Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Type 2 diabetes mellitus is a long-term medical illness in which the body either becomes resistant to insulin or fails to produce it sufficiently. Mostly, combinatorial therapy is required to control blood glucose levels. However, combinatorial therapy has detrimental side effects. The prevalence of the cases and subsequent increases in medical costs of the same intimidate human health globally. While there have been a lot of studies focused on developing diabetic regimens that work to lower blood glucose levels, their effectiveness is short-lived because of unfavorable side effects, such as weight gain and hypoglycemia. In recent years, the PIN1 (protein interacting with NIMA) enzyme has attracted the attention of researchers. Previous studies suggested that PIN1 may act on the various substrates that are involved in the progression of T2DM and also help in the management of diabetes-related disorders. Thus, the focus of the current review is to examine the correlation between PIN1, T2DM and its related disorders and explore the possibility of developing novel therapeutic targets through PIN1 inhibition.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303297663240307060019
2024-04-30
2025-01-17
Loading full text...

Full text loading...

References

  1. TahraniA.A. BaileyC.J. Del PratoS. BarnettA.H. Management of type 2 diabetes: New and future developments in treatment.Lancet2011378978618219710.1016/S0140‑6736(11)60207‑9 21705062
    [Google Scholar]
  2. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.20181428898 29219149
    [Google Scholar]
  3. KerruN. Singh-PillayA. AwoladeP. SinghP. Current anti-diabetic agents and their molecular targets: A review.Eur. J. Med. Chem.201815243648810.1016/j.ejmech.2018.04.061 29751237
    [Google Scholar]
  4. GuariguataL. WhitingD.R. HambletonI. BeagleyJ. LinnenkampU. ShawJ.E. Global estimates of diabetes prevalence for 2013 and projections for 2035.Diabetes Res. Clin. Pract.2014103213714910.1016/j.diabres.2013.11.002 24630390
    [Google Scholar]
  5. BeleteT.M. A recent achievement in the discovery and development of novel targets for the treatment of Type-2 Diabetes Mellitus.J. Exp. Pharmacol.20201211510.2147/JEP.S226113 32021494
    [Google Scholar]
  6. DeFronzoR.A. TriplittC.L. Abdul-GhaniM. CersosimoE. Novel agents for the treatment of Type 2 Diabetes.Diabetes Spectr.201427210011210.2337/diaspect.27.2.100 26246766
    [Google Scholar]
  7. DanaeiG. FinucaneM.M. LuY. SinghG.M. CowanM.J. PaciorekC.J. LinJ.K. FarzadfarF. KhangY.H. StevensG.A. RaoM. AliM.K. RileyL.M. RobinsonC.A. EzzatiM. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants.Lancet20113789785314010.1016/S0140‑6736(11)60679‑X 21705069
    [Google Scholar]
  8. SafarkhaniM. AldhaherA. HeidariG. ZareE.N. WarkianiM.E. AkhavanO. HuhY. RabieeN. Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring: Pioneering point-of-care and beyond.Nano Mater. Sci.202463263283
    [Google Scholar]
  9. CoughlanK.A. ValentineR.J. RudermanN.B. SahaA.K. AMPK activation: A therapeutic target for type 2 diabetes?Diabetes Metab. Syndr. Obes.20147241253 25018645
    [Google Scholar]
  10. NakatsuY. MatsunagaY. YamamotoyaT. UedaK. InoueY. MoriK. SakodaH. FujishiroM. OnoH. KushiyamaA. AsanoT. Physiological and pathogenic roles of prolyl isomerase pin1 in metabolic regulations via multiple signal transduction pathway modulations.Int. J. Mol. Sci.2016179149510.3390/ijms17091495 27618008
    [Google Scholar]
  11. AndreottiA.H. Native state proline isomerization: An intrinsic molecular switch.Biochemistry200342329515952410.1021/bi0350710 12911293
    [Google Scholar]
  12. LuK.P. ZhouX.Z. The prolyl isomerase PIN1: A pivotal new twist in phosphorylation signalling and disease.Nat. Rev. Mol. Cell Biol.200781190491610.1038/nrm2261 17878917
    [Google Scholar]
  13. HeS. LiL. JinR. LuX. Biological function of Pin1 in vivo and its inhibitors for preclinical study: Early development, current strategies, and future directions.J. Med. Chem.202366149251927710.1021/acs.jmedchem.3c00390 37438908
    [Google Scholar]
  14. MinS.H. ZhouX.Z. LuK.P. The role of Pin1 in the development and treatment of cancer.Arch. Pharm. Res.201639121609162010.1007/s12272‑016‑0821‑x 27572155
    [Google Scholar]
  15. ChoiH.J. KimJ.Y. LimS-C. KimG. YunH.J. ChoiH.S. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression.Br. J. Pharmacol.2015172215096510910.1111/bph.13274 26267432
    [Google Scholar]
  16. ChenY. WuY. YangH. LiX. JieM. HuC. WuY. YangS. YangY. Prolyl isomerase Pin1: A promoter of cancer and a target for therapy.Cell Death Dis.20189988310.1038/s41419‑018‑0844‑y 30158600
    [Google Scholar]
  17. ChuangH.H. ZhenY.Y. TsaiY.C. ChuangC.H. HuangM.S. HsiaoM. YangC.J. Targeting Pin1 for Modulation of cell motility and cancer therapy.Biomedicines20219435910.3390/biomedicines9040359 33807199
    [Google Scholar]
  18. MihaylovaM.M. ShawR.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism.Nat. Cell Biol.20111391016102310.1038/ncb2329 21892142
    [Google Scholar]
  19. AlmasiF. MohammadipanahF. Prominent and emerging anti-diabetic molecular targets.J. Drug Target.202129549150610.1080/1061186X.2020.1859517 33336602
    [Google Scholar]
  20. NakatsuY. IwashitaM. SakodaH. OnoH. NagataK. MatsunagaY. FukushimaT. FujishiroM. KushiyamaA. KamataH. TakahashiS.I. KatagiriH. HondaH. KiyonariH. UchidaT. AsanoT. Prolyl isomerase Pin1 negatively regulates AMP-activated protein kinase (AMPK) by associating with the CBS domain in the γ subunit.J. Biol. Chem.201529040242552426610.1074/jbc.M115.658559 26276391
    [Google Scholar]
  21. AldhaherA. SafarkhaniM. Possible involvement of normalized PIN1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice.Diabetol. Metabol. Syndr.201911157
    [Google Scholar]
  22. ChoiH.M. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression.British. J. Pharmacol.20151722150965109
    [Google Scholar]
  23. ArguelloD.; P. D. H. B. L. M. M. G. E.-L. M., Thomas, K.S. “ HHS Public Access,”Physiol. Behav.2017176113914810.1016/j.envres.2015.06.002.Maternal
    [Google Scholar]
  24. QiuJ. YangR. TangY. LinY. XuH. ZhangN. LiangM. CaiH. ZengK. WuX. BRD4 and PIN1 gene polymorphisms are associated with high pulse pressure risk in a southeastern Chinese population.BMC Cardiovasc. Disord.202020147510.1186/s12872‑020‑01757‑x 33148187
    [Google Scholar]
  25. YuJ. HuD. WangL. FanZ. XuC. LinY. ChenX. LinJ. PengF. Hyperglycemia induces gastric carcinoma proliferation and migration via the Pin1/BRD4 pathway.Cell Death Discov.20228122410.1038/s41420‑022‑01030‑4 35461311
    [Google Scholar]
  26. LiuX. LiangE. SongX. DuZ. ZhangY. ZhaoY. Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice.Biochem. Biophys. Res. Commun.2016479110911510.1016/j.bbrc.2016.09.050 27634219
    [Google Scholar]
  27. WangX. LiM. ChenS. LiS. GuoF. PIN1 facilitates isoproterenol-induced cardiac fibrosis and collagen deposition by promoting oxidative stress and activating the MEK1/2-ERK1/2 signal transduction pathway in rats.Int. J. Mol. Med.2017
    [Google Scholar]
  28. LvL. ZhangJ. ZhangL. XueG. WangP. MengQ. LiangW. Essential role of Pin1 via STAT 3 signalling and mitochondria‐dependent pathways in restenosis in type 2 diabetes.J. Cell. Mol. Med.2013178989100510.1111/jcmm.12082 23750710
    [Google Scholar]
  29. PaneniF. CostantinoS. CastelloL. BattistaR. CaprettiG. ChiandottoS. D’AmarioD. ScavoneG. VillanoA. RustighiA. CreaF. PitoccoD. LanzaG. VolpeM. Del SalG. LüscherT.F. CosentinoF. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: Insights in patients with diabetes.Eur. Heart J.2015361381782810.1093/eurheartj/ehu179 24801072
    [Google Scholar]
  30. FagianiF. VlachouM. Di MarinoD. CanobbioI. RomagnoliA. RacchiM. GovoniS. LanniC. Pin1 as molecular switch in vascular endothelium: notes on its putative role in age-associated vascular diseases.Cells202110123287710.3390/cells10123287 34943794
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303297663240307060019
Loading
/content/journals/emiddt/10.2174/0118715303297663240307060019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; diabetes mellitus; hypoglycemia; PIN1; therapeutic target; Type 2 DM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test