Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Chronic diabetic wounds pose a significant threat to the health of diabetic patients, representing severe and enduring complications. Globally, an estimated 2.5% to 15% of the annual health budget is associated to diabetes, with diabetic wounds accounting for a substantial share. Exploring new therapeutic agents and approaches to address delayed and impaired wound healing in diabetes becomes imperative. Traditional Chinese medicine (TCM) has a long history and remarkable efficacy in treating chronic wound healing.

Methods

In this study, all topically applied Proprietary Chinese Medicines (pCMs) for wound healing officially approved by China National Medical Products Administration (NMPA) were collected from the NMPA TCM database. Data mining was employed to obtain a high-frequency TCM ingredients pair, Pearl-Borneol (1:1). Subsequently, This study investigated the effect and molecular mechanism of the Pearl-Borneol pair on the healing of diabetic wounds by animal experiments and metabolomics.

Results

The animal experiments showed that the Pearl-Borneol pair significantly accelerated diabetic wound healing, exhibiting a more potent effect than the Pearl or Borneol treatment alone. Meanwhile, the metabolomics analysis identified significant differences in metabolic profiles in wounds between the Model and Normal groups, indicating that diabetic wounds had distinct metabolic characteristics from normal wounds. Moreover, Vaseline-treated wounds exhibited similar metabolic profiles to the wounds from the Model group, suggesting that Vaseline might have a negligible impact on diabetic wound metabolism. In addition, wounds treated with Pearl, Borneol, and Pearl-Borneol pair displayed significantly different metabolic profiles from Vaseline-treated wounds, signifying the influence of these treatments on wound metabolism. Subsequent enrichment analysis of the metabolic pathway highlighted the involvement of the arginine metabolic pathway, closely associated with diabetic wounds, in the healing process under Pearl-Borneol pair treatment. Further analysis revealed elevated levels of arginine and citrulline, coupled with reduced nitric oxide (NO) in both the Model and Vaseline-treated wounds compared to normal wounds, pointing to impaired arginine utilization in diabetic wounds. Interestingly, treatment with Pearl and Pearl-Borneol pair lowered arginine and citrulline levels while increasing NO content, suggesting that these treatments may promote the catabolism of arginine to generate NO, thereby facilitating faster wound closure. Additionally, Borneol alone significantly elevated NO content in wounds, potentially due to its ability to directly reduce nitrates/nitrites to NO. Oxidative stress is a defining characteristic of impaired metabolism in diabetic wounds. Our result showed that both Pearl and Pearl-Borneol pair decreased the oxidative stress biomarker methionine sulfoxide level in diabetic wounds compared to those treated with Vaseline, indicating that Pearl alone or combined with Borneol may enhance the oxidative stress microenvironment in diabetic wounds.

Conclusion

In summary, the findings validate the effectiveness of the Pearl-Borneol pair in accelerating the healing of diabetic wounds, with effects on reducing oxidative stress, enhancing arginine metabolism, and increasing NO generation, providing a mechanistic basis for this therapeutic approach.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303295707240614060314
2024-07-11
2025-01-17
Loading full text...

Full text loading...

References

  1. XiongJ. HuH. GuoR. WangH. JiangH. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications.Front. Endocrinol.20211264623310.3389/fendo.2021.64623333995278
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  3. SinclairA. SaeediP. KaundalA. KarurangaS. MalandaB. WilliamsR. Diabetes and global ageing among 65–99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.202016210807810.1016/j.diabres.2020.10807832068097
    [Google Scholar]
  4. AmielS.A. AschnerP. ChildsB. CryerP.E. de GalanB.E. FrierB.M. Gonder-FrederickL. HellerS.R. JonesT. KhuntiK. LeiterL.A. LuoY. McCrimmonR.J. Pedersen-BjergaardU. SeaquistE.R. ZoungasS. International Hypoglycaemia Study Group Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management.Lancet Diabetes Endocrinol.20197538539610.1016/S2213‑8587(18)30315‑230926258
    [Google Scholar]
  5. HollJ. KowalewskiC. ZimekZ. FiedorP. KaminskiA. OldakT. MoniuszkoM. EljaszewiczA. Chronic diabetic wounds and their treatment with skin substitutes.Cells202110365510.3390/cells1003065533804192
    [Google Scholar]
  6. RangwalaU.S. TashrifwalaF. EgbertN.N. AsifA.A. The potential of topical therapy for diabetic wounds: A narrative review.Cureus2023153e3688710.7759/cureus.3688737128530
    [Google Scholar]
  7. SathyarajW.V. PrabakaranL. BhoopathyJ. DharmalingamS. KarthikeyanR. AtchudanR. Therapeutic efficacy of polymeric biomaterials in treating diabetic wounds: An upcoming wound healing technology.Polymers2023155120510.3390/polym1505120536904445
    [Google Scholar]
  8. NussbaumS.R. CarterM.J. FifeC.E. DaVanzoJ. HaughtR. NusgartM. CartwrightD. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds.Value Health2018211273210.1016/j.jval.2017.07.00729304937
    [Google Scholar]
  9. WorsleyA.L. LuiD.H. Ntow-BoaheneW. SongW. GoodL. TsuiJ. The importance of inflammation control for the treatment of chronic diabetic wounds.Int. Wound J.20232062346235910.1111/iwj.1404836564054
    [Google Scholar]
  10. PatelS. SrivastavaS. SinghM.R. SinghD. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing.Biomed. Pharmacother.201911210861510.1016/j.biopha.2019.10861530784919
    [Google Scholar]
  11. ChenH. ChengY. TianJ. YangP. ZhangX. ChenY. HuY. WuJ. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes.Sci. Adv.2020620eaba431110.1126/sciadv.aba431132440554
    [Google Scholar]
  12. YinS.P. XuZ.Y. MinW. Research progress on external preparations of traditional chinese medicinefor chronic wound treatment.J. Nanjing. Univ. Tradit. Chin. Med.20203605690695
    [Google Scholar]
  13. LiL.L. GuoJ. ZhuZ.J. Research progress of Chinese medicine intervening autophagy to promote skin wound healing.J. Mod. Integr. Med.202332101456146010.3969/j.issn.1008‑8849.2023.10.028
    [Google Scholar]
  14. Announcement of the state food and drug administration on the release of the pharmacopoeia of the people’s republic of china (2015 edition).Drug Standards of China20151605370
    [Google Scholar]
  15. SongY. ChenW. FuK. WangZ. The application of pearls in traditional medicine of china and their chemical constituents, pharmacology, toxicology, and clinical research.Front. Pharmacol.20221389322910.3389/fphar.2022.89322936081944
    [Google Scholar]
  16. LohX.J. YoungD.J. GuoH. TangL. WuY. ZhangG. TangC. RuanH. Pearl powder—An emerging material for biomedical applications: A review.Materials20211411279710.3390/ma1411279734074019
    [Google Scholar]
  17. LiuM. TaoJ. GuoH. TangL. ZhangG. TangC. ZhouH. WuY. RuanH. LohX.J. Efficacy of water-soluble pearl powder components extracted by a CO2 supercritical extraction system in promoting wound healing.Materials20211416445810.3390/ma1416445834442981
    [Google Scholar]
  18. BédouetL. RusconiF. RousseauM. DuplatD. MarieA. DubostL. Le NyK. BerlandS. PéduzziJ. LopezE. Identification of low molecular weight molecules as new components of the nacre organic matrix.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2006144453254310.1016/j.cbpb.2006.05.01216828570
    [Google Scholar]
  19. PeiJ. WangY. ZouX. RuanH. TangC. LiaoJ. SiG. SunP. Extraction, purification, bioactivities and application of matrix proteins from pearl powder and nacre powder: A review.Front. Bioeng. Biotechnol.2021964966510.3389/fbioe.2021.64966533959598
    [Google Scholar]
  20. ShaoD.Z. WangC.K. HwangH.J. HungC.H. ChenY.W. Abstracts: Comparison of hydration, tyrosinase resistance, and antioxidant activation in three kinds of pearl powders.Int. J. Cosmet. Sci.201032539610.1111/j.1468‑2494.2010.00609_5.x20447365
    [Google Scholar]
  21. HuangQ.P. PanH.M. Pharmacological effects and clinical application of pearls.Shizhen Guomian Guomao20000656456510.3969/j.issn.1008‑0805.2000.06.093
    [Google Scholar]
  22. LinJ. LuoF. HanS. XiaM. ChenZ. LiuP. Study on the mechanism of hydrolyzed seawater pearl tablet in treating chronic sleep deprivation mice model.Endocr. Metab. Immune Disord. Drug Targets202323792793610.2174/187153032366623020616072236748223
    [Google Scholar]
  23. LeeK. KimH. KimJ.M. ChungY.H. LeeT.Y. LimH.S. LimJ.H. KimT. BaeJ.S. WooC.H. KimK.J. JeongD. Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function.Mol. Biol. Rep.20123933211321810.1007/s11033‑011‑1088‑421688145
    [Google Scholar]
  24. LiY.C. ChenC.R. YoungT.H. Pearl extract enhances the migratory ability of fibroblasts in a wound healing model.Pharm. Biol.201351328929710.3109/13880209.2012.72113023043617
    [Google Scholar]
  25. BiC.W. LiS. Effect of topical pearl powder on postoperative wound healing of anal fistula with damp-heat injection evidence.SXTCM201935095051
    [Google Scholar]
  26. LinJ. LanT.J. LinY. Research on the pharmacological mechanism and material basis of "detoxification and muscle growth" of Hepu pearl [Z/QL]. (2019-07-08) (2022-02-13)
    [Google Scholar]
  27. LiuS. LongY. YuS. ZhangD. YangQ. CiZ. CuiM. ZhangY. WanJ. LiD. ShiA. LiN. YangM. LinJ. Borneol in cardio-cerebrovascular diseases: Pharmacological actions, mechanisms, and therapeutics.Pharmacol. Res.202116910562710.1016/j.phrs.2021.10562733892091
    [Google Scholar]
  28. BarretoR.S.S. QuintansJ.S.S. BarretoA.S. Albuquerque-JúniorR.L.C. GalvãoJ.G. GonsalvesJ.K.M.C. NunesR.S. CamargoE.A. Lucca-JúniorW. SoaresR.C. FeitosaV.L.C. Quintans-JúniorL.J. Improvement of wound tissue repair by chitosan films containing (-)-borneol, a bicyclic monoterpene alcohol, in rats.Int. Wound J.201613579980810.1111/iwj.1238525471005
    [Google Scholar]
  29. MaR. LuD. WangJ. XieQ. GuoJ. Comparison of pharmacological activity and safety of different stereochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol.Biomed. Pharmacother.202316411466810.1016/j.biopha.2023.11466837321057
    [Google Scholar]
  30. TangY. GargH. GengY.J. BryanN.S. Nitric oxide bioactivity of traditional Chinese medicines used for cardiovascular indications.Free Radic. Biol. Med.200947683584010.1016/j.freeradbiomed.2009.06.02419545619
    [Google Scholar]
  31. JiaW. LiuP. JiangJ. ChenM.J. ZhaoL.P. ZhouM.M. YangL.P. WangM.Q. QiuM.F. ZhangY.Y. Application of metabonomics in complicated theory system research of traditional Chinese medicine.Zhongguo Zhongyao Zazhi200631862162410.3321/j.issn:1001‑5302.2006.08.00116830815
    [Google Scholar]
  32. QinK.M. WangB. ChenL.W. ZhangM.S. YangG.M. ShuY.C. CaiB.C. Perspective and application of metabonomics in modern study of traditional Chinese medicine.Zhongguo Zhongyao Zazhi201439163010301710.4268/cjcmm2014160325509279
    [Google Scholar]
  33. WangJ. YuanZ.M. LiY.X. KongH.W. XuG.W. Study on mechanism of combined administration of Coptidis Rhizoma and Rehmanniae Radix in treating type II diabetes mellitus.Zhongguo Zhongyao Zazhi201439352653010.4268/cjcmm2014033224946561
    [Google Scholar]
  34. WangY. ShaoT. WangJ. HuangX. DengX. CaoY. ZhouM. ZhaoC. An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage.Biomed. Pharmacother.202113311099110.1016/j.biopha.2020.11099133227713
    [Google Scholar]
  35. ZhouJ. PiN. GuoY. HeX. WangJ. LuoR. WangM. YuH. The mechanism of action of Ophiocordyceps sinensis mycelia for prevention of acute lung injury based on non-targeted serum metabolomics.PLoS One2023186e028733110.1371/journal.pone.028733137327224
    [Google Scholar]
  36. XiaoB. WangY. QiaoY.J. Study on the Relationship between Chinese Herbal Nature and Function.Zhongguo Zhongyiyao Xinxi Zazhi20111801313310.3969/j.issn.1005‑5304.2011.01.012
    [Google Scholar]
  37. PengY.Q. TangH. HanY.Q. Progress of modern research on theory of five flavors in Chinese medicine.Yaowu Pingjia Yanjiu202346092014202310.7501/j.issn.1674‑6376.2023.09.024
    [Google Scholar]
  38. LiuC.X. ZhangT.J. HeX. Study on chemistry and biology based on five-tastes and function-efficacy ofChinese materia medica with invigorating blood circulation and eliminating bloodstasis.Chin. Herb. Med.2015460561562410.7501/j.issn.0253‑2670.2015.05.001
    [Google Scholar]
  39. LinJ. LuoF. LiuP. Research progress related to candidate treatment methods and modelinofactors for diabetic animal models with skin injury.Lab Animal Med.2021410651552010.12300/j.issn.1674‑5817.2021.025
    [Google Scholar]
  40. ChangL. ChiangS.H. SaltielA.R. Insulin signaling and the regulation of glucose transport.Mol. Med.2004107-12657110.2119/2005‑00029.Saltiel16307172
    [Google Scholar]
  41. SchrauwenP. HesselinkM.K.C. Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus?Diabetologia20085191694169710.1007/s00125‑008‑1069‑x18587560
    [Google Scholar]
  42. Álvarez-RodríguezI.I. Castaño-TostadoE. García-GutiérrezD.G. Reynoso-CamachoR. Elton-PuenteJ.E. Barajas-PozosA. Pérez-RamírezI.F. Non-targeted metabolomic analysis reveals serum phospholipid alterations in patients with early stages of diabetic foot ulcer.Biomark. Insights202015117727192095482810.1177/117727192095482832952396
    [Google Scholar]
  43. WitteM.B. ThorntonF.J. TantryU. BarbulA. L-Arginine supplementation enhances diabetic wound healing: Involvement of the nitric oxide synthase and arginase pathways.Metabolism200251101269127310.1053/meta.2002.3518512370845
    [Google Scholar]
  44. Malone-PovolnyM.J. MaloneyS.E. SchoenfischM.H. Nitric oxide therapy for diabetic wound healing.Adv. Healthc. Mater.2019812180121010.1002/adhm.20180121030645055
    [Google Scholar]
  45. BadrG. El-HossaryF.M. LasheenF.E.M. NegmN.Z. KhalafM. SalahM. SayedL.H. Abdel-MaksoudM.A. ElminshawyA. Cold atmospheric plasma induces the curing mechanism of diabetic wounds by regulating the oxidative stress mediators iNOS and NO, the pyroptotic mediators NLRP-3, Caspase-1 and IL-1β and the angiogenesis mediators VEGF and Ang-1.Biomed. Pharmacother.202316911593410.1016/j.biopha.2023.11593438000357
    [Google Scholar]
  46. CassanoR. CurcioF. SoleR. MellaceS. TrombinoS. Gallic acid-based hydrogels for phloretin intestinal release: A promising strategy to reduce oxidative stress in chronic diabetes.Molecules202429592910.3390/molecules2905092938474441
    [Google Scholar]
  47. ZengR. LvB. LinZ. ChuX. XiongY. KnoedlerS. CaoF. LinC. ChenL. YuC. LiaoJ. ZhouW. DaiG. ShahbaziM.A. MiB. LiuG. Neddylation suppression by a macrophage membrane-coated nanoparticle promotes dual immunomodulatory repair of diabetic wounds.Bioact. Mater.20243436638010.1016/j.bioactmat.2023.12.02538269308
    [Google Scholar]
  48. AccipeL. AbadieA. NeviereR. BercionS. Antioxidant activities of natural compounds from caribbean plants to enhance diabetic wound healing.Antioxidants2023125107910.3390/antiox1205107937237945
    [Google Scholar]
  49. LiJ. GeP. HeQ. LiuC. ZengC. TaoC. ZhaiY. WangJ. ZhangQ. WangR. ZhangY. ZhangD. ZhaoJ. Association between methionine sulfoxide and risk of moyamoya disease.Front. Neurosci.202317115811110.3389/fnins.2023.115811137123363
    [Google Scholar]
  50. LeeB.C. GladyshevV.N. The biological significance of methionine sulfoxide stereochemistry.Free Radic. Biol. Med.201150222122710.1016/j.freeradbiomed.2010.11.00821075204
    [Google Scholar]
  51. OkonkwoU. DiPietroL. Diabetes and wound angiogenesis.Int. J. Mol. Sci.2017187141910.3390/ijms1807141928671607
    [Google Scholar]
  52. GanJ. LiuC. LiH. WangS. WangZ. KangZ. HuangZ. ZhangJ. WangC. LvD. DongL. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors.Biomaterials201921911934010.1016/j.biomaterials.2019.11934031357007
    [Google Scholar]
  53. DamD H M PallerA S Gangliosides in diabetic wound healing.Prog. Mol. Biol. Transl. Sci.201815622923910.1016/bs.pmbts.2017.12.006
    [Google Scholar]
  54. XiaW. LiuY. JiangX. LiM. zhengS. ZhangZ. HuangX. LuoS. KhoongY. HouM. ZanT. Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes.J. Nanobiotechnology202321112810.1186/s12951‑023‑01869‑437046252
    [Google Scholar]
  55. Arribas-LópezE. ZandN. OjoO. SnowdenM.J. KochharT. The effect of amino acids on wound healing: A systematic review and meta-analysis on arginine and glutamine.Nutrients2021138249810.3390/nu1308249834444657
    [Google Scholar]
  56. FörstermannU SessaW C Nitric oxide synthases: Regulation and function.Eur. Heart. J.201233782983710.1093/eurheartj/ehr304
    [Google Scholar]
  57. KandhwalM. BehlT. KumarA. AroraS. Understanding the potential role and delivery approaches of nitric oxide in chronic wound healing management.Curr. Pharm. Des.202127171999201410.2174/138161282666620102615220933106138
    [Google Scholar]
  58. AhmedR. AugustineR. ChaudhryM. AkhtarU.A. ZahidA.A. TariqM. FalahatiM. AhmadI.S. HasanA. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends.Biomed. Pharmacother.202214911270710.1016/j.biopha.2022.11270735303565
    [Google Scholar]
  59. BeiY. LiW.J. LiM.Y. Prussian blue nanoparticles promote wound healing of diabetic skin.Chinese J. Tissue Eng. Res.202428101526153210.12307/2024.249
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303295707240614060314
Loading
/content/journals/emiddt/10.2174/0118715303295707240614060314
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test