, crossover trial.Lancet Oncol.201920121730173910.1016/S1470‑2045(19)30688‑631727538
    [Google Scholar]
  258. MoriK. MiuraN. MostafaeiH. QuhalF. Sari MotlaghR. PradereB. KimuraS. KimuraT. EgawaS. BrigantiA. KarakiewiczP.I. ShariatS.F. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: A systematic review and meta-analysis.Prostate Cancer Prostatic Dis.202023453954810.1038/s41391‑020‑0222‑632152435
    [Google Scholar]
  259. ParikhM. LiuC. WuC.Y. EvansC.P. Dall’EraM. RoblesD. LaraP.N. AgarwalN. GaoA.C. PanC.X. Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer.Sci. Rep.2021111637710.1038/s41598‑021‑85969‑x33737681
    [Google Scholar]
  260. SeshacharyuluP. RachaganiS. MuniyanS. SiddiquiJ.A. CruzE. SharmaS. KrishnanR. KillipsB.J. SheininY. LeleS.M. SmithL.M. TalmonG.A. PonnusamyM.P. DattaK. BatraS.K. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis.Oncogene201938265265528010.1038/s41388‑019‑0791‑930914801
    [Google Scholar]
  261. SternbergC.N. FizaziK. SaadF. ShoreN.D. De GiorgiU. PensonD.F. FerreiraU. EfstathiouE. MadziarskaK. KolinskyM.P. CuberoD.I.G. NoerbyB. ZohrenF. LinX. ModelskaK. SuggJ. SteinbergJ. HussainM. PROSPER Investigators Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer.N. Engl. J. Med.2020382232197220610.1056/NEJMoa200389232469184
    [Google Scholar]
  262. BordiniJ. MorisiF. EliaA.R. SantambrogioP. PaganiA. CucchiaraV. GhiaP. BelloneM. BrigantiA. CamaschellaC. CampanellaA. Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models.Clin. Cancer Res.202026236387639810.1158/1078‑0432.CCR‑20‑318232928793
    [Google Scholar]
  263. DessR.T. SunY. JacksonW.C. JairathN.K. KishanA.U. WallingtonD.G. MahalB.A. StishB.J. ZumstegZ.S. DenR.B. HallW.A. GharzaiL.A. JaworskiE.M. ReichertZ.R. MorganT.M. MehraR. SchaefferE.M. SartorO. NguyenP.L. LeeW.R. RosenthalS.A. MichalskiJ.M. SchipperM.J. DignamJ.J. PisanskyT.M. ZietmanA.L. SandlerH.M. EfstathiouJ.A. FengF.Y. ShipleyW.U. SprattD.E. Association of presalvage radiotherapy psa levels after prostatectomy with outcomes of long-term antiandrogen therapy in men with prostate cancer.JAMA Oncol.20206573574310.1001/jamaoncol.2020.010932215583
    [Google Scholar]
  264. KregelS. WangC. HanX. XiaoL. Fernandez-SalasE. BawaP. McCollumB.L. Wilder-RomansK. ApelI.J. CaoX. SpeersC. WangS. ChinnaiyanA.M. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment.Neoplasia202022211111910.1016/j.neo.2019.12.00331931431
    [Google Scholar]
  265. LiaoY. LiuY. XiaX. ShaoZ. HuangC. HeJ. JiangL. TangD. LiuJ. HuangH. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy.Theranostics20201083366338110.7150/thno.4184932206096
    [Google Scholar]
  266. LiyanageC. MalikA. AbeysingheP. ClementsJ. BatraJ. SWATH-MS based proteomic profiling of prostate cancer cells reveals adaptive molecular mechanisms in response to anti-androgen therapy.Cancers202113471510.3390/cancers1304071533572476
    [Google Scholar]
  267. OrmeJ.J. PagliaroL.C. QuevedoJ.F. ParkS.S. CostelloB.A. Rational second-generation antiandrogen use in prostate cancer.Oncologist202227211012410.1093/oncolo/oyab04535641216
    [Google Scholar]
  268. TewariA.K. CheungA.T.M. CrowdisJ. ConwayJ.R. CampS.Y. WankowiczS.A. LivitzD.G. ParkJ. LisR.T. Bosma-MoodyA. HeM.X. AlDubayanS.H. ZhangZ. McKayR.R. LeshchinerI. BrownM. BalkS.P. GetzG. TaplinM.E. Van AllenE.M. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer.Cell Rep.2021361010966510.1016/j.celrep.2021.10966534496240
    [Google Scholar]
  269. ZhangZ. ChenY. LiB. ChenT. TianS. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi.Comput. Struct. Biotechnol. J.2020183344334910.1016/j.csbj.2020.10.02433294130
    [Google Scholar]
  270. BaiS. CaoS. JinL. KobelskiM. SchouestB. WangX. UngerleiderN. BaddooM. ZhangW. CoreyE. VessellaR.L. DongX. ZhangK. YuX. FlemingtonE.K. DongY. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer.Oncogene201938254977498910.1038/s41388‑019‑0768‑830820039
    [Google Scholar]
  271. KanayamaM. LuC. LuoJ. AntonarakisE.S. AR splicing variants and resistance to AR targeting agents.Cancers20211311256310.3390/cancers1311256334071114
    [Google Scholar]
  272. ThiyagarajanT. PonnusamyS. HwangD.J. HeY. AsemotaS. YoungK.L. JohnsonD.L. BocharovaV. ZhouW. JainA.K. PetricoinE.F. YinZ. PfefferL.M. MillerD.D. NarayananR. Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer.Proc. Natl. Acad. Sci. USA20231201e221183212010.1073/pnas.221183212036577061
    [Google Scholar]
  273. WangZ. SongY. YeM. DaiX. ZhuX. WeiW. The diverse roles of SPOP in prostate cancer and kidney cancer.Nat. Rev. Urol.202017633935010.1038/s41585‑020‑0314‑z32355326
    [Google Scholar]
  274. PerlmutterM.A. LeporH. Androgen deprivation therapy in the treatment of advanced prostate cancer.Rev. Urol.20079Suppl 1S3S817387371
    [Google Scholar]
  275. HuJ.R. DuncanM.S. MorgansA.K. BrownJ.D. MeijersW.C. FreibergM.S. SalemJ.E. BeckmanJ.A. MoslehiJ.J. Cardiovascular effects of androgen deprivation therapy in prostate cancer: Contemporary meta-analyses.Arterioscler. Thromb. Vasc. Biol.2020403e55e6410.1161/ATVBAHA.119.31304631969015
    [Google Scholar]
  276. WangH.T. YaoY.H. LiB.G. TangY. ChangJ.W. ZhangJ. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: Factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis.J. Clin. Oncol.201432303383339010.1200/JCO.2013.54.355325225419
    [Google Scholar]
  277. OchsH.G. LambertsB. SalehM. HeintzR. Renin secretion in vitro. Comparison of kidney slices and isolated glomeruli.Res. Exp. Med.1973160320621210.1007/BF018567844708226
    [Google Scholar]
  278. YuJ. GritsinaG. GaoW-Q. Transcriptional repression by androgen receptor: Roles in castration-resistant prostate cancer.Asian J. Androl.201921321522310.4103/aja.aja_19_1930950412
    [Google Scholar]
  279. ShoreN.D. MorgansA.K. RyanC.J. Resetting the bar of castration resistance – Understanding androgen dynamics in therapy resistance and treatment choice in prostate cancer.Clin. Genitourin. Cancer202119319920710.1016/j.clgc.2020.08.00833129718
    [Google Scholar]
  280. FormaggioN. RubinM.A. TheurillatJ.P. Loss and revival of androgen receptor signaling in advanced prostate cancer.Oncogene20214071205121610.1038/s41388‑020‑01598‑033420371
    [Google Scholar]
  281. ObinataD. LawrenceM.G. TakayamaK. ChooN. RisbridgerG.P. TakahashiS. InoueS. Recent discoveries in the androgen receptor pathway in castration-resistant prostate cancer.Front. Oncol.20201058151510.3389/fonc.2020.58151533134178
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303313528240523101940
Loading
/content/journals/emiddt/10.2174/0118715303313528240523101940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test