Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background: This study aimed to assess the diagnostic capability of insulin surrogate measurements in identifying individuals with metabolic syndrome (MetS) and propose applicable indices derived from fasting values, particularly in large study populations. Methods: Data were collected from the datasets of the Surveillance of Risk Factors of NCDs in Iran Study (STEPS). MetS was defined based on the National Cholesterol Education Program (NCEP) criteria. Various insulin surrogate indices, including Homeostasis Model Assessment (HOMA), Quantitative Insulin Sensitivity Check Index (QUICKI), Fasting glucose to insulin ratio (FGIR), Reynaud, Reciprocal insulin, McAuley, Metabolic Score for Insulin Resistance (METS-IR), Triglyceride-glucose index (TyG), TG/ HDL-C, TG/ BMI, and TG/ WC ratio were assessed. Receiver Operating Characteristic (ROC) curves were used to assess pathologic conditions and determine the optimal cut-off through the highest score of the Youden index. Also, Area Under the Curve (AUC) values were established for each index totally and according to sex, age, and BMI differences. Results: The study population consisted of 373 individuals (49.9% women; 75.1% middle age, 39.1% obese, and 27.3% overweight), of whom 117 (31.4%) had MetS. The METS-IR (AUC: 0.856; 95% CI: 0.817-0.895), TG/ HDL-C (AUC: 0.820; 95% CI: 0.775-0.886), TyG (AUC: 0.808; 95% CI: 0.759-0.857), and McAuley (AUC: 0.804; 95% CI: 0.757-0.852) indices provided the greatest AUC respectively for detection of MetS. The values of AUC for all the indices were higher in men than women. This trend was consistent after data stratification based on BMI categories, middle age, and senile individuals. Conclusion: The present study indicated that indices of insulin, including METS-IR, TG/HDLC, TyG, and McAuley, have an equal or better capacity in determining the risk of MetS than HOMA-IR, are capable of identifying individuals with MetS and may provide a simple approach for identifying populations at risk of insulin resistance.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303264620231106105345
2024-08-01
2024-12-29
Loading full text...

Full text loading...

/content/journals/emiddt/10.2174/0118715303264620231106105345
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test