Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Obesity-linked insulin resistance (IR) is an important risk factor for metabolic diseases, and anthropometric indices are commonly used for risk assessment.

Aim

The study aimed to assess possible differences between women and men in the predictive value and association of nine obesity indices with IR, as assessed by HOMA-IR, in a non-diabetic adult population.

Methods

The cross-sectional study included individuals recruited from a hospital in Mexico City. Indices evaluated were waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio, waist-to-height ratio, visceral adiposity index, body adiposity index (BAI), relative fat mass (RFM), and conicity index (CI). Fasting plasma glucose and insulin were measured to calculate HOMA-IR. Correlation analysis was performed between obesity indices and HOMA-IR. Receiver operating characteristics curve analyses were performed to determine predictive accuracy and cut-off values of obesity indices for IR. A binary logistic regression (BLR) analysis with OR calculation was performed to determine the strength of association with HOMA-IR.

Results

We included 378 individuals (59% females, mean age 46.38 ±12.25 years). The highest Pearson coefficient value was observed for BMI among women, while among men, the highest values were found for BMI and BAI. WC among women, and BAI and RFM among men showed the highest sensitivity, while the highest specificity was observed for WHR among women and WC among men with respect to insulin prediction. In the adjusted BLR model, BMI, WC, and WHR among women and WC and RFM and BAI among men were independently associated with IR, showing the highest odds ratio (OR).

Conclusion

In Mexican adults, WC, WHR, RFM and BAI could be complementary tools for BMI in screening for IR.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303284893240215070923
2024-02-23
2025-01-09
Loading full text...

Full text loading...

References

  1. WHO. Obesity and overweight.2021Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed Dec 15 2021).
  2. ChooiY.C. DingC. MagkosF. The epidemiology of obesity.Metabolism20199261010.1016/j.metabol.2018.09.00530253139
    [Google Scholar]
  3. Gomez‐CuevasR. II Consenso Latino‐Americano de Obesidad.2016Available from: http://www.administracion.usmp.edu.pe/institutoconsumo/wp-content/uploads/LIBRO-II-CONSENSO-LATINOAMERICANO-DE-OBESIDAD-2017.pdf
  4. DaiH. AlsalheT.A. ChalghafN. RiccòM. BragazziN.L. WuJ. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study.PLoS Med.2020177e100319810.1371/journal.pmed.100319832722671
    [Google Scholar]
  5. BakhtiyariM. KazemianE. KabirK. HadaeghF. AghajanianS. MardiP. GhahfarokhiN.T. GhanbariA. MansourniaM.A. AziziF. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: A population-based cohort study.Sci. Rep.2022121154410.1038/s41598‑022‑05536‑w35091663
    [Google Scholar]
  6. Encuesta Nacional de Salud y Nutrición 2018-2019. Resultados nacionales.Available from: www.ensanut.insp.mx/encuestas/ensanut2018
  7. BarqueraS. Hernández-BarreraL. TrejoB. ShamahT. Campos-NonatoI. Rivera-DommarcoJ. Obesidad en México, prevalencia y tendencias en adultos.Ensanut 2018-19. Salud Publica Mex.2020626, Nov-Dic68269210.21149/1163033620965
    [Google Scholar]
  8. StefanN. Causes, consequences, and treatment of metabolically unhealthy fat distribution.Lancet Diabetes Endocrinol.20208761662710.1016/S2213‑8587(20)30110‑832559477
    [Google Scholar]
  9. BastienM. PoirierP. LemieuxI. DesprésJ.P. Overview of epidemiology and contribution of obesity to cardiovascular disease.Prog. Cardiovasc. Dis.201456436938110.1016/j.pcad.2013.10.01624438728
    [Google Scholar]
  10. SnijderM.B. ZimmetP.Z. VisserM. DekkerJ.M. SeidellJ.C. ShawJ.E. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study.Int. J. Obes.200428340240910.1038/sj.ijo.080256714724659
    [Google Scholar]
  11. YusufS. HawkenS. ÔunpuuS. BautistaL. FranzosiM.G. CommerfordP. LangC.C. RumboldtZ. OnenC.L. LishengL. TanomsupS. WangaiP.Jr RazakF. SharmaA.M. AnandS.S. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: A case-control study.Lancet200536694971640164910.1016/S0140‑6736(05)67663‑516271645
    [Google Scholar]
  12. VecchiéA. DallegriF. CarboneF. BonaventuraA. LiberaleL. PortincasaP. FrühbeckG. MontecuccoF. Obesity phenotypes and their paradoxical association with cardiovascular diseases.Eur. J. Intern. Med.20184861710.1016/j.ejim.2017.10.02029100895
    [Google Scholar]
  13. GoossensG.H. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function.Obes. Facts201710320721510.1159/00047148828564650
    [Google Scholar]
  14. Perez-CamposE. MayoralL.P-C. AndradeG.M. MayoralE.P-C. HuertaT.H. CansecoS.P. CanalesF.J. Cabrera-FuentesH.A. CruzM.M. SantiagoA.D. AlpucheJ.J. ZentenoE. RuízH.M. CruzR.M. JeronimoJ.H. Obesity subtypes, related biomarkers & heterogeneity.Indian J. Med. Res.20201511112110.4103/ijmr.IJMR_1768_1732134010
    [Google Scholar]
  15. PichéM.E. TchernofA. DesprésJ.P. Obesity phenotypes, diabetes, and cardiovascular diseases.Circ. Res.2020126111477150010.1161/CIRCRESAHA.120.31610132437302
    [Google Scholar]
  16. NazareJ.A. SmithJ. BorelA.L. AschnerP. BarterP. Van GaalL. TanC.E. WittchenH.U. MatsuzawaY. KadowakiT. RossR. Brulle-WohlhueterC. AlmérasN. HaffnerS.M. BalkauB. DesprésJ.P. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study).Am. J. Cardiol.2015115330731510.1016/j.amjcard.2014.10.03925499404
    [Google Scholar]
  17. RossR. NeelandI.J. YamashitaS. ShaiI. SeidellJ. MagniP. SantosR.D. ArsenaultB. CuevasA. HuF.B. GriffinB.A. ZambonA. BarterP. FruchartJ.C. EckelR.H. MatsuzawaY. DesprésJ.P. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity.Nat. Rev. Endocrinol.202016317718910.1038/s41574‑019‑0310‑732020062
    [Google Scholar]
  18. KissebahA.H. VydelingumN. MurrayR. EvansD.J. KalkhoffR.K. AdamsP.W. AdamsP.W. Relation of body fat distribution to metabolic complications of obesity.J. Clin. Endocrinol. Metab.198254225426010.1210/jcem‑54‑2‑2547033275
    [Google Scholar]
  19. KrotkiewskiM. BjörntorpP. SjöströmL. SmithU. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution.J. Clin. Invest.19837231150116210.1172/JCI1110406350364
    [Google Scholar]
  20. QiaoQ. NyamdorjR. Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index?Eur. J. Clin. Nutr.2010641303410.1038/ejcn.2009.9319724291
    [Google Scholar]
  21. AshwellM. GunnP. GibsonS. Waist‐to‐height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta‐analysis.Obes. Rev.201213327528610.1111/j.1467‑789X.2011.00952.x22106927
    [Google Scholar]
  22. Elizalde-BarreraC.I. Rubio-GuerraA.F. Lozano-NuevoJ.J. Olvera-GomezJ.L. Triglycerides and waist to height ratio are more accurate than visceral adiposity and body adiposity index to predict impaired fasting glucose.Diabetes Res. Clin. Pract.2019153495410.1016/j.diabres.2019.05.01931132383
    [Google Scholar]
  23. BergmanR.N. StefanovskiD. BuchananT.A. SumnerA.E. ReynoldsJ.C. SebringN.G. XiangA.H. WatanabeR.M. A better index of body adiposity.Obesity20111951083108910.1038/oby.2011.3821372804
    [Google Scholar]
  24. FreedmanD.S. ThorntonJ.C. Pi-SunyerF.X. The body adiposity index (hip circumference ÷ height(1.5) is not a more accurate measure of adiposity than is BMI, waist circumference, or hip circumference.Obesity201220122438244410.1038/oby.2012.81
    [Google Scholar]
  25. ValdezR. A simple model-based index of abdominal adiposity.J. Clin. Epidemiol.199144995595610.1016/0895‑4356(91)90059‑I1890438
    [Google Scholar]
  26. do PradoC.B. MartinsC.A. CremoniniA.C.P. FerreiraJ.R.S. CattafestaM. Almeida-de-SouzaJ. ZandonadeE. BezerraO.M.P.A. SalaroliL.B. Cut points of the conicity index and associated factors in brazilian rural workers.Nutrients20221421448710.3390/nu1421448736364746
    [Google Scholar]
  27. AmatoM.C. GiordanoC. GaliaM. CriscimannaA. VitabileS. MidiriM. GalluzzoA. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk.Diabetes Care201033492092210.2337/dc09‑182520067971
    [Google Scholar]
  28. KangY.M. JungC.H. ChoY.K. JangJ.E. HwangJ.Y. KimE.H. LeeW.J. ParkJ.Y. KimH.K. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype.PLoS One2017126e017963510.1371/journal.pone.017963528644850
    [Google Scholar]
  29. WoolcottO.O. BergmanR.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage — A cross-sectional study in American adult individuals.Sci. Rep.2018811098010.1038/s41598‑018‑29362‑130030479
    [Google Scholar]
  30. KoboO. LeibaR. AvizoharO. KarbanA. Relative fat mass is a better predictor of dyslipidemia and metabolic syndrome than body mass index.Cardiovasc. Endocrinol. Metab.201983778110.1097/XCE.000000000000017631646301
    [Google Scholar]
  31. Guzmán-LeónA.E. VelardeA.G. Vidal-SalasM. Urquijo-RuizL.G. Caraveo-GutiérrezL.A. ValenciaM.E. External validation of the relative fat mass (RFM) index in adults from north-west Mexico using different reference methods.PLoS One20191412e022676710.1371/journal.pone.022676731891616
    [Google Scholar]
  32. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816110.1002/jcp.2760330317615
    [Google Scholar]
  33. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  34. KahnS.E. HullR.L. UtzschneiderK.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes.Nature2006444712184084610.1038/nature0548217167471
    [Google Scholar]
  35. GołackiJ. MatuszekM. Matyjaszek-MatuszekB. Link between insulin resistance and obesity—from diagnosis to treatment.Diagnostics2022127168110.3390/diagnostics1207168135885586
    [Google Scholar]
  36. LebovitzH.E. BanerjiM.A. Point: Visceral adiposity is causally related to insulin resistance.Diabetes Care20052892322232510.2337/diacare.28.9.232216123512
    [Google Scholar]
  37. DeFronzoR.A. TobinJ.D. AndresR. Glucose clamp technique: A method for quantifying insulin secretion and resistance.Am. J. Physiol. Endocrinol. Metab.19792373E214E22310.1152/ajpendo.1979.237.3.E214382871
    [Google Scholar]
  38. MatthewsD.R. HoskerJ.P. RudenskiA.S. NaylorB.A. TreacherD.F. TurnerR.C. Homeostasis model assessment: Insulin resistance and? -cell function from fasting plasma glucose and insulin concentrations in man.Diabetologia198528741241910.1007/BF002808833899825
    [Google Scholar]
  39. BonoraE. TargherG. AlbericheM. BonadonnaR.C. SaggianiF. ZenereM.B. MonauniT. MuggeoM. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity.Diabetes Care2000231576310.2337/diacare.23.1.5710857969
    [Google Scholar]
  40. GeerE.B. ShenW. Gender differences in insulin resistance, body composition, and energy balance.Gend. Med.20096Suppl 1)(Suppl. 1607510.1016/j.genm.2009.02.00219318219
    [Google Scholar]
  41. GuglielmiV. SbracciaP. Obesity phenotypes: Depot-differences in adipose tissue and their clinical implications.Eat. Weight Disord.201823131410.1007/s40519‑017‑0467‑929230714
    [Google Scholar]
  42. HaffnerS.M. GonzalezC. MiettinenH. KennedyE. SternM.P. A prospective analysis of the HOMA model. The mexico city diabetes study.Diabetes Care199619101138114110.2337/diacare.19.10.11388886564
    [Google Scholar]
  43. KawadaT. OtsukaT. InagakiH. WakayamaY. LiQ. LiY.J. KatsumataM. Insulin resistance, as expressed by HOMA-R, is strongly determined by waist circumference or body mass index among Japanese working men.Obes. Res. Clin. Pract.201041e9e1410.1016/j.orcp.2009.07.00124345621
    [Google Scholar]
  44. YbarraJ. Sanchez-HernandezJ. PouJ.M. FernándezS. GichI. Ordóñez-LlanosJ. JuradoJ. De LeivaA. PérezA. Anthropometrical measures are easily obtainable sensitive and specific predictors of insulin resistance in healthy individuals.Glob. Heart20051217518110.1016/j.precon.2005.05.001
    [Google Scholar]
  45. RuedaM. HerenciaJ.A. OrozcoJ. RodenasL.M. ValeroL. GarroteJ.A. MorenoP. AbrilJ. HernándezA.J. EscribanoF. Association of insulin resistance to different anthropometric measures and cardiovascular risk factors in a non-diabetic population.Endocrinol. Nutr.201158946447110.1016/j.endonu.2011.06.00321963533
    [Google Scholar]
  46. ZhangM. HuT. Associations of different adipose tissue depots with insulin resistance: A systematic review and meta-analysis of observational studies.Sci. Rep.2015511849510.1038/srep18495
    [Google Scholar]
  47. ŠtěpánekL. HorákováD. CibičkováĽ. VaverkováH. KarásekD. NakládalováM. ZapletalováJ. Can visceral adiposity index serve as a simple tool for identifying individuals with insulin resistance in daily clinical practice?Medicina201955954510.3390/medicina5509054531470593
    [Google Scholar]
  48. BarazzoniR. CappellariG. SemolicA. IusM. ZanettiM. GabrielliA. VinciP. GuarnieriG. SimonG. Central adiposity markers, plasma lipid profile and cardiometabolic risk prediction in overweight-obese individuals.Clin. Nutr.20193831171117910.1016/j.clnu.2018.04.01429779870
    [Google Scholar]
  49. StępieńM. StępieńA. WlazełR.N. ParadowskiM. RizzoM. BanachM. RyszJ. Predictors of insulin resistance in patients with obesity: A pilot study.Angiology2014651223010.1177/000331971246829123267236
    [Google Scholar]
  50. Jabłonowska-LietzB. WrzosekM. WłodarczykM. NowickaG. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese.Kardiol. Pol.201775111185119110.5603/KP.a2017.014928715064
    [Google Scholar]
  51. MatosL.N. GiorelliG.V. DiasC.B. Correlation of anthropometric indicators for identifying insulin sensitivity and resistance.Sao Paulo Med. J.20111291303510.1590/S1516‑3180201100010000621437506
    [Google Scholar]
  52. SungY.A. OhJ.Y. LeeH. Comparison of the body adiposity index to body mass index in Korean women.Yonsei Med. J.20145541028103510.3349/ymj.2014.55.4.102824954333
    [Google Scholar]
  53. KurniawanL.B. SyamsirB. RahmanI.A. AdnanE. EsaT. WidaningsihY. BahrunU. ArifM. Anthropometric features in predicting insulin resistance among non-menopausal Indonesian adult females.Rom. J. Intern. Med.202058316817210.2478/rjim‑2020‑001532549128
    [Google Scholar]
  54. NadeemA. NaveedA.K. HussainM.M. RazaS.I. Cut-off values of anthropometric indices to determine insulin resistance in Pakistani adults.J. Pak. Med. Assoc.201363101220122524392548
    [Google Scholar]
  55. PekgorS. DuranC. BerberogluU. EryilmazM.A. The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients.Metab. Syndr. Relat. Disord.201917529630210.1089/met.2019.000530932744
    [Google Scholar]
  56. BevanP. Insulin signalling.J. Cell Sci.200111481429143010.1242/jcs.114.8.142911282018
    [Google Scholar]
  57. WuH. BallantyneC.M. Metabolic inflammation and insulin resistance in obesity.Circ. Res.2020126111549156410.1161/CIRCRESAHA.119.31589632437299
    [Google Scholar]
  58. WondmkunY.T. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications.Diabetes Metab. Syndr. Obes.2020133611361610.2147/DMSO.S27589833116712
    [Google Scholar]
  59. TongY. XuS. HuangL. ChenC. Obesity and insulin resistance: Pathophysiology and treatment.Drug Discov. Today202227382283010.1016/j.drudis.2021.11.00134767960
    [Google Scholar]
  60. ParkH.S. ParkJ.Y. YuR. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6.Diabetes Res. Clin. Pract.2005692935
    [Google Scholar]
  61. El-WakkadA. HassanN.E. SibaiiH. El-ZayatS.R. Proinflammatory, anti-inflammatory cytokines and adiponkines in students with central obesity.Cytokine20136168268710.1016/j.cyto.2012.11.010
    [Google Scholar]
  62. StrawbridgeR.J. LaumenH. HamstenA. BreierM. GrallertH. HaunerH. ArnerP. DahlmanI. Effects of genetic loci associated with central obesity on adipocyte lipolysis.PLoS One2016114e015399010.1371/journal.pone.015399027104953
    [Google Scholar]
  63. PreisS.R. MassaroJ.M. RobinsS.J. HoffmannU. VasanR.S. IrlbeckT. MeigsJ.B. SutherlandP. D’AgostinoR.B.Sr O’DonnellC.J. FoxC.S. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study.Obesity201018112191219810.1038/oby.2010.5920339361
    [Google Scholar]
  64. LiuL. FengJ. ZhangG. YuanX. LiF. YangT. HaoS. HuangD. HsueC. LouQ. Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes.Curr. Med. Res. Opin.201834112312910.1080/03007995.2017.136422628776439
    [Google Scholar]
  65. de MutsertR. GastK. WidyaR. de KoningE. JazetI. LambH. le CessieS. de RoosA. SmitJ. RosendaalF. den HeijerM. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands Epidemiology of Obesity Study.Metab. Syndr. Relat. Disord.2018161546310.1089/met.2017.012829338526
    [Google Scholar]
  66. OkaR. YagiK. SakuraiM. NakamuraK. NagasawaS. MiyamotoS. NoharaA. KawashiriM. HayashiK. TakedaY. YamagishiM. Impact of visceral adipose tissue and subcutaneous adipose tissue on insulin resistance in middle-aged Japanese.J. Atheroscler. Thromb.201219981482210.5551/jat.1229422813532
    [Google Scholar]
  67. VegaG.L. Adams-HuetB. PeshockR. WillettD. ShahB. GrundyS.M. Influence of body fat content and distribution on variation in metabolic risk.J. Clin. Endocrinol. Metab.200691114459446610.1210/jc.2006‑081416926254
    [Google Scholar]
  68. LeeM.J. WuY. FriedS.K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications.Mol. Aspects Med.201334111110.1016/j.mam.2012.10.00123068073
    [Google Scholar]
  69. KarpeF. PinnickK.E. Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes.Nat. Rev. Endocrinol.20151129010010.1038/nrendo.2014.18525365922
    [Google Scholar]
  70. CarrollJ.F. ChiapaA.L. RodriquezM. PhelpsD.R. CardarelliK.M. VishwanathaJ.K. BaeS. CardarelliR. Visceral fat, waist circumference, and BMI: Impact of race/ethnicity.Obesity200816360060710.1038/oby.2007.9218239557
    [Google Scholar]
  71. GrundyS.M. NeelandI.J. TurerA.T. Waist circumference as measure of abdominal fat compartments.J. Obes.201345428510.1155/2013/454285
    [Google Scholar]
  72. CamhiS.M. BrayG.A. BouchardC. GreenwayF.L. JohnsonW.D. NewtonR.L. RavussinE. RyanD.H. SmithS.R. KatzmarzykP.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences.Obesity201119240240810.1038/oby.2010.24820948514
    [Google Scholar]
  73. KukJ.L. LeeS. HeymsfieldS.B. RossR. Waist circumference and abdominal adipose tissue distribution: Influence of age and sex.Am. J. Clin. Nutr.20058161330133410.1093/ajcn/81.6.133015941883
    [Google Scholar]
  74. EsmaillzadehA. MirmiranP. MoeiniS.H. AziziF. Larger hip circumference independently contributed to reduced metabolic risks in Tehranian adult women.Int. J. Cardiol.2006108333834510.1016/j.ijcard.2005.05.01915963581
    [Google Scholar]
  75. CichoszS.L. RasmussenN.H. VestergaardP. HejlesenO. Is predicted body-composition and relative fat mass an alternative to body-mass index and waist circumference for disease risk estimation?Diabetes Metab. Syndr.202216910259010.1016/j.dsx.2022.10259035986982
    [Google Scholar]
  76. KhanS. ShahidR. FazalN. IjazA. Comparison of various abdominal obesity measures for predicting metabolic syndrome, diabetes, nephropathy, and dyslipidemia.J. Coll. Physicians Surg. Pak.201929121159116410.29271/jcpsp.2019.12.115931839087
    [Google Scholar]
  77. EndukuruC.K. GaurG.S. DhanalakshmiY. SahooJ. VairappanB. Cut-off values and clinical efficacy of body roundness index and other novel anthropometric indices in identifying metabolic syndrome and its components among Southern-Indian adults.Diabetol. Int.202213118820010.1007/s13340‑021‑00522‑535059255
    [Google Scholar]
  78. GuptaS. KapoorS. Body adiposity index: Its relevance and validity in assessing body fatness of adults.ISRN Obes.201420141510.1155/2014/24329424587942
    [Google Scholar]
  79. ChiuT.H. HuangY.C. ChiuH. WuP.Y. ChiouH.Y.C. HuangJ.C. ChenS.C. Comparison of various obesity-related indices for identification of metabolic syndrome: A population-based study from taiwan biobank.Diagnostics20201012108110.3390/diagnostics1012108133322810
    [Google Scholar]
  80. MelmerA. LaminaC. TschonerA. RessC. KaserS. LaimerM. SandhoferA. PaulweberB. EbenbichlerC.F. Body adiposity index and other indexes of body composition in the SAPHIR study: Association with cardiovascular risk factors.Obesity201321477578110.1002/oby.2028923712981
    [Google Scholar]
  81. LokpoS.Y. AmetefeC.Y. Osei-YeboahJ. OwireduW.K.B.A. Ahenkorah-FondjoL. AgordohP.D. AcheampongE. DueduK.O. AdejumoE.N. AppiahM. AsiamahE.A. AtiviE. KwadzokpuiP.K. Performance of body adiposity index and relative fat mass in predicting bioelectric impedance analysis-derived body fat percentage: a cross-sectional study among patients with type 2 diabetes in the ho municipality, ghana.BioMed Res. Int.2023202311110.1155/2023/150090537101689
    [Google Scholar]
  82. KamińskaM.S. LubkowskaA. PanczykM. WalaszekI. GrochansS. GrochansE. CybulskaA.M. Relationships of body mass index, relative fat mass index, and waist circumference with serum concentrations of parameters of chronic inflammation.Nutrients20231512278910.3390/nu1512278937375693
    [Google Scholar]
  83. LópezA.A. CespedesM.L. VicenteT. TomasM. Bennasar-VenyM. TaulerP. AguiloA. Body adiposity index utilization in a Spanish Mediterranean population: Comparison with the body mass index.PLoS One201274e3528110.1371/journal.pone.003528122496915
    [Google Scholar]
  84. SuthaharN. MeemsL.M.G. WithaarC. GorterT.M. KienekerL.M. GansevoortR.T. BakkerS.J.L. van VeldhuisenD.J. de BoerR.A. Relative fat mass, a new index of adiposity, is strongly associated with incident heart failure: Data from PREVEND.Sci. Rep.202212114710.1038/s41598‑021‑02409‑634996898
    [Google Scholar]
  85. SeghetoW. CoelhoF.A. Cristina Guimarães da SilvaD. HallalP.C. MarinsJ.C.B. RibeiroA.Q. PessoaM.C. MoraisS.H.O. LongoG.Z. Validity of body adiposity index in predicting body fat in Brazilians adults.Am. J. Hum. Biol.2017291e2290110.1002/ajhb.2290127502080
    [Google Scholar]
  86. LamB.C.C. KohG.C.H. ChenC. WongM.T.K. FallowsS.J. Comparison of body mass index (BMI), body adiposity index (BAI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in singapore.PLoS One2015104e012298510.1371/journal.pone.012298525880905
    [Google Scholar]
  87. PaekJ.K. KimJ. KimK. LeeS.Y. Usefulness of relative fat mass in estimating body adiposity in Korean adult population.Endocr. J.201966872372910.1507/endocrj.EJ19‑006431142689
    [Google Scholar]
  88. YangF. WangG. WangZ. SunM. CaoM. ZhuZ. FuQ. MaoJ. ShiY. YangT. Visceral adiposity index may be a surrogate marker for the assessment of the effects of obesity on arterial stiffness.PLoS One201498e10436510.1371/journal.pone.010436525105797
    [Google Scholar]
  89. LichtashC.T. CuiJ. GuoX. ChenY.D.I. HsuehW.A. RotterJ.I. GoodarziM.O. Body adiposity index versus body mass index and other anthropometric traits as correlates of cardiometabolic risk factors.PLoS One201386e6595410.1371/journal.pone.006595423776578
    [Google Scholar]
  90. FedewaM.V. NickersonB.S. EscoM.R. The validity of relative fat mass and body adiposity index as measures of body composition in healthy adults.Meas. Phys. Educ. Exerc. Sci.202024213714610.1080/1091367X.2020.172068934017163
    [Google Scholar]
  91. WoolcottO.O. BergmanR.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014.Int. J. Obes.20204461301131010.1038/s41366‑019‑0516‑831911664
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303284893240215070923
Loading
/content/journals/emiddt/10.2174/0118715303284893240215070923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test