Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume-Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303283480240227113401
2024-03-11
2025-05-21
Loading full text...

Full text loading...

References

  1. RastmaneshR. KrishniaL. KashyapM.K. The influence of COVID-19 in endocrine research: Critical overview, methodological implications and a guideline for future designs.Clin. Med. Insights Endocrinol. Diabetes2023161179551423118907310.1177/1179551423118907337529301
    [Google Scholar]
  2. Domazet-LošoT. mRNA Vaccines: Why is the biology of retroposition ignored?Genes202213571910.3390/genes1305071935627104
    [Google Scholar]
  3. ZhangL. BishtP. FlamierA. BarrasaM.I. FriesenM. RichardsA. HughesS.H. JaenischR. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mrna-transfected cells.Viruses202315362910.3390/v1503062936992338
    [Google Scholar]
  4. Rubio-CasillasA. RedwanE.M. UverskyV.N. SARS-CoV-2: A master of immune evasion.Biomedicines2022106133910.3390/biomedicines1006133935740361
    [Google Scholar]
  5. Miličić StanićB. MaddoxS. de SouzaA.M.A. WuX. MehranfardD. JiH. SpethR.C. SandbergK. Male bias in ACE2 basic science research: Missed opportunity for discovery in the time of COVID-19.Am. J. Physiol. Regul. Integr. Comp. Physiol.20213206R925R93710.1152/ajpregu.00356.202033848207
    [Google Scholar]
  6. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  7. DevauxC.A. Camoin-JauL. Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction similar to SARS-CoV-2 infection.Viruses2023155104510.3390/v1505104537243131
    [Google Scholar]
  8. WangS. YaoX. MaS. PingY. FanY. SunS. HeZ. ShiY. SunL. XiaoS. SongM. CaiJ. LiJ. TangR. ZhaoL. WangC. WangQ. ZhaoL. HuH. LiuX. SunG. ChenL. PanG. ChenH. LiQ. ZhangP. XuY. FengH. ZhaoG.G. WenT. YangY. HuangX. LiW. LiuZ. WangH. WuH. HuB. RenY. ZhouQ. QuJ. ZhangW. LiuG.H. BianX.W. A single-cell transcriptomic landscape of the lungs of patients with COVID-19.Nat. Cell Biol.202123121314132810.1038/s41556‑021‑00796‑634876692
    [Google Scholar]
  9. WeiW. GilbertN. OoiS.L. LawlerJ.F. OstertagE.M. KazazianH.H. BoekeJ.D. MoranJ.V. Human L1 retrotransposition: Cis preference versus trans complementation.Mol. Cell. Biol.20012141429143910.1128/MCB.21.4.1429‑1439.200111158327
    [Google Scholar]
  10. DewannieuxM. EsnaultC. HeidmannT. LINE-mediated retrotransposition of marked Alu sequences.Nat. Genet.2003351414810.1038/ng122312897783
    [Google Scholar]
  11. Garcia-PerezJ.L. DoucetA.J. BuchetonA. MoranJ.V. GilbertN. Distinct mechanisms for trans -mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase.Genome Res.200717560261110.1101/gr.587010717416749
    [Google Scholar]
  12. KaessmannH. VinckenboschN. LongM. RNA-based gene duplication: Mechanistic and evolutionary insights.Nat. Rev. Genet.2009101193110.1038/nrg248719030023
    [Google Scholar]
  13. Salgado-AlbarránM. Navarro-DelgadoE.I. Del Moral-MoralesA. AlcarazN. BaumbachJ. González-BarriosR. Soto-ReyesE. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection.NPJ Syst. Biol. Appl.2021712110.1038/s41540‑021‑00181‑x34031419
    [Google Scholar]
  14. JonesR.B. SongH. XuY. GarrisonK.E. BuzdinA.A. AnwarN. HunterD.V. MujibS. MihajlovicV. MartinE. LeeE. KuciakM. RaposoR.A.S. BozorgzadA. MeiklejohnD.A. NdhlovuL.C. NixonD.F. OstrowskiM.A. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells.J. Virol.20138724133071332010.1128/JVI.02257‑1324089548
    [Google Scholar]
  15. SudhindarP.D. WainwrightD. SahaS. HowarthR. McCainM. BuryY. SahaS.S. McPhersonS. ReevesH. PatelA.H. FaulknerG.J. LunecJ. ShuklaR. HCV activates somatic l1 retrotransposition—a potential hepatocarcinogenesis pathway.Cancers20211320507910.3390/cancers1320507934680227
    [Google Scholar]
  16. SchöbelA. Nguyen-DinhV. SchumannG.G. HerkerE. Hepatitis C virus infection restricts human LINE-1 retrotransposition in hepatoma cells.PLoS Pathog.2021174e100949610.1371/journal.ppat.100949633872335
    [Google Scholar]
  17. BonenfantG. MengR. ShotwellC. BaduP. PayneA.F. CiotaA.T. SammonsM.A. BerglundJ.A. PagerC.T. Asian zika virus isolate significantly changes the transcriptional profile and alternative RNA splicing events in a neuroblastoma cell line.Viruses202012551010.3390/v1205051032380717
    [Google Scholar]
  18. BellaviteP. FerraresiA. IsidoroC. Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines.Biomedicines202311245110.3390/biomedicines1102045136830987
    [Google Scholar]
  19. CarelliF.N. HayakawaT. GoY. ImaiH. WarneforsM. KaessmannH. The life history of retrocopies illuminates the evolution of new mammalian genes.Genome Res.201626330131410.1101/gr.198473.11526728716
    [Google Scholar]
  20. HorieM. HondaT. SuzukiY. KobayashiY. DaitoT. OshidaT. IkutaK. JernP. GojoboriT. CoffinJ.M. TomonagaK. Endogenous non-retroviral RNA virus elements in mammalian genomes.Nature20104637277848710.1038/nature0869520054395
    [Google Scholar]
  21. ParrishN.F. FujinoK. ShiromotoY. IwasakiY.W. HaH. XingJ. MakinoA. Kuramochi-MiyagawaS. NakanoT. SiomiH. HondaT. TomonagaK. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals.RNA201521101691170310.1261/rna.052092.11526283688
    [Google Scholar]
  22. SonJ.H. DoH. HanJ. Intragenic L1 insertion: One possibility of brain disorder.Life2022129142510.3390/life1209142536143463
    [Google Scholar]
  23. GundryS.F. mRNA COVID vaccines dramatically increase endothelial inflammatory markers and ACS risk as measured by puls cardiac test: A warning.Circulation2021144A10712
    [Google Scholar]
  24. AngeliF. SpanevelloA. ReboldiG. ViscaD. VerdecchiaP. SARS-CoV-2 vaccines: Lights and shadows.Eur. J. Intern. Med.2021881810.1016/j.ejim.2021.04.01933966930
    [Google Scholar]
  25. SymerD.E. ConnellyC. SzakS.T. CaputoE.M. CostG.J. ParmigianiG. BoekeJ.D. Human l1 retrotransposition is associated with genetic instability in vivo.Cell2002110332733810.1016/S0092‑8674(02)00839‑512176320
    [Google Scholar]
  26. BeckC.R. Garcia-PerezJ.L. BadgeR.M. MoranJ.V. LINE-1 elements in structural variation and disease.Annu. Rev. Genomics Hum. Genet.201112118721510.1146/annurev‑genom‑082509‑14180221801021
    [Google Scholar]
  27. ChenJ.M. FérecC. CooperD.N. LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: Mutation detection bias and multiple mechanisms of target gene disruption.J. Biomed. Biotechnol.2006200611910.1155/JBB/2006/5618216877817
    [Google Scholar]
  28. BurnsK.H. Our conflict with transposable elements and its implications for human disease.Annu. Rev. Pathol.2020151517010.1146/annurev‑pathmechdis‑012419‑03263331977294
    [Google Scholar]
  29. DenliA.M. NarvaizaI. KermanB.E. PenaM. BennerC. MarchettoM.C.N. DiedrichJ.K. AslanianA. MaJ. MorescoJ.J. MooreL. HunterT. SaghatelianA. GageF.H. Primate-specific ORF0 contributes to retrotransposon-mediated diversity.Cell2015163358359310.1016/j.cell.2015.09.02526496605
    [Google Scholar]
  30. ChesnokovaE. BeletskiyA. KolosovP. The role of transposable elements of the human genome in neuronal function and pathology.Int. J. Mol. Sci.20222310584710.3390/ijms2310584735628657
    [Google Scholar]
  31. EsnaultC. MaestreJ. HeidmannT. Human LINE retrotransposons generate processed pseudogenes.Nat. Genet.200024436336710.1038/7418410742098
    [Google Scholar]
  32. SultanaT. van EssenD. SiolO. Bailly-BechetM. PhilippeC. Zine El AabidineA. PiogerL. NigumannP. SaccaniS. AndrauJ.C. GilbertN. CristofariG. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection.Mol. Cell2019743555570.e710.1016/j.molcel.2019.02.03630956044
    [Google Scholar]
  33. ErwinJ.A. PaquolaA.C.M. SingerT. GallinaI. NovotnyM. QuayleC. BedrosianT.A. AlvesF.I.A. ButcherC.R. HerdyJ.R. SarkarA. LaskenR.S. MuotriA.R. GageF.H. L1-associated genomic regions are deleted in somatic cells of the healthy human brain.Nat. Neurosci.201619121583159110.1038/nn.438827618310
    [Google Scholar]
  34. ZhangL. RichardsA. BarrasaM.I. HughesS.H. YoungR.A. JaenischR. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues.Proc. Natl. Acad. Sci. USA202111821e210596811810.1073/pnas.210596811833958444
    [Google Scholar]
  35. HessienM. DoniaT. TabllA.A. AdlyE. AbdelhafezT.H. AttiaA. AlkafaasS.S. KunaL. GlasnovicM. CosicV. SmolicR. SmolicM. Mechanistic-based classification of endocytosis-related inhibitors: Does it aid in assigning drugs against SARS-CoV-2?Viruses2023155104010.3390/v1505104037243127
    [Google Scholar]
  36. WangJ. HuangJ. ShiG. Retrotransposons in pluripotent stem cells.Cell Regen.202091410.1186/s13619‑020‑00046‑432588192
    [Google Scholar]
  37. PatlarB. On the role of seminal fluid protein and nucleic acid content in paternal epigenetic inheritance.Int. J. Mol. Sci.202223231453310.3390/ijms23231453336498858
    [Google Scholar]
  38. PoianiA. Complexity of seminal fluid: A review.Behav. Ecol. Sociobiol.200660328931010.1007/s00265‑006‑0178‑0
    [Google Scholar]
  39. Rodríguez-MartínezH. KvistU. ErnerudhJ. SanzL. CalveteJ.J. Seminal plasma proteins: What role do they play?Am. J. Reprod. Immunol.201166s1Suppl. 1112210.1111/j.1600‑0897.2011.01033.x21726334
    [Google Scholar]
  40. LupatovA.Y. YaryginK.N. Telomeres and telomerase in the control of stem cells.Biomedicines20221010233510.3390/biomedicines1010233536289597
    [Google Scholar]
  41. AhmedS. PassosJ.F. BirketM.J. BeckmannT. BringsS. PetersH. Birch-MachinM.A. von ZglinickiT. SaretzkiG. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress.J. Cell Sci.200812171046105310.1242/jcs.01937218334557
    [Google Scholar]
  42. KaulZ. CesareA.J. HuschtschaL.I. NeumannA.A. ReddelR.R. Five dysfunctional telomeres predict onset of senescence in human cells.EMBO Rep.2012131525910.1038/embor.2011.22722157895
    [Google Scholar]
  43. LeemS.H. Londoño-VallejoJ.A. KimJ.H. BuiH. TubacherE. SolomonG. ParkJ.E. HorikawaI. KouprinaN. BarrettJ.C. LarionovV. The human telomerase gene: Complete genomic sequence and analysis of tandem repeat polymorphisms in intronic regions.Oncogene200221576977710.1038/sj.onc.120512211850805
    [Google Scholar]
  44. CasacubertaE. Drosophila: Retrotransposons making up telomeres.Viruses20179719210.3390/v907019228753967
    [Google Scholar]
  45. DanilevskayaO.N. ArkhipovaI.R. PardueM.L. TraverseK.L. Promoting in tandem: The promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs.Cell199788564765510.1016/S0092‑8674(00)81907‑89054504
    [Google Scholar]
  46. JennerL.P. PeskaV. FulnečkováJ. SýkorováE. Telomeres and their neighbors.Genes2022139166310.3390/genes1309166336140830
    [Google Scholar]
  47. Vaquero-SedasM.I. Vega-PalasM.A. Assessing the epigenetic status of human telomeres.Cells201989105010.3390/cells809105031500249
    [Google Scholar]
  48. CubilesM.D. BarrosoS. Vaquero-SedasM.I. EnguixA. AguileraA. Vega-PalasM.A. Epigenetic features of human telomeres.Nucleic Acids Res.20184652347235510.1093/nar/gky00629361030
    [Google Scholar]
  49. Gámez-ArjonaF.M. López-LópezC. Vaquero-SedasM.I. Vega-PalasM.A. On the organization of the nucleosomes associated with telomeric sequences.Biochim. Biophys. Acta Mol. Cell Res.2010180391058106110.1016/j.bbamcr.2010.03.02120381544
    [Google Scholar]
  50. Vaquero-SedasM.I. Vega-PalasM.A. On the chromatin structure of eukaryotic telomeres.Epigenetics2011691055105810.4161/epi.6.9.1684521822057
    [Google Scholar]
  51. HughesSH Reverse transcription of retroviruses and LTR retrotransposons.Microbiol. Spectr.201532MDNA3-0027-201410.1128/9781555819217.ch46
    [Google Scholar]
  52. KaerK. SpeekM. Retroelements in human disease.Gene2013518223124110.1016/j.gene.2013.01.008
    [Google Scholar]
  53. Żyżyńska-GaleńskaK. BernatA. PiliszekA. KarasiewiczJ. SzablistyE. SacharczukM. Brewińska-OlchowikM. BochenekM. GrabarekJ. ModlińskiJ.A. Embryonic environmental niche reprograms somatic cells to express pluripotency markers and participate in adult chimaeras.Cells202110349010.3390/cells1003049033668852
    [Google Scholar]
  54. PetkovS. DresselR. Rodriguez-PoloI. BehrR. Controlling the switch from neurogenesis to pluripotency during marmoset monkey somatic cell reprogramming with self-replicating mrnas and small molecules.Cells2020911242210.3390/cells911242233167468
    [Google Scholar]
  55. Ciomborowska-BasheerJ. StaszakK. KubiakM.R. MakałowskaI. Not so dead genes—retrocopies as regulators of their disease-related progenitors and hosts.Cells202110491210.3390/cells1004091233921034
    [Google Scholar]
  56. StaszakK. MakałowskaI. Cancer, retrogenes, and evolution.Life20211117210.3390/life1101007233478113
    [Google Scholar]
  57. AoyamaK. ItokawaN. OshimaM. IwamaA. Epigenetic memories in hematopoietic stem and progenitor cells.Cells20221114218710.3390/cells1114218735883630
    [Google Scholar]
  58. DemongeotJ. FougèreC. mRNA COVID-19 vaccines—facts and hypotheses on fragmentation and encapsulation.Vaccines20221114010.3390/vaccines1101004036679885
    [Google Scholar]
  59. AldénM. Olofsson FallaF. YangD. BarghouthM. LuanC. RasmussenM. De MarinisY. Intracellular reverse transcription of pfizer biontech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line.Curr. Issues Mol. Biol.20224431115112610.3390/cimb4403007335723296
    [Google Scholar]
  60. GiannottaG. MurroneA. GiannottaN. COVID-19 mRNA vaccines: The molecular basis of some adverse events.Vaccines202311474710.3390/vaccines1104074737112659
    [Google Scholar]
  61. VermaA.K. LavineK.J. LinC.Y. Myocarditis after COVID-19 mRNA vaccination.N. Engl. J. Med.2021385141332133410.1056/NEJMc210997534407340
    [Google Scholar]
  62. LimY. KimM.C. KimK.H. JeongI.S. ChoY.S. ChoiY.D. LeeJ.E. Case report: Acute fulminant myocarditis and cardiogenic shock after messenger rna coronavirus disease 2019 vaccination requiring extracorporeal cardiopulmonary resuscitation.Front. Cardiovasc. Med.2021875899610.3389/fcvm.2021.75899634778411
    [Google Scholar]
  63. McBroomK. A comparison of zika virus and COVID‐19: Clinical overview and public health messaging.J. Midwifery Womens Health202166333434210.1111/jmwh.1323034096682
    [Google Scholar]
  64. BalzanelliM. DistratisP. LazzaroR. PhamV. TranT. DipalmaG. BiancoA. SerlengaE. AityanS. PierangeliV. NguyenK. InchingoloF. TomassoneD. IsaccoC. Analysis of gene single nucleotide polymorphisms in COVID-19 disease highlighting the susceptibility and the severity towards the infection.Diagnostics20221211282410.3390/diagnostics1211282436428884
    [Google Scholar]
  65. BalzanelliM.G. DistratisP. LazzaroR. D’EttorreE. NicoA. InchingoloF. DipalmaG. TomassoneD. SerlengaE.M. DalagniG. BalliniA. NguyenK.C.D. IsaccoC.G. New translational trends in personalized medicine: Autologous peripheral blood stem cells and plasma for COVID-19 patient.J. Pers. Med.20221218510.3390/jpm1201008535055400
    [Google Scholar]
  66. Sinibaldi-VallebonaP. MatteucciC. SpadaforaC. Retrotransposon-encoded reverse transcriptase in the genesis, progression and cellular plasticity of human cancer.Cancers2011311141115710.3390/cancers301114124212657
    [Google Scholar]
  67. LaviaP. SciamannaI. SpadaforaC. An epigenetic line-1-based mechanism in cancer.Int. J. Mol. Sci.202223231461010.3390/ijms23231461036498938
    [Google Scholar]
  68. Maupetit-MehouasS. VauryC. Transposon reactivation in the germline may be useful for both transposons and their host genomes.Cells202095117210.3390/cells905117232397241
    [Google Scholar]
  69. KravchukE.V. AshnievG.A. GladkovaM.G. OrlovA.V. VasilevaA.V. BoldyrevaA.V. BureninA.G. SkirdaA.M. NikitinP.I. OrlovaN.N. Experimental validation and prediction of super-enhancers: Advances and challenges.Cells2023128119110.3390/cells1208119137190100
    [Google Scholar]
  70. SeymourT. TwiggerA.J. KakulasF. Pluripotency genes and their functions in the normal and aberrant breast and brain.Int. J. Mol. Sci.20151611272882730110.3390/ijms16112602426580604
    [Google Scholar]
  71. BalzanelliM.G. DistratisP. CatucciO. CefaloA. LazzaroR. InchingoloF. TomassoneD. AityanS.K. BalliniA. NguyenK.C.D. Gargiulo IsaccoC. Mesenchymal stem cells: The secret children’s weapons against the SARS-CoV-2 lethal infection.Appl. Sci.2021114169610.3390/app11041696
    [Google Scholar]
  72. NärväE. RahkonenN. EmaniM.R. LundR. PursiheimoJ.P. NästiJ. AutioR. RasoolO. DenessioukK. LähdesmäkiH. RaoA. LahesmaaR. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation.Stem Cells201230345246010.1002/stem.101322162396
    [Google Scholar]
  73. de Araujo DornelesM.L. Cardoso-LimaR. SouzaP.F.N. Santoro RosaD. MagneT.M. Santos-OliveiraR. AlencarL.M.R. Zika virus (ZIKV): A new perspective on the nanomechanical and structural properties.Viruses2022148172710.3390/v1408172736016349
    [Google Scholar]
  74. Barba-SpaethG. DejnirattisaiW. RouvinskiA. VaneyM.C. MeditsI. SharmaA. Simon-LorièreE. SakuntabhaiA. Cao-LormeauV.M. HaouzA. EnglandP. StiasnyK. MongkolsapayaJ. HeinzF.X. ScreatonG.R. ReyF.A. Structural basis of potent Zika–dengue virus antibody cross-neutralization.Nature20165367614485310.1038/nature1893827338953
    [Google Scholar]
  75. FigueiredoC.P. Barros-AragãoF.G.Q. NerisR.L.S. FrostP.S. SoaresC. SouzaI.N.O. ZeidlerJ.D. ZamberlanD.C. de SousaV.L. SouzaA.S. GuimarãesA.L.A. BellioM. Marcondes de SouzaJ. Alves-LeonS.V. NevesG.A. Paula-NetoH.A. CastroN.G. De FeliceF.G. Assunção-MirandaI. ClarkeJ.R. Da PoianA.T. FerreiraS.T. Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice.Nat. Commun.2019101389010.1038/s41467‑019‑11866‑731488835
    [Google Scholar]
  76. AzevedoR.S.S. de SousaJ.R. AraujoM.T.F. Martins FilhoA.J. de AlcantaraB.N. AraujoF.M.C. QueirozM.G.L. CruzA.C.R. VasconcelosB.H.B. ChiangJ.O. MartinsL.C. CassebL.M.N. da SilvaE.V. CarvalhoV.L. VasconcelosB.C.B. RodriguesS.G. OliveiraC.S. QuaresmaJ.A.S. VasconcelosP.F.C. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus.Sci. Rep.201881110.1038/s41598‑017‑17765‑529311619
    [Google Scholar]
  77. RothH. SchneiderL. EberleR. LausenJ. ModlichU. BlümelJ. BaylisS.A. Zika virus infection studies with CD34+ hematopoietic and megakaryocyte‐erythroid progenitors, red blood cells and platelets.Transfusion202060356157410.1111/trf.1569232086956
    [Google Scholar]
  78. BalzanelliM.G. DistratisP. DipalmaG. VimercatiL. InchingoloA.D. LazzaroR. AityanS.K. MaggioreM.E. ManciniA. LaforgiaR. PezzollaA. TomassoneD. PhamV.H. IacoboneD. CastrignanoA. ScaranoA. LorussoF. TafuriS. MiglioreG. InchingoloA.M. NguyenK.C.D. ToaiT.C. InchingoloF. IsaccoC.G. Sars-CoV-2 virus infection may interfere CD34+ hematopoietic stem cells and megakaryocyte–erythroid progenitors differentiation contributing to platelet defection towards insurgence of thrombocytopenia and thrombophilia.Microorganisms202198163210.3390/microorganisms908163234442710
    [Google Scholar]
  79. HeazlewoodS.Y. AhmadT. CaoB. CaoH. DominguesM. SunX. HeazlewoodC.K. LiS. WilliamsB. FultonM. WhiteJ.F. NeblT. NefzgerC.M. PoloJ.M. KileB.T. KrausF. RyanM.T. SunY.B. ChoongP.F.M. EllisS.L. AnkoM.L. NilssonS.K. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production.Nat. Commun.2023141209910.1038/s41467‑023‑37780‑737055407
    [Google Scholar]
  80. RossiF. JoseyB. SayitogluE.C. PotensR. SultuT. DuruA.D. BeljanskiV. Characterization of zika virus infection of human fetal cardiac mesenchymal stromal cells.PLoS One2020159e023923810.1371/journal.pone.023923832941515
    [Google Scholar]
  81. StrangeD.P. JiyaromB. Pourhabibi ZarandiN. XieX. BakerC. Sadri-ArdekaniH. ShiP.Y. VermaS. Axl promotes Zika virus entry and modulates the antiviral status of human Sertoli cells.MBio2019104e01372e1910.1128/mBio.01372‑1931311882
    [Google Scholar]
  82. HastingsAK HastingsK UrakiR HwangJ Loss of the TAM Axl receptor enhances the pathogenesis of severe Zika virus and reduces apoptosis in microglia.iScienza20191333935010.1016/j.isci.2019.03.003
    [Google Scholar]
  83. WangS. QiuZ. HouY. DengX. XuW. ZhengT. WuP. XieS. BianW. ZhangC. SunZ. LiuK. ShanC. LinA. JiangS. XieY. ZhouQ. LuL. HuangJ. LiX. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells.Cell Res.202131212614010.1038/s41422‑020‑00460‑y33420426
    [Google Scholar]
  84. ShastriA. Al AiyanA. KishoreU. FarrugiaM.E. Immune-mediated neuropathies: Pathophysiology and management.Int. J. Mol. Sci.2023248728810.3390/ijms2408728837108447
    [Google Scholar]
  85. CloughE. InigoJ. ChandraD. ChavesL. ReynoldsJ.L. AalinkeelR. SchwartzS.A. KhmaladzeA. MahajanS.D. Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: Implications for neuro-covid.J. Neuroimmune Pharmacol.202116477078410.1007/s11481‑021‑10015‑634599743
    [Google Scholar]
  86. BalzanelliM.G. DistratisP. LazzaroR. PhamV.H. Del PreteR. DipalmaG. InchingoloF. AityanS.K. HoangL. NguyenK.C.D. GargiuloC. IsaccoC. The importance of arterial blood gas analysis as a systemic diagnosis approach in assessing and preventing chronic diseases, from emergency medicine to the daily practice.Eur. Rev. Med. Pharmacol. Sci.20232723116531166310.20944/preprints202304.1068.v138095412
    [Google Scholar]
  87. TulbăD. PopescuB.O. ManoleE. BăicușC. Immune axonal neuropathies associated with systemic autoimmune rheumatic diseases.Front. Pharmacol.20211261058510.3389/fphar.2021.61058533935704
    [Google Scholar]
  88. MartyniakA. TomasikP.J. A new perspective on the renin-angiotensin system.Diagnostics20221311610.3390/diagnostics1301001636611307
    [Google Scholar]
  89. ChenL. LiX. ChenM. FengY. XiongC. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2.Cardiovasc. Res.202011661097110010.1093/cvr/cvaa07832227090
    [Google Scholar]
  90. DolhnikoffM. Ferreira FerrantiJ. de Almeida MonteiroR.A. Duarte-NetoA.N. Soares Gomes-GouvêaM. Viu DegaspareN. Figueiredo DelgadoA. Montanari FioritaC. Nunes LealG. RodriguesR.M. Taverna ChaimK. Rebello PinhoJ.R. Carneiro-SampaioM. MauadT. Ferraz da SilvaL.F. Brunow de CarvalhoW. SaldivaP.H.N. Garcia CaldiniE. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome.Lancet Child Adolesc. Health202041079079410.1016/S2352‑4642(20)30257‑132828177
    [Google Scholar]
  91. MarchianoS. HsiangT.Y. KhannaA. HigashiT. WhitmoreL.S. BargehrJ. DavaapilH. ChangJ. SmithE. OngL.P. ColzaniM. ReineckeH. YangX. PabonL. SinhaS. NajafianB. SniadeckiN.J. BerteroA. GaleM.Jr MurryC.E. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function.Stem Cell Reports202116347849210.1016/j.stemcr.2021.02.00833657418
    [Google Scholar]
  92. JuraM. GarusM. KrakowskaK. UrbanS. BłaziakM. IwanekG. ZymlińskiR. BiegusJ. PalecznyB. A methodological perspective on the function and assessment of peripheral chemoreceptors in heart failure: A review of data from clinical trials.Biomolecules20221212175810.3390/biom1212175836551186
    [Google Scholar]
  93. GrassiG. SeravalleG. CattaneoB.M. LanfranchiA. VailatiS. GiannattasioC. Del BoA. SalaC. BollaG.B. PozziM. ManciaG. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure.Circulation199592113206321110.1161/01.CIR.92.11.32067586305
    [Google Scholar]
  94. DalyM.B. ScottM.J. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog.J. Physiol.1962162355557310.1113/jphysiol.1962.sp00695013884147
    [Google Scholar]
  95. DalyM.B. ScottM.J. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog.J. Physiol.1963165117919710.1113/jphysiol.1963.sp00705114024792
    [Google Scholar]
  96. LenkaN. KrishnanS. BoardP. RangasamyD. Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation.Stem Cell Rev.201410340841610.1007/s12015‑014‑9500‑924610122
    [Google Scholar]
  97. EspositoM. GualandiN. SpiritoG. AnsaloniF. GustincichS. SangesR. Transposons acting as competitive endogenous rnas: in-silico evidence from datasets characterised by L1 overexpression.Biomedicines20221012327910.3390/biomedicines1012327936552034
    [Google Scholar]
  98. BlackburnE.H. Telomerases.Annu. Rev. Biochem.199261111312910.1146/annurev.bi.61.070192.0005531497307
    [Google Scholar]
  99. BalzanelliM. DistratisP. Lazzaro, Rita; Pham, PH The anti-viral activity of stem cells: A rational explanation for their use in clinical application.Endocr. Metab. Immune Disord. Drug Targets2023236739747
    [Google Scholar]
  100. BlackburnE.H. CollinsK. Telomerase: an RNP enzyme synthesizes DNA.Cold Spring Harb. Perspect. Biol.201135a00355810.1101/cshperspect.a00355820660025
    [Google Scholar]
  101. GargiuloC. PhamV.H. Nguyen CaoD.K. Vo LhT. Autologous peripheral blood stem cells increase the telomere length in patient: A case report of 13 patients.J. Stem Cell Res. Ther.2016681610.4172/2157‑7633.1000352
    [Google Scholar]
  102. AbdelMassihA. AghaH. El-SaiediS. El-SisiA. El ShershabyM. GaberH. IsmailH.A. El-HusseinyN. AminA.R. ElBoraieA. AyadA. MenshaweyE. SefeinF. OsmanI.I. MoursiM. HanafyM. AbdelazizM.S. ArsanyousM.B. Khaled-Ibn-El-WalidM. TawfikM.G. HabibM. MansourM.E. AshrafM. KhattabM.A. AlshehryN. HafezN. ElDeebN.E. AshrafN. KhalilN. AbdElSalam, N.I.; Shebl, N.; Hafez, N.G.A.; Youssef, N.H.; Bahnan, O.; Ismail, P.; Kelada, P.; Menshawey, R.; Saeed, R.; Husseiny, R.J.; Yasser, R.; Sharaf, S.; Adel, V.; Naeem, Y.; Nicola, Y.N.F.; Kamel, A.; Hozaien, R.; Fouda, R. The role of miRNAs in viral myocarditis, and its possible implication in induction of mRNA-based COVID-19 vaccines-induced myocarditis.Bull. Natl. Res. Cent.202246126710.1186/s42269‑022‑00955‑136415483
    [Google Scholar]
  103. SiuR.W.C. FragkoudisR. SimmondsP. DonaldC.L. Chase-ToppingM.E. BarryG. Attarzadeh-YazdiG. Rodriguez-AndresJ. NashA.A. MeritsA. FazakerleyJ.K. KohlA. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: Characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs.J. Virol.20118562907291710.1128/JVI.02052‑1021191029
    [Google Scholar]
  104. MishraR. KumarA. IngleH. KumarH. The interplay between viral-derived miRNAs and host immunity during infection.Front. Immunol.202010307910.3389/fimmu.2019.0307932038626
    [Google Scholar]
  105. QiuY. XuY. ZhangY. ZhouH. DengY.Q. LiX.F. MiaoM. ZhangQ. ZhongB. HuY. ZhangF.C. WuL. QinC.F. ZhouX. Human virus-derived small RNAs can confer antiviral immunity in mammals.Immunity20174669921004.e510.1016/j.immuni.2017.05.00628636969
    [Google Scholar]
  106. HenzingerH. BarthD. KlecC. PichlerM. Non-coding RNAs and SARS-related coronaviruses.Viruses20201212137410.3390/v1212137433271762
    [Google Scholar]
  107. ZambonR.A. VakhariaV.N. WuL.P. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster.Cell. Microbiol.20068588088910.1111/j.1462‑5822.2006.00688.x16611236
    [Google Scholar]
  108. DingS.W. VoinnetO. Antiviral immunity directed by small RNAs.Cell2007130341342610.1016/j.cell.2007.07.03917693253
    [Google Scholar]
  109. GhildiyalM. SeitzH. HorwichM.D. LiC. DuT. LeeS. XuJ. KittlerE.L.W. ZappM.L. WengZ. ZamoreP.D. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells.Science200832058791077108110.1126/science.115739618403677
    [Google Scholar]
  110. ShiuP.K.T. IlievaM. HolmA. UchidaS. DiStefanoJ.K. BroniszA. YangL. AsahiY. GoelA. YangL. NuthanakantiA. SerganovA. AlahariS.K. LinC. PardiniB. NaccaratiA. JinJ. ArmaniosB. ZhongX. SiderisN. BayraktarS. CastellanoL. GerberA.P. LinH. ConnS.J. SleemD.M.M. TimmonsL. The non-coding RNA journal club: Highlights on recent papers-12.Noncoding RNA2023922810.3390/ncrna902002837104010
    [Google Scholar]
  111. HajjariM. SalavatyA. HOTAIR: An oncogenic long non-coding RNA in different cancers.Cancer Biol. Med.20151211910.7497/j.issn.2095‑3941.2015.000625859406
    [Google Scholar]
  112. BhatA. GhatageT. BhanS. LahaneG.P. DharA. KumarR. PanditaR.K. BhatK.M. RamosK.S. PanditaT.K. Role of transposable elements in genome stability: Implications for health and disease.Int. J. Mol. Sci.20222314780210.3390/ijms2314780235887150
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303283480240227113401
Loading
/content/journals/emiddt/10.2174/0118715303283480240227113401
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; L1; mRNA; ncRNA; pluripotent multipotent stem cells; retrotransposons; RNAi; SARS-CoV-2; ZIKV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test