Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Polycystic Ovary Syndrome (PCOS) is a highly prevalent, complex, heterogeneous, polygenic endocrine disorder characterized by metabolic and reproductive dysfunction that affects 8-13% of women of reproductive age worldwide. The pathogenesis of PCOS has not been fully clarified and includes genetics, obesity, and insulin resistance (IR). Oxidative stress (OS) of PCOS is independent of obesity. It can induce IR through post-insulin receptor defects, impair glucose uptake in muscle and adipose tissue, and exacerbate IR by reducing insulin secretion from pancreatic β-cells.

Objective

To investigate the effects of Calorie Restricted Diet (CRD), High Protein Diet (HPD), and High Protein and High Dietary Fiber Diet (HPD+HDF) on body composition, insulin resistance, and oxidative stress in overweight/obese PCOS patients.

Methods

A total of 90 overweight/obese patients with PCOS were selected to receive an 8-week medical nutrition weight loss intervention at our First Hospital of Peking University, and we randomly divided them into the CRD group (group A), the HPD group (group B), and the HPD+HDF group (group C), with 30 patients in each group. We measured their body composition, HOMA-IR index, and oxidative stress indicators. The -test, Mann-Whitney test, analysis of variance (ANOVA), and Kruskal-Wallis test were used to compare the efficacy of the three methods.

Results

After eight weeks, the body weights of the three groups decreased by 6.32%, 5.70% and 7.24%, respectively, and the Visceral Fat Area (VFA) values decreased by 6.8 cm2, 13.4 cm2 and 23.45 cm2, respectively, especially in group C ( <0.05). The lean body mass (LBM), also known as the Fat-Free Mass (FFM) values of group B and group C after weight loss, were higher than that of group A ( <0.05). After weight loss, the homeostatic model assessment of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) were decreased. Superoxide dismutase (SOD) was increased in all three groups ( <0.05), and the changes in SOD and MDA in group B and group C were more significant ( <0.05). HOMA-IR index positively correlated with body mass index (BMI) (r=0.195; <0.05); MDA positively correlated with percent of body fat (PBF) (r=0.186; <0.05) and HOMA-IR index (r=0.422; <0.01); SOD positively correlated with LMI/FFMI (r=0.195; <0.05), negatively correlated with HOMA-IR index (r=-0.433; <0.01).

Conclusion

All three diets were effective in reducing the body weight of overweight/obese patients with PCOS by more than 5% within 8 weeks and could improve both insulin resistance and oxidative stress damage. Compared with CRD, HPD and HPD+HDF diets could better retain lean body mass and significantly improve oxidative stress damage.

Clinical Trial Number

ChiCTR2100054961.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303286777240223074922
2024-03-06
2025-01-10
Loading full text...

Full text loading...

References

  1. VisserJ.A. The importance of metabolic dysfunction in polycystic ovary syndrome.Nat. Rev. Endocrinol.2021172777810.1038/s41574‑020‑00456‑z33318648
    [Google Scholar]
  2. DennettC.C. SimonJ. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment.Diabetes Spectr.201528211612010.2337/diaspect.28.2.11625987810
    [Google Scholar]
  3. VrbikovaJ. HainerV. Obesity and polycystic ovary syndrome.Obes. Facts200921263510.1159/00019497120054201
    [Google Scholar]
  4. SadeghiH.M. AdeliI. CalinaD. DoceaA.O. MousaviT. DanialiM. NikfarS. TsatsakisA. AbdollahiM. Polycystic ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing.Int. J. Mol. Sci.202223258310.3390/ijms2302058335054768
    [Google Scholar]
  5. AzzizR. CarminaE. ChenZ. DunaifA. LavenJ.S.E. LegroR.S. LiznevaD. Natterson-HorowtizB. TeedeH.J. YildizB.O. Polycystic ovary syndrome.Nat. Rev. Dis. Primers2016211605710.1038/nrdp.2016.5727510637
    [Google Scholar]
  6. PasqualiR. GambineriA. New perspectives on the definition and management of polycystic ovary syndrome.J. Endocrinol. Invest.201841101123113510.1007/s40618‑018‑0832‑129363047
    [Google Scholar]
  7. ThibaultR. PichardC. The evaluation of body composition: A useful tool for clinical practice.Ann. Nutr. Metab.201260161610.1159/00033487922179189
    [Google Scholar]
  8. SchulteM.M.B. TsaiJ. MoleyK.H. Obesity and PCOS: The effect of metabolic derangements on endometrial receptivity at the time of implantation.Reprod. Sci.201522161410.1177/193371911456155225488942
    [Google Scholar]
  9. MannaP. JainS.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies.Metab. Syndr. Relat. Disord.2015131042344410.1089/met.2015.009526569333
    [Google Scholar]
  10. ManciniA. BrunoC. VerganiE. dƒ?(tm)Abate, C.; Giacchi, E.; Silvestrini, A. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: Controversies and new insights.Int. J. Mol. Sci.2021224166710.3390/ijms2204166733562271
    [Google Scholar]
  11. LiuY. YuZ. ZhaoS. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality.J. Assist. Reprod. Genet.2021382471477
    [Google Scholar]
  12. UyanikogluH. SabuncuT. DursunH. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: A case-controlled descriptive study.Biomarkers2017227643647
    [Google Scholar]
  13. ÖzerA. BakacakM. KıranH. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome.Ginekol. Pol.20168711733738
    [Google Scholar]
  14. MizgierM. Jarząbek-BieleckaG. Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome.Nutrients2021133896
    [Google Scholar]
  15. Di SegniC. DiS.S.A. Plasmatic and intracellular markers of oxidative stress in normal weight and obese patients with polycystic ovary syndrome.Exp. Clin. Endo. Diab.20171258506513
    [Google Scholar]
  16. Renoprotective and hepatoprotective effects of hippocratea excelsa on metabolic syndrome in fructose-fed rats.Available from: https://farmaciajournal.com/wp-content/uploads/2020-06-art-19-Guzman-Hernandez_Lopez-Sanchez_1106-1119.pdf
  17. ZuoT. ZhuM. Roles of oxidative stress in polycystic ovary syndrome and cancers.Oxid. Med. Cell. Longev.201620168589318
    [Google Scholar]
  18. ManAWC. Lih. Impact of lifestyles (diet and exercise) on vascular health: Oxidative stress and endothelial function.Oxid. Med. Cell. Longev.2020261496462
    [Google Scholar]
  19. TeedeH.J. MissoM.L. CostelloM.F. DokrasA. LavenJ. MoranL. PiltonenT. NormanR.J. AndersenM. AzzizR. BalenA. BayeE. BoyleJ. BrennanL. BroekmansF. DabadghaoP. DevotoL. DewaillyD. DownesL. FauserB. FranksS. GaradR.M. Gibson-HelmM. HarrisonC. HartR. HawkesR. HirschbergA. HoegerK. HohmannF. HutchisonS. JohamA. JohnsonL. JordanC. KulkarniJ. LegroR.S. LiR. LujanM. MalhotraJ. MansfieldD. MarshK. McAllisterV. MocanuE. MolB.W. NgE. OberfieldS. OtteyS. PeAñaA. QiaoJ. RedmanL. RodgersR. RombautsL. RomualdiD. ShahD. SpeightJ. SpritzerP.M. Stener-VictorinE. SteptoN. TapanainenJ.S. TassoneE.C. ThangaratinamS. ThondanM. TzengC-R. van der SpuyZ. VankyE. VogiatziM. WanA. WijeyaratneC. WitchelS. WoolcockJ. YildizB.O. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome.Hum. Reprod.20183391602161810.1093/humrep/dey25630052961
    [Google Scholar]
  20. ApovianC.M. AronneL.J. BessesenD.H. McDonnellM.E. MuradM.H. PagottoU. RyanD.H. StillC.D. Pharmacological management of obesity: An endocrine Society clinical practice guideline.J. Clin. Endocrinol. Metab.2015100234236210.1210/jc.2014‑341525590212
    [Google Scholar]
  21. Elkind-HirschK.E. ChappellN. ShalerD. StormentJ. BellangerD. Liraglutide 3 mg on weight, body composition, and hormonal and metabolic parameters in women with obesity and polycystic ovary syndrome: A randomized placebo-controlled-phase 3 study.Fertil. Steril.2022118237138110.1016/j.fertnstert.2022.04.02735710599
    [Google Scholar]
  22. PaoliA. MancinL. GiaconaM.C. BiancoA. CaprioM. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome.J. Transl. Med.202018110410.1186/s12967‑020‑02277‑032103756
    [Google Scholar]
  23. MavropoulosJ.C. YancyW.S. HepburnJ. WestmanE.C. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study.Nutr. Metab.200523510.1186/1743‑7075‑2‑35
    [Google Scholar]
  24. CincioneI.R. GraziadioC. MarinoF. VetraniC. LosavioF. SavastanoS. ColaoA. LaudisioD. Short-time effects of ketogenic diet or modestly hypocaloric Mediterranean diet on overweight and obese women with polycystic ovary syndrome.J. Endocrinol. Invest.202246476977710.1007/s40618‑022‑01943‑y36401759
    [Google Scholar]
  25. BarreaL. ArnoneA. AnnunziataG. MuscogiuriG. LaudisioD. SalzanoC. PuglieseG. ColaoA. SavastanoS. Adherence to the mediterranean diet, dietary patterns and body composition in women with Polycystic Ovary Syndrome (PCOS).Nutrients20191110227810.3390/nu1110227831547562
    [Google Scholar]
  26. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to Polycystic Ovary Syndrome (PCOS).Hum. Reprod.2004191414710.1093/humrep/deh09814688154
    [Google Scholar]
  27. Nutrition and metabolism branch of china healthcare international exchange promotion association. Medical nutrition treatment guidelines for overweight/obesity in China (2021).Chin J Front Med.2021131115510.12037/YXQY.2021.11‑01
    [Google Scholar]
  28. YamakageH. ItoR. TochiyaM. MuranakaK. TanakaM. MatsuoY. OdoriS. KonoS. ShimatsuA. Satoh-AsaharaN. The utility of dual bioelectrical impedance analysis in detecting intra-abdominal fat area in obese patients during weight reduction therapy in comparison with waist circumference and abdominal CT.Endocr. J.201461880781910.1507/endocrj.EJ14‑009224931739
    [Google Scholar]
  29. IdaM. HirataM. OdoriS. MoriE. KondoE. FujikuraJ. KusakabeT. EbiharaK. HosodaK. NakaoK. Early changes of abdominal adiposity detected with weekly dual bioelectrical impedance analysis during calorie restriction.Obesity2013219E350E35310.1002/oby.2030023703886
    [Google Scholar]
  30. ChenW. PangY. Metabolic syndrome and PCOS: Pathogenesis and the role of metabolites.Metabolites2021111286910.3390/metabo1112086934940628
    [Google Scholar]
  31. MulitaF. LampropoulosC. KehagiasD. VerrasG.I. TchabashviliL. KaplanisC. LiolisE. IliopoulosF. PerdikarisI. KehagiasI. Long-term nutritional deficiencies following sleeve gastrectomy: A 6-year single-centre retrospective study.Prz Menopauzalny.202120417017610.5114/pm.2021.11095435069068
    [Google Scholar]
  32. MulitaF. LampropoulosC. KehagiasD. et al. Long-term nutritional deficiencies following sleeve gastrectomy: A 6-year single-centre retrospective study.Prz. Menopauzalny.202120417017610.5114/pm.2021.110954
    [Google Scholar]
  33. DouP. JuH. ShangJ. LiX. XueQ. XuY. GuoX. Application of receiver operating characteristic curve in the assessment of the value of body mass index, waist circumference and percentage of body fat in the diagnosis of Polycystic Ovary Syndrome in childbearing women.J. Ovarian Res.2016915110.1186/s13048‑016‑0260‑927557677
    [Google Scholar]
  34. KuriyanR. Body composition techniques.Indian J. Med. Res.2018148564865810.4103/ijmr.IJMR_1777_1830666990
    [Google Scholar]
  35. LemosT. GallagherD. Current body composition measurement techniques.Curr. Opin. Endocrinol. Diabetes Obes.201724531031410.1097/MED.000000000000036028696961
    [Google Scholar]
  36. MarraM. SammarcoR. De LorenzoA. IellamoF. SiervoM. PietrobelliA. DoniniL.M. SantarpiaL. CataldiM. PasanisiF. ContaldoF. Assessment of body composition in health and disease using Bioelectrical Impedance Analysis (BIA) and dual energy X-ray absorptiometry (DXA): A critical overview.Contrast Media Mol. Imaging20192019354828410.1155/2019/3548284
    [Google Scholar]
  37. SantessoN. AklE.A. BianchiM. MenteA. MustafaR. Heels-AnsdellD. SchünemannH.J. Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis.Eur. J. Clin. Nutr.201266778078810.1038/ejcn.2012.3722510792
    [Google Scholar]
  38. MagkosF. Protein-rich diets for weight loss maintenance.Curr. Obes. Rep.20209321321810.1007/s13679‑020‑00391‑032542589
    [Google Scholar]
  39. Westerterp-PlantengaM.S. LemmensS.G. Westerterp, KR Dietary protein: Its role in satiety, energetics, weight loss and health.Br. J. Nutr.2012108210511210.1017/S0007114512002589
    [Google Scholar]
  40. NicolucciA.C. HumeM.P. MartA-nez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity.Gastroenterology2017153371172210.1053/j.gastro.2017.05.05528596023
    [Google Scholar]
  41. TorresP.J. SiakowskaM. BanaszewskaB. PawelczykL. DulebaA.J. KelleyS.T. ThackrayV.G. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism.J. Clin. Endocrinol. Metab.201810341502151110.1210/jc.2017‑0215329370410
    [Google Scholar]
  42. GuoY. QiY. YangX. ZhaoL. WenS. LiuY. TangL. Association between polycystic ovary syndrome and gut microbiota.PLoS One2016114e015319610.1371/journal.pone.015319627093642
    [Google Scholar]
  43. BeserraB.T.S. FernandesR. do RosarioV.A. MocellinM.C. KuntzM.G.F. TrindadeE.B.S.M. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity.Clin. Nutr.201534584585810.1016/j.clnu.2014.10.00425456608
    [Google Scholar]
  44. BertuccioliA. CardinaliM. BiagiM. MoricoliS. MorgantiI. ZonziniG.B. RigilloG. Nutraceuticals and herbal food supplements for weight loss: Is there a prebiotic role in the mechanism of action?Microorganisms2021912242710.3390/microorganisms912242734946029
    [Google Scholar]
  45. SergeevI.N. AljutailyT. WaltonG. HuarteE. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity.Nutrients202012122210.3390/nu1201022231952249
    [Google Scholar]
  46. DingY. XiaB.H. ZhangC.J. ZhuoG.C. Mutations in mitochondrial tRNA genes may be related to insulin resistance in women with polycystic ovary syndrome.Am. J. Transl. Res.2017962984299628670386
    [Google Scholar]
  47. ShangY. ZhouH. HuM. FengH. Effect of diet on insulin resistance in polycystic ovary syndrome.J. Clin. Endocrinol. Metab.2020105103346336010.1210/clinem/dgaa42532621748
    [Google Scholar]
  48. ArtimaniT. KarimiJ. MehdizadehM. YavangiM. KhanlarzadehE. GhorbaniM. AsadiS. KheiripourN. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in Polycystic Ovary Syndrome (PCOS).Gynecol. Endocrinol.201834214815210.1080/09513590.2017.137169128868943
    [Google Scholar]
  49. MusarAý, A.; Fulle, S.; FanAý, G. Oxidative stress and muscle homeostasis.Curr. Opin. Clin. Nutr. Metab. Care201013323624210.1097/MCO.0b013e328336818820098320
    [Google Scholar]
  50. HyderaliB.N. MalaK. Oxidative stress and cardiovascular complications in polycystic ovarian syndrome.Eur. J. Obstet. Gynecol. Reprod. Biol.2015191152210.1016/j.ejogrb.2015.05.005
    [Google Scholar]
  51. ChenL. XuW.M. ZhangD. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.Fertil. Steril.201410241167117410.1016/j.fertnstert.2014.06.02725064406
    [Google Scholar]
  52. LuJ. WangZ. CaoJ. ChenY. DongY. A novel and compact review on the role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.20181618010.1186/s12958‑018‑0391‑530126412
    [Google Scholar]
  53. MeloA.S. KliemchenJ. JuniorA.A. FerrianiR.A. NavarroP.A. Oxidative stress and polycystic ovary syndrome: Evaluation during ovarian stimulation for ICSI.Reproduction2016848410.1530/REP‑16‑008427799629
    [Google Scholar]
  54. MurriM. Luque-RamírezM. InsenserM. Ojeda-OjedaM. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systematic review and meta-analysis.Hum. Reprod. Update201319326828810.1093/humupd/dms059
    [Google Scholar]
  55. UngvariZ. Parrado-FernandezC. CsiszarA. de CaboR. Mechanisms underlying caloric restriction and lifespan regulation: Implications for vascular aging.Circ. Res.2008102551952810.1161/CIRCRESAHA.107.16836918340017
    [Google Scholar]
  56. ManA.W.C. LiH. XiaN. The role of Sirtuin 1 in regulating endothelial function, arterial remodeling and vascular aging.Front. Physiol.201910117310.3389/fphys.2019.0117331572218
    [Google Scholar]
  57. CsiszarA. LabinskyyN. PintoJ.T. BallabhP. ZhangH. LosonczyG. PearsonK. de CaboR. PacherP. ZhangC. UngvariZ. Resveratrol induces mitochondrial biogenesis in endothelial cells.Am. J. Physiol. Heart Circ. Physiol.20092971H13H2010.1152/ajpheart.00368.200919429820
    [Google Scholar]
  58. DolinskyV.W. DyckJ.R.B. Calorie restriction and resveratrol in cardiovascular health and disease.Biochim. Biophys. Acta Mol. Basis Dis.20111812111477148910.1016/j.bbadis.2011.06.01021749920
    [Google Scholar]
  59. ComerfordK.B. AlmarioR.U. KimK. KarakasS.E. Lean mass and insulin resistance in women with polycystic ovary syndrome.Metabolism20126191256126010.1016/j.metabol.2012.02.00422424820
    [Google Scholar]
  60. HansenS.L. SvendsenP.F. JeppesenJ.F. HoegL.D. AndersenN.R. KristensenJ.M. NilasL. LundsgaardA.M. WojtaszewskiJ.F.P. MadsbadS. KiensB. Molecular mechanisms in skeletal muscle underlying insulin resistance in women who are lean with polycystic ovary syndrome.J. Clin. Endocrinol. Metab.201910451841185410.1210/jc.2018‑0177130544235
    [Google Scholar]
  61. DamigouE. KouvariM. PanagiotakosD. The role of skeletal muscle mass on cardiovascular disease risk: An emerging role on modulating lipid profile.Curr. Opin. Cardiol.202338435235710.1097/HCO.000000000000104736928171
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303286777240223074922
Loading
/content/journals/emiddt/10.2174/0118715303286777240223074922
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test