-
s Differential Gene Expression and Immune Cell Infiltration in Patients with Steroid-induced Necrosis of the Femoral Head
- Source: Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders), Volume 24, Issue 12, Sep 2024, p. 1377 - 1394
-
- 01 Sep 2024
Abstract
Objective: The study aimed to study the differential gene expression and immune cell infiltration in patients with steroid-induced necrosis of the femoral head (SANFH), identify the key genes and immune cells of SANFH, and explore the relationship between immune cells and SANFH. Methods: The high-throughput gene chip dataset GSE123568 was downloaded from the GEO database, and the differential gene expression was analyzed with the R language. The STRING database and Cytoscape software were used to analyze the protein interaction network and screen key genes, and enrichment analysis was carried out on key genes. The infiltration of immune cells in SANFH patients was analyzed and verified by immunohistochemistry. Results: EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 are key genes in the pathogenesis of SANFH, which mainly involve myeloid cell differentiation, cytokine-mediated signaling pathway, tumor necrosis factor-mediated signaling pathway, and cellular response to tumor necrosis factor through JAK-STAT, NOD-like receptor, toll-like receptor, and other signaling pathways, leading to the occurrence of diseases; immune infiltration and immunohistochemical results have shown the expression of memory B cells and activated dendritic cells as reduced in SANFH patients, while in the same SANFH samples, M1 macrophages have been positively correlated with monocytes, and neutrophils have been negatively correlated with monocytes expression. Conclusion: EP300, TRAF6, STAT1, JAK1, CASP8, and JAK2 have exhibited significant differences in SANFH (spontaneous osteonecrosis of the femoral head). Memory B cells, activated dendritic cells, M1 macrophages, monocytes, and neutrophils have shown abnormal expression in SANFH.