Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

The most aggressive form of breast cancer (BC) is Triple-Negative BC (TNBC), with the poorest prognosis, accounting for nearly 15% of all cases. Since there is no effective treatment, novel strategies, especially targeted therapies, are essential to treat TNBC. Exosomes are nano-sized microvesicles derived from cells and transport various intracellular cargoes, including microRNAs (miRNAs). MiRNAs, small non-coding RNA, are an influential factor in the development of cancerous transformations in cells.

Methods

Bioinformatics analysis of genes related to TNBC revealed that plays a crucial role in the disease. Relative expression of this gene was analyzed with RT-qPCR in 14 TNBC clinical samples. Electroporation was used to load miRNA antagomir into exosomes extracted from the conditioned medium. Then, the expression of miR-155 and was evaluated in MDA-MB-231 cells treated with antagomir-loaded exosomes.

Results

Based on the bioinformatics analysis, miR-155 is a potent inhibitor of . Following treatment with antagomir-loaded exosomes, RT-qPCR showed significantly reduced miR-155 and increased levels in MDA-MB-231 cells.

Conclusion

Based on the results of this study, exosomes can be effectively used as a cargo of oligonucleotides like miRNA mimics and antagomirs in targeted therapies.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303289859240214103350
2024-02-28
2025-01-10
Loading full text...

Full text loading...

References

  1. LiX. YangJ. PengL. SahinA.A. HuoL. WardK.C. O’ReganR. TorresM.A. MeiselJ.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer.Breast Cancer Res. Treat.2017161227928710.1007/s10549‑016‑4059‑627888421
    [Google Scholar]
  2. KumariL. MishraL. PatelP. SharmaN. GuptaG.D. KurmiB.D. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer.J. Drug Target.202331988990710.1080/1061186X.2023.224557937539789
    [Google Scholar]
  3. ManjunathM. ChoudharyB. Triple negative breast cancer: A run through of features, classification and current therapies.(Review) Oncol. Lett.202122151210.3892/ol.2021.1277333986872
    [Google Scholar]
  4. HowardF.M. OlopadeO.I. Epidemiology of triple-negative breast cancer.Cancer J.202127181610.1097/PPO.000000000000050033475288
    [Google Scholar]
  5. AlmansourN.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence.Front. Mol. Biosci.2022983641710.3389/fmolb.2022.83641735145999
    [Google Scholar]
  6. TzikasA.K. NemesS. LinderholmB.K. A comparison between young and old patients with triple-negative breast cancer: Biology, survival and metastatic patterns.Breast Cancer Res. Treat.2020182364365410.1007/s10549‑020‑05727‑x32524352
    [Google Scholar]
  7. JinJ. GaoY. ZhangJ. WangL. WangB. CaoJ. ShaoZ. WangZ. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer.BMC Cancer201818144610.1186/s12885‑018‑4371‑029673325
    [Google Scholar]
  8. DerakhshanF. Reis-FilhoJ.S. Pathogenesis of triple-negative breast cancer.Annu. Rev. Pathol.202217118120410.1146/annurev‑pathol‑042420‑09323835073169
    [Google Scholar]
  9. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  10. SinghD.D. YadavD.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy.Biomedicines20219887610.3390/biomedicines908087634440080
    [Google Scholar]
  11. YangR. LiY. WangH. QinT. YinX. MaX. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy.Mol. Biomedicine202231810.1186/s43556‑022‑00071‑635243562
    [Google Scholar]
  12. FremdC. JaegerD. SchneeweissA. Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: Current knowledge and future perspectives.Expert Rev. Anticancer Ther.2019191294210.1080/14737140.2019.153778530351981
    [Google Scholar]
  13. Chang-QingY. JieL. Shi-QiZ. KunZ. Zi-QianG. RanX. Hui-MengL. Ren-BinZ. GangZ. Da-ChuanY. Chen-YanZ. Recent treatment progress of triple negative breast cancer.Prog. Biophys. Mol. Biol.2020151405310.1016/j.pbiomolbio.2019.11.00731761352
    [Google Scholar]
  14. AntimisiarisS. MourtasS. MaraziotiA. Exosomes and exosome-inspired vesicles for targeted drug delivery.Pharmaceutics201810421810.3390/pharmaceutics1004021830404188
    [Google Scholar]
  15. NegahdaripourM. OwjiH. EskandariS. ZamaniM. VakiliB. NezafatN. Small extracellular vesicles (sEVs): Ciscovery, functions, applications, detection methods and various engineered forms.Expert Opin. Biol. Ther.202121337139410.1080/14712598.2021.182567732945228
    [Google Scholar]
  16. GengT. SongZ.Y. XingJ.X. WangB.X. DaiS.P. XuZ.S. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway.Int. J. Nanomedicine2020152647265810.2147/IJN.S24290832368046
    [Google Scholar]
  17. MeldolesiJ. Exosomes and ectosomes in intercellular communication.Curr. Biol.2018288R435R44410.1016/j.cub.2018.01.05929689228
    [Google Scholar]
  18. HeoJ. KangH. Exosome-based treatment for atherosclerosis.Int. J. Mol. Sci.2022232100210.3390/ijms2302100235055187
    [Google Scholar]
  19. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  20. WuZ. WangL. LiJ. WangL. WuZ. SunX. Extracellular vesicle-mediated communication within host-parasite interactions.Front. Immunol.20199306610.3389/fimmu.2018.0306630697211
    [Google Scholar]
  21. GurungS. PerocheauD. TouramanidouL. BaruteauJ. The exosome journey: From biogenesis to uptake and intracellular signalling.Cell Commun. Signal.20211914710.1186/s12964‑021‑00730‑133892745
    [Google Scholar]
  22. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.2194529290805
    [Google Scholar]
  23. PengH. JiW. ZhaoR. YangJ. LuZ. LiY. ZhangX. Exosome: A significant nano-scale drug delivery carrier.J. Mater. Chem. B Mater. Biol. Med.20208347591760810.1039/D0TB01499K32697267
    [Google Scholar]
  24. SunX. LinF. SunW. ZhuW. FangD. LuoL. LiS. ZhangW. JiangL. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1.Mol. Ther. Nucleic Acids20212416417410.1016/j.omtn.2021.02.02233767913
    [Google Scholar]
  25. IngenitoF. RoscignoG. AffinitoA. NuzzoS. ScognamiglioI. QuintavalleC. CondorelliG. The role of Exo-miRNAs in cancer: A focus on therapeutic and diagnostic applications.Int. J. Mol. Sci.20192019468710.3390/ijms2019468731546654
    [Google Scholar]
  26. HadaviR. Mohammadi-YeganehS. RazaviyanJ. KoochakiA. KokhaeiP. BandegiA. Expression of bioinformatically candidate miRNAs including, miR-576-5p, miR-501-3p and miR-3143, targeting PI3K pathway in triple-negative breast cancer.Galen Med. J.20198164610.31661/gmj.v8i0.164634466540
    [Google Scholar]
  27. ShirleyK. ReichardK. GroverN. Small noncoding RNA, microRNA in gene regulation, fundamentals of RNA structure and function.Springer202216719010.1007/978‑3‑030‑90214‑8_8
    [Google Scholar]
  28. XuJ. WuK. JiaQ. DingX. Roles of miRNA and IncRNA in triple-negative breast cancer.J. Zhejiang Univ. Sci. B202021967368910.1631/jzus.B190070932893525
    [Google Scholar]
  29. HuangY. WangX. ZhengY. ChenW. ZhengY. LiG. LouW. WangX. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer.Aging20211311153117510.18632/aging.20225433428596
    [Google Scholar]
  30. FuY. YangQ. YangH. ZhangX. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer.Front. Mol. Biosci.202310116246310.3389/fmolb.2023.116246337122564
    [Google Scholar]
  31. BertiF.C.B. TofoloM.V. Nunes-SouzaE. MarchiR. OkanoL.M. RuthesM. RosolenD. MalheirosD. FonsecaA.S. CavalliL.R. Extracellular vesicles-associated miRNAs in triple-negative breast cancer: From tumor biology to clinical relevance.Life Sci.202433612233210.1016/j.lfs.2023.12233238070862
    [Google Scholar]
  32. JacksonR.J. StandartN. How do microRNAs regulate gene expression?Sci. STKE20072007367re1re110.1126/stke.3672007re117200520
    [Google Scholar]
  33. HarquailJ. BenzinaS. RobichaudG.A. MicroRNAs and breast cancer malignancy: An overview of miRNA-regulated cancer processes leading to metastasis.Cancer Biomark.201211626928010.3233/CBM‑12029123248185
    [Google Scholar]
  34. WongJ.S. CheahY.K. Potential miRNAs for miRNA-based therapeutics in breast cancer.Noncoding RNA2020632910.3390/ncrna603002932668603
    [Google Scholar]
  35. KahramanM. RöskeA. LauferT. FehlmannT. BackesC. KernF. KohlhaasJ. SchrörsH. SaizA. ZablerC. LudwigN. FaschingP.A. StrickR. RübnerM. BeckmannM.W. MeeseE. KellerA. SchrauderM.G. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer.Sci. Rep.2018811158410.1038/s41598‑018‑29917‑230072748
    [Google Scholar]
  36. RupaimooleR. SlackF.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.24628209991
    [Google Scholar]
  37. GrimaldiA.M. SalvatoreM. IncoronatoM. miRNA-based therapeutics in breast cancer: A systematic review.Front. Oncol.20211166846410.3389/fonc.2021.66846434026646
    [Google Scholar]
  38. Ors-KumogluG. Gulce-IzS. Biray-AvciC. Therapeutic microRNAs in human cancer.Cytotechnology201971141142510.1007/s10616‑018‑0291‑830600466
    [Google Scholar]
  39. ChekmenevD.S. HaidC. KelA.E. P-Match: Transcription factor binding site search by combining patterns and weight matrices.Nucleic Acids Res.200533W432W437
    [Google Scholar]
  40. DongR. PanS. PengZ. ZhangY. YangJ. mTM-align: A server for fast protein structure database search and multiple protein structure alignment.Nucleic Acids Res.201846W1W380W38610.1093/nar/gky43029788129
    [Google Scholar]
  41. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  42. BaderG.D. HogueC.W.V. An automated method for finding molecular complexes in large protein interaction networks.BMC Bioinformatics200341210.1186/1471‑2105‑4‑212525261
    [Google Scholar]
  43. LudwigA.K. De MiroschedjiK. DoeppnerT.R. BörgerV. RuesingJ. RebmannV. DurstS. JansenS. BremerM. BehrmannE. SingerB.B. JastrowH. KuhlmannJ.D. El MagraouiF. MeyerH.E. HermannD.M. OpalkaB. RaunserS. EppleM. HornP.A. GiebelB. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales.J. Extracell. Vesicles201871152810910.1080/20013078.2018.152810930357008
    [Google Scholar]
  44. KiaV. ParyanM. MortazaviY. BiglariA. Mohammadi-YeganehS. Evaluation of exosomal miR‐9 and miR‐155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells.J. Cell. Biochem.201912045666567610.1002/jcb.2785030335891
    [Google Scholar]
  45. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  46. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast cancer statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  47. O’ConorC.J. ChenT. GonzálezI. CaoD. PengY. Cancer stem cells in triple-negative breast cancer: A potential target and prognostic marker.Biomarkers Med.201812781382010.2217/bmm‑2017‑039829902924
    [Google Scholar]
  48. RakhaE.A. ParejaF.G. New advances in molecular breast cancer pathology, Seminars in cancer biology.Elsevier2021102113
    [Google Scholar]
  49. RakhaE.A. ChmielikE. SchmittF.C. TanP.H. QuinnC.M. GallagyG. Assessment of predictive biomarkers in breast cancer: Challenges and updates.Pathobiology202289526327710.1159/00052509235728576
    [Google Scholar]
  50. DassS.A. TanK.L. Selva RajanR. MokhtarN.F. Mohd AdzmiE.R. Wan Abdul RahmanW.F. Tengku DinT.A.D.A.A. BalakrishnanV. Triple negative breast cancer: A review of present and future diagnostic modalities.Medicina20215716210.3390/medicina5701006233445543
    [Google Scholar]
  51. MedinaM.A. OzaG. SharmaA. ArriagaL.G. Hernández HernándezJ.M. RotelloV.M. RamirezJ.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies.Int. J. Environ. Res. Public Health2020176207810.3390/ijerph1706207832245065
    [Google Scholar]
  52. HowardJ. WyseC. ArgyleD. QuinnC. KellyP. McCannA. Exosomes as biomarkers of human and feline mammary tumours; A comparative medicine approach to unravelling the aggressiveness of TNBC, biochimica et biophysica acta (BBA)-.Biochim. Biophys. Acta Rev. Cancer20201874218843110.1016/j.bbcan.2020.18843132950643
    [Google Scholar]
  53. CoccoS. PiezzoM. CalabreseA. CiannielloD. CaputoR. Di LauroV. FuscoG. di GioiaG. LicenziatoM. de LaurentiisM. Biomarkers in triple-negative breast cancer: state-of-the-art and future perspectives.Int. J. Mol. Sci.20202113457910.3390/ijms2113457932605126
    [Google Scholar]
  54. Jimenez-LopezJ.C. GachomoE.W. SharmaS. KotchoniS.O. Genome sequencing and next-generation sequence data analysis: A comprehensive compilation of bioinformatics tools and databases.Am. J. Mol. Biol.20133211513010.4236/ajmb.2013.32016
    [Google Scholar]
  55. GuoY. BaoY. MaM. YangW. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis.Int. J. Mol. Sci.201718472210.3390/ijms1804072228350360
    [Google Scholar]
  56. DahiaP.L. PTEN, a unique tumor suppressor gene.Endocr. Relat. Cancer20007211512910.1677/erc.0.007011510903528
    [Google Scholar]
  57. ShenW.H. BalajeeA.S. WangJ. WuH. EngC. PandolfiP.P. YinY. Essential role for nuclear PTEN in maintaining chromosomal integrity.Cell2007128115717010.1016/j.cell.2006.11.04217218262
    [Google Scholar]
  58. KhanM.A. JainV.K. RizwanullahM. AhmadJ. JainK. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges.Drug Discov. Today201924112181219110.1016/j.drudis.2019.09.00131520748
    [Google Scholar]
  59. ChaiC. WuH.H. AbuetabhY. SergiC. LengR. Regulation of the tumor suppressor PTEN in triple-negative breast cancer.Cancer Lett.2022527414810.1016/j.canlet.2021.12.00334902523
    [Google Scholar]
  60. PascualJ. TurnerN.C. Targeting the PI3-kinase pathway in triple-negative breast cancer.Ann. Oncol.20193071051106010.1093/annonc/mdz13331050709
    [Google Scholar]
  61. LiS. ShenY. WangM. YangJ. LvM. LiP. ChenZ. YangJ. Loss of PTEN expression in breast cancer: Association with clinicopathological characteristics and prognosis.Oncotarget2017819320433205410.18632/oncotarget.1676128410191
    [Google Scholar]
  62. GaoX. QinT. MaoJ. ZhangJ. FanS. LuY. SunZ. ZhangQ. SongB. LiL. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway.J. Exp. Clin. Cancer Res.201938125610.1186/s13046‑019‑1260‑631196157
    [Google Scholar]
  63. PrvanovićM. NedeljkovićM. TanićN. TomićT. TerzićT. MilovanovićZ. MaksimovićZ. TanićN. Role of PTEN, PI3K, and mTOR in triple-negative breast cancer.Life20211111124710.3390/life1111124734833123
    [Google Scholar]
  64. WangW. LuoY. MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential.J. Zhejiang Univ. Sci. B2015161183110.1631/jzus.B140018425559952
    [Google Scholar]
  65. MaheshG. BiswasR. MicroRNA-155: A master regulator of inflammation.J. Interferon Cytokine Res.201939632133010.1089/jir.2018.015530998423
    [Google Scholar]
  66. MoutabianH. RadiU.K. SalemanA.Y. AdilM. ZabibahR.S. ChaitanyaM.N.L. SaadhM.J. JawadM.J. HazratiE. BagheriH. PalR.S. Akhavan-SigariR. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition.Pathol. Res. Pract.202325015478910.1016/j.prp.2023.15478937741138
    [Google Scholar]
  67. LüL. MaoX. ShiP. HeB. XuK. ZhangS. WangJ. MicroRNAs in the prognosis of triple-negative breast cancer.Medicine20179622e708510.1097/MD.000000000000708528562579
    [Google Scholar]
  68. XinX. LuY. XieS. ChenY. JiangX. SongS. WangL. PuH. GuiX. LiT. XuJ. LiJ. JiaS. LuD. miR-155 accelerates the growth of human liver cancer cells by activating CDK2 via targeting H3F3A.Mol. Ther. Oncolytics20201747148310.1016/j.omto.2020.05.00232490171
    [Google Scholar]
  69. PasculliB. BarbanoR. FontanaA. BiaginiT. Di ViestiM.P. RendinaM. ValoriV.M. MorrittiM. BravacciniS. RavaioliS. MaielloE. GrazianoP. MurgoR. CopettiM. MazzaT. FazioV.M. EstellerM. ParrellaP. Hsa-miR-155-5p up-regulation in breast cancer and its relevance for treatment with poly[ADP-Ribose] polymerase 1 (PARP-1) inhibitors.Front. Oncol.202010141510.3389/fonc.2020.0141532903519
    [Google Scholar]
  70. DaiJ. SuY. ZhongS. CongL. LiuB. YangJ. TaoY. HeZ. ChenC. JiangY. Exosomes: Key players in cancer and potential therapeutic strategy.Signal Transduct. Target. Ther.20205114510.1038/s41392‑020‑00261‑032759948
    [Google Scholar]
  71. St-Denis-BissonnetteF. KhouryR. MedirattaK. El-SahliS. WangL. LavoieJ.R. Applications of extracellular vesicles in triple-negative breast cancer.Cancers202214245110.3390/cancers1402045135053616
    [Google Scholar]
  72. JIANG Y.; Weaver, J.W.; ZHANG, J.; Rojas, S.; Musich, P.R.; Yao, Z.Q. The application of exosomes in the treatment of triple-negative breast cancer.Front. Mol. Biosci.20221148
    [Google Scholar]
  73. XuW. SongC. WangX. LiY. BaiX. LiangX. WuJ. LiuJ. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis.Aging202113122824010.18632/aging.10366933472170
    [Google Scholar]
  74. QiuP. GuoQ. YaoQ. ChenJ. LinJ. Characterization of exosome-related gene risk model to evaluate the tumor immune microenvironment and predict prognosis in triple-negative breast cancer.Front. Immunol.20211273603010.3389/fimmu.2021.73603034659224
    [Google Scholar]
  75. TanY. LuoX. LvW. HuW. ZhaoC. XiongM. YiY. WangD. WangY. WangH. WuY. ZhangQ. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis.Cell Death Dis.202112654710.1038/s41419‑021‑03825‑234039961
    [Google Scholar]
  76. YiY. WuM. ZengH. HuW. ZhaoC. XiongM. LvW. DengP. ZhangQ. WuY. Tumor-derived exosomal non-coding RNAs: The emerging mechanisms and potential clinical applications in breast cancer.Front. Oncol.20211173894510.3389/fonc.2021.73894534707990
    [Google Scholar]
  77. LiuZ. SunR. ZhangX. QiuB. ChenT. LiZ. XuY. ZhangZ. Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1.EBioMedicine20194518119110.1016/j.ebiom.2019.06.02331248836
    [Google Scholar]
  78. YangL.W. WuX.J. LiangY. YeG.Q. CheY. WuX.Z. ZhuX.J. FanH.L. FanX.P. XuJ.F. miR‐155 increases stemness and decitabine resistance in triple‐negative breast cancer cells by inhibiting TSPAN5.Mol. Carcinog.202059444746110.1002/mc.2316732096299
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303289859240214103350
Loading
/content/journals/emiddt/10.2174/0118715303289859240214103350
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Breast cancer; exosome; miR-155; PTEN; therapies; triple-negative breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test