Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

The recognition of epicardial adipose tissue (EAT) as a cardiac risk factor has increased the interest in strategies that target cardiac adipose tissue.

Aim

The effect of bariatric and metabolic surgery (BMS)-induced weight loss on EAT volume was evaluated in this study.

Methods

Fifteen bariatric patients, with (MS) or without (wMS) Metabolic Syndrome, underwent magnetic resonance imaging (MRI) using an open-bore scanner to assess EAT volume, visceral adipose tissue (VAT) thickness, and other cardiac morpho-functional parameters at baseline and 12 months after BMS. Nine patients underwent laparoscopic sleeve gastrectomy (LSG), and 6 patients underwent Roux-en-Y Gastric Bypass (RYGBP).

Results

EAT volume significantly decreased in all the patients 12 months post-BMS from 91.6 cm3 to 67.1 cm3 = 0.0002 in diastole and from 89.4 cm3 to 68.2 cm3 = 0.0002 in systole. No significant difference was found between the LSG and RYGBP group. Moreover, EAT volume was significantly reduced among wMS compared with MS. In particular, EAT volume in diastole was significantly reduced from 80.9 cm3 to 54.4 cm3; = 0.0156 in wMS and from 98.3 cm3 to 79.5 cm3; = 0.031 in MS. The reduction was also confirmed in systole from 81.2 cm3 to 54.1 cm3; = 0.0156 in wMS and from 105.7 cm3 to 75.1 cm3; = 0.031 in MS. Finally, a positive correlation was found between EAT loss, BMI ( = 0.52; = 0.0443) and VAT ( = 0.66; = 0.008) reduction after BMS.

Conclusion

These findings suggest that EAT reduction may be a fundamental element for improving the cardio-metabolic prognosis of bariatric patients. Moreover, this is the first study performed with an open-bore MRI scanner to measure EAT volume.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303310680240607114244
2024-08-21
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/2/EMIDDT-25-2-07.html?itemId=/content/journals/emiddt/10.2174/0118715303310680240607114244&mimeType=html&fmt=ahah

References

  1. SacksH.S. FainJ.N. Human epicardial adipose tissue: A review.Am. Heart J.2007153690791710.1016/j.ahj.2007.03.01917540190
    [Google Scholar]
  2. SacksH.S. FainJ.N. HolmanB. CheemaP. CharyA. ParksF. KarasJ. OpticanR. BahouthS.W. GarrettE. WolfR.Y. CarterR.A. RobbinsT. WolfordD. SamahaJ. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat.J. Clin. Endocrinol. Metab.20099493611361510.1210/jc.2009‑057119567523
    [Google Scholar]
  3. IacobellisG. CorradiD. SharmaA.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart.Nat. Clin. Pract. Cardiovasc. Med.200521053654310.1038/ncpcardio031916186852
    [Google Scholar]
  4. CorradiD. MaestriR. CallegariS. PastoriP. GoldoniM. LuongT.V. BordiC. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts.Cardiovasc. Pathol.200413631331610.1016/j.carpath.2004.08.00515556777
    [Google Scholar]
  5. QiX.Y. QuS.L. XiongW.H. RomO. ChangL. JiangZ.S. Perivascular adipose tissue (PVAT) in atherosclerosis: A double-edged sword.Cardiovasc. Diabetol.201817113410.1186/s12933‑018‑0777‑x30305178
    [Google Scholar]
  6. AkoumianakisI. TarunA. AntoniadesC. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: Identifying novel therapeutic targets.Br. J. Pharmacol.2017174203411342410.1111/bph.1366627976387
    [Google Scholar]
  7. MazurekT. ZhangL. ZalewskiA. MannionJ.D. DiehlJ.T. ArafatH. Sarov-BlatL. O’BrienS. KeiperE.A. JohnsonA.G. MartinJ. GoldsteinB.J. ShiY. Human epicardial adipose tissue is a source of inflammatory mediators.Circulation2003108202460246610.1161/01.CIR.0000099542.57313.C514581396
    [Google Scholar]
  8. KershawE.E. FlierJ.S. Adipose tissue as an endocrine organ.J. Clin. Endocrinol. Metab.20048962548255610.1210/jc.2004‑039515181022
    [Google Scholar]
  9. Van GaalL.F. MertensI.L. De BlockC.E. Mechanisms linking obesity with cardiovascular disease.Nature2006444712187588010.1038/nature0548717167476
    [Google Scholar]
  10. TalmanA.H. PsaltisP.J. CameronJ.D. MeredithI.T. SeneviratneS.K. WongD.T.L. Epicardial adipose tissue: Far more than a fat depot.Cardiovasc. Diagn. Ther.20144641642910.3978/j.issn.2223‑3652.2014.11.0525610800
    [Google Scholar]
  11. IacobellisG. Local and systemic effects of the multifaceted epicardial adipose tissue depot.Nat. Rev. Endocrinol.201511636337110.1038/nrendo.2015.5825850659
    [Google Scholar]
  12. RaggiP. Epicardial adipose tissue as a marker of coronary artery disease risk.J. Am. Coll. Cardiol.201361131396139710.1016/j.jacc.2012.12.02823500305
    [Google Scholar]
  13. CsigeI. UjvárosyD. SzabóZ. LőrinczI. ParaghG. HarangiM. SomodiS. The impact of obesity on the cardiovascular system.J. Diabetes Res.20182018411210.1155/2018/340730630525052
    [Google Scholar]
  14. BrittonK.A. MassaroJ.M. MurabitoJ.M. KregerB.E. HoffmannU. FoxC.S. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality.J. Am. Coll. Cardiol.2013621092192510.1016/j.jacc.2013.06.02723850922
    [Google Scholar]
  15. PackerM. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium.J. Am. Coll. Cardiol.201871202360237210.1016/j.jacc.2018.03.50929773163
    [Google Scholar]
  16. Villasante FrickeA.C. IacobellisG. Epicardial adipose tissue: Clinical biomarker of cardio-metabolic risk.Int. J. Mol. Sci.20192023598910.3390/ijms2023598931795098
    [Google Scholar]
  17. GoellerM. AchenbachS. MarwanM. DorisM.K. CadetS. CommandeurF. ChenX. SlomkaP.J. GransarH. CaoJ.J. WongN.D. AlbrechtM.H. RozanskiA. TamarappooB.K. BermanD.S. DeyD. Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects.J. Cardiovasc. Comput. Tomogr.2018121677310.1016/j.jcct.2017.11.00729233634
    [Google Scholar]
  18. IacobellisG. WillensH.J. Echocardiographic epicardial fat: A review of research and clinical applications.J. Am. Soc. Echocardiogr.200922121311131910.1016/j.echo.2009.10.01319944955
    [Google Scholar]
  19. MalavazosA.E. Di LeoG. SecchiF. LupoE.N. DogliottiG. ComanC. MorriconeL. CorsiM.M. SardanelliF. IacobellisG. Relation of echocardiographic epicardial fat thickness and myocardial fat.Am. J. Cardiol.2010105121831183510.1016/j.amjcard.2010.01.36820538139
    [Google Scholar]
  20. DesprésJ.P. LemieuxI. BergeronJ. PibarotP. MathieuP. LaroseE. Rodés-CabauJ. BertrandO.F. PoirierP. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk.Arterioscler. Thromb. Vasc. Biol.20082861039104910.1161/ATVBAHA.107.15922818356555
    [Google Scholar]
  21. ZhangK. ZhangJ. KanC. TianH. MaY. HuangN. HanF. HouN. SunX. Role of dysfunctional peri-organ adipose tissue in metabolic disease.Biochimie2023212122010.1016/j.biochi.2023.03.01537019205
    [Google Scholar]
  22. IacobellisG. SinghN. WhartonS. SharmaA.M. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects.Obesity20081671693169710.1038/oby.2008.25118451775
    [Google Scholar]
  23. AntonopoulosA.S. PapastamosC. CokkinosD.V. TsioufisK. TousoulisD. Epicardial adipose tissue in myocardial disease: From physiology to heart failure phenotypes.Curr. Probl. Cardiol.2023481010184110.1016/j.cpcardiol.2023.10184137244513
    [Google Scholar]
  24. LiC. LiuX. AdhikariB.K. ChenL. LiuW. WangY. ZhangH. The role of epicardial adipose tissue dysfunction in cardiovascular diseases: An overview of pathophysiology, evaluation, and management.Front. Endocrinol.202314116795210.3389/fendo.2023.1167952
    [Google Scholar]
  25. ChinJ.F. AgaY.S. Abou KamarS. KroonD. SnelderS.M. van de PollS.W.E. KardysI. BrugtsJ.J. de BoerR.A. van DalenB.M. Van DalenB.M. Association between epicardial adipose tissue and cardiac dysfunction in subjects with severe obesity.Eur. J. Heart Fail.202325111936194310.1002/ejhf.301137642195
    [Google Scholar]
  26. IacobellisG. Epicardial adipose tissue in contemporary cardiology.Nat. Rev. Cardiol.202219959360610.1038/s41569‑022‑00679‑935296869
    [Google Scholar]
  27. FangW. XieS. DengW. Epicardial adipose tissue: A potential therapeutic target for cardiovascular diseases.J. Cardiovasc. Transl. Res.202417232233310.1007/s12265‑023‑10442‑137848803
    [Google Scholar]
  28. RossiV.A. GrueblerM. MonzoL. GalluzzoA. BeltramiM. The different pathways of epicardial adipose tissue across the heart failure phenotypes: From pathophysiology to therapeutic target.Int. J. Mol. Sci.2023247683810.3390/ijms2407683837047810
    [Google Scholar]
  29. IacobellisG. Epicardial fat links obesity to cardiovascular diseases.Prog. Cardiovasc. Dis.202378273310.1016/j.pcad.2023.04.00637105279
    [Google Scholar]
  30. IacobellisG. MohseniM. BiancoS.D. BangaP.K. Liraglutide causes large and rapid epicardial fat reduction.Obesity201725231131610.1002/oby.2171828124506
    [Google Scholar]
  31. SatoT. AizawaY. YuasaS. KishiS. FuseK. FujitaS. IkedaY. KitazawaH. TakahashiM. SatoM. OkabeM. The effect of dapagliflozin treatment on epicardial adipose tissue volume.Cardiovasc. Diabetol.2018171610.1186/s12933‑017‑0658‑829301516
    [Google Scholar]
  32. MalavazosA.E. IacobellisG. DozioE. BasilicoS. Di VincenzoA. DubiniC. MenicantiL. VianelloE. MeregalliC. RuoccoC. RagniM. SecchiF. SpagnoloP. CastelvecchioS. MorriconeL. BuscemiS. GiordanoA. GoldbergerJ.J. CarrubaM. CintiS. Corsi RomanelliM.M. NisoliE. Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies.Eur. J. Prev. Cardiol.202330868069310.1093/eurjpc/zwad05036799940
    [Google Scholar]
  33. MalavazosA.E. MeregalliC. SorrentinoF. VignatiA. DubiniC. ScravaglieriV. BasilicoS. BoniardiF. SpagnoloP. MalagoliP. RomanelliP. SecchiF. IacobellisG. Semaglutide therapy decreases epicardial fat inflammation and improves psoriasis severity in patients affected by abdominal obesity and type-2 diabetes.Endocrinol. Diabetes Metab. Case Rep.20232023323001710.1530/EDM‑23‑0017
    [Google Scholar]
  34. YagiS. HirataY. IseT. KusunoseK. YamadaH. FukudaD. SalimH.M. MaimaituxunG. NishioS. TakagawaY. HamaS. MatsuuraT. YamaguchiK. TobiumeT. SoekiY. WakatsukiT. AiharaK.I. AkaikeM. ShimabukuroM. SataM. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus.Diabetol. Metab. Syndr.201797810.1186/s13098‑017‑0275‑4
    [Google Scholar]
  35. AlexopoulosN. MelekB.H. ArepalliC.D. HartlageG.R. ChenZ. KimS. StillmanA.E. RaggiP. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: A substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning).J. Am. Coll. Cardiol.201361191956196110.1016/j.jacc.2012.12.05123500254
    [Google Scholar]
  36. SoucekF. CovassinN. SinghP. RuzekL. KaraT. SuleimanM. LermanA. KoestlerC. FriedmanP.A. Lopez-JimenezF. SomersV.K. Effects of atorvastatin (80 mg) therapy on quantity of epicardial adipose tissue in patients undergoing pulmonary vein isolation for atrial fibrillation.Am. J. Cardiol.201511691443144610.1016/j.amjcard.2015.07.06726372211
    [Google Scholar]
  37. ParisiV. PetragliaL. D’EspositoV. CabaroS. RengoG. CarusoA. GrimaldiM.G. BaldascinoF. De BellisA. VitaleD. FormisanoR. FerroA. PaolilloS. DavinL. LancellottiP. FormisanoP. Perrone FilardiP. FerraraN. LeoscoD. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue.Int. J. Cardiol.201927427432633010.1016/j.ijcard.2018.06.10630454723
    [Google Scholar]
  38. GloyV.L. BrielM. BhattD.L. KashyapS.R. SchauerP.R. MingroneG. BucherH.C. NordmannA.J. Bariatric surgery versus non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials.BMJ2013347f593410.1136/bmj.f5934
    [Google Scholar]
  39. LaunboN. ZobelE.H. von ScholtenB.J. FærchK. JørgensenP.G. ChristensenR.H. Targeting epicardial adipose tissue with exercise, diet, bariatric surgery or pharmaceutical interventions: A systematic review and meta‐analysis.Obes. Rev.2021221e1313610.1111/obr.1313632896056
    [Google Scholar]
  40. SalmanA.A. SalmanM.A. SolimanA. YoussefA. LabibS. HelmyM.Y. MarieM.A. ShawkatM. MostafaA. TourkyM.S. SarhanM.D. QassemM.G. ShaabanH.E.D. OmarM.G. AbouelregalT.E. Changes of epicardial fat thickness after laparoscopic sleeve gastrectomy: A prospective study.Ann. Med.202153152353010.1080/07853890.2021.190307234008443
    [Google Scholar]
  41. PereiraJ.P.S. CalafattiM. MartininoA. RamnarainD. StierC. ParmarC. WeinerS. DekkerL.R. HasenbergT. WolfO. PouwelsS. Epicardial adipose tissue changes after bariatric and metabolic surgery: A systematic review and meta-analysis.Obes. Surg.202333113636364810.1007/s11695‑023‑06848‑037801237
    [Google Scholar]
  42. CastilloA. RiveraE. TyphairC. HarrisE. HaiO. ChikvashviliD. MakaryusA. ZeltserR. Echocardiographic assessment of epicardial fat pad and cardiac remodeling after bariatric surgery.J. Am. Coll. Cardiol.20217718134210.1016/S0735‑1097(21)02700‑5
    [Google Scholar]
  43. SheikhbahaeiE. Tavassoli NainiP. AgharaziM. PouraminiA. RostamiS. BakhshaeiS. ValizadehR. Heshmat GhahdarijaniK. ShiraviA. ShahabiS. Cardiac fat pat change after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass surgery: A systematic review and meta-analysis.Surg. Obes. Relat. Dis.202319665366410.1016/j.soard.2022.12.01636681624
    [Google Scholar]
  44. HenryJ.A. AbdesselamI. DealO. LewisA.J. RaynerJ. BernardM. DutourA. GaboritB. KoberF. SoghomonianA. SgromoB. ByrneJ. BegeT. NeubauerS. BorlaugB.A. RiderO.J. Changes in epicardial and visceral adipose tissue depots following bariatric surgery and their effect on cardiac geometry.Front. Endocrinol.202314109277710.3389/fendo.2023.1092777
    [Google Scholar]
  45. RabkinS.W. CampbellH. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: A systematic review and meta‐analysis.Obes. Rev.201516540641510.1111/obr.1227025753297
    [Google Scholar]
  46. WuF.Z. HuangY.L. WuC.C. WangY.C. PanH.J. HuangC.K. YehL.R. WuM.T. Differential effects of bariatric surgery versus exercise on excessive visceral fat deposits.Medicine2016955e261610.1097/MD.000000000000261626844473
    [Google Scholar]
  47. WillensH.J. ByersP. ChirinosJ.A. LabradorE. HareJ.M. de MarchenaE. Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography.Am. J. Cardiol.20079991242124510.1016/j.amjcard.2006.12.04217478151
    [Google Scholar]
  48. GaboritB. JacquierA. KoberF. AbdesselamI. CuissetT. Boullu-CioccaS. EmunganiaO. AlessiM.C. ClémentK. BernardM. DutourA. Effects of bariatric surgery on cardiac ectopic fat: Lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content.J. Am. Coll. Cardiol.201260151381138910.1016/j.jacc.2012.06.01622939560
    [Google Scholar]
  49. GrazianiF. LeoneA.M. CialdellaP. BasileE. PennestrìF. Della BonaR. IaconelliA. LiuzzoG. BiasucciL.M. CardilloM.T. IaconelliA. GuidoneC. NanniG. MingroneG. CreaF. Effects of bariatric surgery on cardiac remodeling: Clinical and pathophysiologic implications.Int. J. Cardiol.201316844277427910.1016/j.ijcard.2013.04.20223688430
    [Google Scholar]
  50. HannukainenJ.C. LautamäkiR. PärkkäJ. StrandbergM. SaunavaaraV. HurmeS. SoinioM. DadsonP. VirtanenK.A. GrönroosT. ForsbackS. SalminenP. IozzoP. NuutilaP. Reversibility of myocardial metabolism and remodelling in morbidly obese patients 6 months after bariatric surgery.Diabetes Obes. Metab.201820496397310.1111/dom.1318329206339
    [Google Scholar]
  51. KokkinosA. AlexiadouK. LiaskosC. ArgyrakopoulouG. BallaI. TentolourisN. MoyssakisI. KatsilambrosN. VafiadisI. AlexandrouA. DiamantisT. Improvement in cardiovascular indices after Roux-en-Y gastric bypass or sleeve gastrectomy for morbid obesity.Obes. Surg.2013231313810.1007/s11695‑012‑0743‑822923313
    [Google Scholar]
  52. van SchinkelL.D. SledderingM.A. LipsM.A. JonkerJ.T. de RoosA. LambH.J. JazetI.M. PijlH. SmitJ.W.A. Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function.Clin. Endocrinol.201481568969510.1111/cen.1240224392723
    [Google Scholar]
  53. SchlettC.L. FerencikM. KriegelM.F. BambergF. GhoshhajraB.B. JoshiS.B. NagurneyJ.T. FoxC.S. TruongQ.A. HoffmannU. Association of pericardial fat and coronary high-risk lesions as determined by cardiac CT.Atherosclerosis2012222112913410.1016/j.atherosclerosis.2012.02.02922417843
    [Google Scholar]
  54. AltinC. ErolV. AydinE. YilmazM. TekindalM.A. SadeL.E. GulayH. MuderrisogluH. Impact of weight loss on epicardial fat and carotid intima media thickness after laparoscopic sleeve gastrectomy: A prospective study.Nutr. Metab. Cardiovasc. Dis.201828550150910.1016/j.numecd.2018.02.00129571589
    [Google Scholar]
  55. SorimachiH. ObokataM. OmoteK. ReddyY.N.V. TakahashiN. KoeppK.E. NgA.C.T. RiderO.J. BorlaugB.A. Long-term changes in cardiac structure and function following bariatric surgery.J. Am. Coll. Cardiol.202280161501151210.1016/j.jacc.2022.08.73836229085
    [Google Scholar]
  56. MontiC.B. CodariM. De CeccoC.N. SecchiF. SardanelliF. StillmanA. Novel imaging biomarkers: Epicardial adipose tissue evaluation.Br. J. Radiol.20209311132019077010.1259/bjr.20190770
    [Google Scholar]
  57. PetriniM. AlìM. CannaòP.M. ZambelliD. CozziA. CodariM. MalavazosA.E. SecchiF. SardanelliF. Epicardial adipose tissue volume in patients with coronary artery disease or non-ischaemic dilated cardiomyopathy: Evaluation with cardiac magnetic resonance imaging.Clin. Radiol.201974181.e181.e710.1016/j.crad.2018.09.00630336943
    [Google Scholar]
  58. MancioJ. AzevedoD. SaraivaF. AzevedoA.I. Pires-MoraisG. Leite-MoreiraA. Falcao-PiresI. LunetN. BettencourtN. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: A systematic review and meta-analysis.Eur. Heart J. Cardiovasc. Imaging201819549049710.1093/ehjci/jex31429236951
    [Google Scholar]
  59. ChongB. JayabaskaranJ. RubanJ. GohR. ChinY.H. KongG. NgC.H. LinC. LoongS. MuthiahM.D. KhooC.M. ShariffE. ChanM.Y. Lajeunesse-TrempeF. TchernofA. ChevliP. MehtaA. MamasM.A. DimitriadisG.K. ChewN.W.S. Epicardial adipose tissue assessed by computed tomography and echocardiography are associated with adverse cardiovascular outcomes: A systematic review and meta-analysis.Circ. Cardiovasc. Imaging2023165e01515910.1161/CIRCIMAGING.122.01515937192298
    [Google Scholar]
  60. WestH.W. SiddiqueM. WilliamsM.C. VolpeL. DesaiR. LyashevaM. ThomasS. DangasK. KotanidisC.P. TomlinsP. MahonC. KardosA. AdlamD. GrabyJ. RodriguesJ.C.L. ShirodariaC. DeanfieldJ. MehtaN.N. NeubauerS. ChannonK.M. DesaiM.Y. NicolE.D. NewbyD.E. AntoniadesC. Deep-learning for epicardial adipose tissue assessment with computed tomography.JACC Cardiovasc. Imaging202316680081610.1016/j.jcmg.2022.11.01836881425
    [Google Scholar]
  61. SongY. TanY. DengM. ShanW. ZhengW. ZhangB. CuiJ. FengL. ShiL. ZhangM. LiuY. SunY. YiW. Epicardial adipose tissue, metabolic disorders, and cardiovascular diseases: Recent advances classified by research methodologies.MedComm202346e41310.1002/mco2.413
    [Google Scholar]
  62. de BucourtM. StreitparthF. WonnebergerU. RumpJ. TeichgräberU. Obese patients in an open MRI at 1.0 Tesla: Image quality, diagnostic impact and feasibility.Eur. Radiol.20112151004101510.1007/s00330‑010‑2005‑221127882
    [Google Scholar]
  63. AlìM. MontiC.B. GoldB. LastellaG. PapaS. SardanelliF. SecchiF. Open 1.0-T versus closed 1.5-T cardiac MR: Image quality assessment.Clin. Imaging20206810210710.1016/j.clinimag.2020.06.01932585415
    [Google Scholar]
  64. SecchiF. AsteriaC. MontiC.B. MalavazosA.E. CapraD. AlìM. GiassiC.L.A. FrancesconiS. BasilicoS. GiovanelliA. MorriconeL. SardanelliF. Quantification of epicardial adipose tissue in obese patients using an open-bore MR scanner.Eur. Radiol. Exp.2022612510.1186/s41747‑022‑00274‑035606555
    [Google Scholar]
  65. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report.Circulation2002106253143342110.1161/circ.106.25.314312485966
    [Google Scholar]
  66. KahnH.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison.BMC Cardiovasc. Disord.200552610.1186/1471‑2261‑5‑26
    [Google Scholar]
  67. YushkevichP.A. PivenJ. HazlettH.C. SmithR.G. HoS. GeeJ.C. GerigG. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.Neuroimage20063131116112810.1016/j.neuroimage.2006.01.01516545965
    [Google Scholar]
  68. ScarabelloM. CodariM. SecchiF. CannaòP.M. AlìM. Di LeoG. SardanelliF. Strain of ascending aorta on cardiac magnetic resonance in 1027 patients: Relation with age, gender, and cardiovascular disease.Eur. J. Radiol.201899343910.1016/j.ejrad.2017.12.00229362149
    [Google Scholar]
  69. FitzgibbonsT.P. CzechM.P. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: Basic mechanisms and clinical associations.J. Am. Heart Assoc.201432e00058210.1161/JAHA.113.00058224595191
    [Google Scholar]
  70. Aitken-BuckH.M. MoharramM. BabakrA.A. ReijersR. Van HoutI. Fomison-NurseI.C. SugunesegranR. BhagwatK. DavisP.J. BuntonR.W. WilliamsM.J.A. StilesM.K. JonesP.P. CoffeyS. LambertsR.R. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index.Adipocyte20198141242010.1080/21623945.2019.170138731829077
    [Google Scholar]
  71. FoppaM. PondK.K. JonesD.B. SchneiderB. KissingerK.V. ManningW.J. Subcutaneous fat thickness, but not epicardial fat thickness, parallels weight reduction three months after bariatric surgery: A cardiac magnetic resonance study.Int. J. Cardiol.201316844532453310.1016/j.ijcard.2013.06.09923871633
    [Google Scholar]
  72. SrinivasanS.R. WangR. ChenW. WeiC.Y. XuJ. BerensonG.S. Utility of waist-to-height ratio in detecting central obesity and related adverse cardiovascular risk profile among normal weight younger adults (from the Bogalusa Heart Study).Am. J. Cardiol.2009104572172410.1016/j.amjcard.2009.04.03719699351
    [Google Scholar]
  73. BrowningL.M. HsiehS.D. AshwellM. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value.Nutr. Res. Rev.201023224726910.1017/S095442241000014420819243
    [Google Scholar]
  74. KanevaA.M. BojkoE.R. Lipid accumulation product or lap as an up-to-date clinical biochemical marker of human obesity.Health Risk Analysis20192216417410.21668/health.risk/2019.2.18.eng
    [Google Scholar]
  75. OikonomouE.K. MarwanM. DesaiM.Y. MancioJ. AlashiA. CentenoE.H. ThomasS. HerdmanL. KotanidisC.P. ThomasK.E. GriffinB.P. FlammS.D. AntonopoulosA.S. ShirodariaC. SabharwalN. DeanfieldJ. NeubauerS. HopewellJ.C. ChannonK.M. AchenbachS. AntoniadesC. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data.Lancet201839210151929939
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303310680240607114244
Loading
/content/journals/emiddt/10.2174/0118715303310680240607114244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test