Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303261069231124092259
2024-01-15
2025-01-18
Loading full text...

Full text loading...

References

  1. ShivelyC.A. ApptS.E. VitolinsM.Z. UbersederB. MichalsonK.T. Silverstein-MetzlerM.G. RegisterT.C. Mediterranean versus western diet effects on caloric intake, obesity, metabolism, and hepatosteatosis in nonhuman primates.Obesity201927577778410.1002/oby.22436 31012294
    [Google Scholar]
  2. RizzelloF. SpisniE. GiovanardiE. ImbesiV. SaliceM. AlvisiP. ValeriiM.C. GionchettiP. Implications of the westernized diet in the onset and progression of IBD.Nutrients2019115103310.3390/nu11051033 31072001
    [Google Scholar]
  3. NagaoM. AsaiA. SugiharaH. OikawaS. Fat intake and the development of type 2 diabetes [Review].Endocr. J.201562756157210.1507/endocrj.EJ15‑0055 25924665
    [Google Scholar]
  4. NestelP.J. MoriT.A. Dietary patterns, dietary nutrients and cardiovascular disease.Rev. Cardiovasc. Med.2022231110.31083/j.rcm2301017 35092209
    [Google Scholar]
  5. MylesI.A. Fast food fever: Reviewing the impacts of the western diet on immunity.Nutr. J.20141316110.1186/1475‑2891‑13‑61 24939238
    [Google Scholar]
  6. DominguezL.J. Di BellaG. VeroneseN. BarbagalloM. Impact of mediterranean diet on chronic non-communicable diseases and longevity.Nutrients2021136202810.3390/nu13062028 34204683
    [Google Scholar]
  7. AbeS. ZhangS. TomataY. TsudukiT. SugawaraY. TsujiI. Japanese diet and survival time: The ohsaki cohort 1994 study.Clin. Nutr.202039129830310.1016/j.clnu.2019.02.010 30846323
    [Google Scholar]
  8. TrichopoulouA. CostacouT. BamiaC. TrichopoulosD. Adherence to a Mediterranean diet and survival in a Greek population.N. Engl. J. Med.2003348262599260810.1056/NEJMoa025039 12826634
    [Google Scholar]
  9. TrichopoulouA. LagiouP. Healthy traditional mediterranean diet: An expression of culture, history, and lifestyle.Nutrition Reviews2023551138338910.1111/j.1753‑4887.1997.tb01578.x
    [Google Scholar]
  10. TokudomeS. IchikawaY. OkuyamaH. TokudomeY. GotoC. ImaedaN. KurikiK. SuzukiS. ShibataK. JiangJ. WangJ. TakedaE. The Mediterranean vs the Japanese diet.Eur. J. Clin. Nutr.2004589132310.1038/sj.ejcn.1601970 15054411
    [Google Scholar]
  11. AleksandrovaK. KoelmanL. RodriguesC.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies.Redox Biol.20214210186910.1016/j.redox.2021.101869 33541846
    [Google Scholar]
  12. DourosK. ThanopoulouM.I. BoutopoulouB. PapadopoulouA. PapadimitriouA. FretzayasA. PriftisK.N. Adherence to the Mediterranean diet and inflammatory markers in children with asthma.Allergol. Immunopathol.201947320921310.1016/j.aller.2018.04.007 29980401
    [Google Scholar]
  13. CoeC.L. MiyamotoY. LoveG.D. KarasawaM. KawakamiN. KitayamaS. RyffC.D. Cultural and life style practices associated with low inflammatory physiology in Japanese adults.Brain Behav. Immun.20209038539210.1016/j.bbi.2020.08.008 32805392
    [Google Scholar]
  14. KoloverouE. PanagiotakosD.B. PitsavosC. ChrysohoouC. GeorgousopoulouE.N. GrekasA. ChristouA. ChatzigeorgiouM. SkoumasI. TousoulisD. StefanadisC. Adherence to Mediterranean diet and 10‐year incidence (2002–2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study.Diabetes Metab. Res. Rev.2016321738110.1002/dmrr.2672 26104243
    [Google Scholar]
  15. AdakA. KhanM.R. An insight into gut microbiota and its functionalities.Cell. Mol. Life Sci.201976347349310.1007/s00018‑018‑2943‑4 30317530
    [Google Scholar]
  16. JefferyI. O’TooleP. Diet-microbiota interactions and their implications for healthy living.Nutrients20135123425210.3390/nu5010234 23344252
    [Google Scholar]
  17. GillS.R. PopM. DeBoyR.T. EckburgP.B. TurnbaughP.J. SamuelB.S. GordonJ.I. RelmanD.A. Fraser-LiggettC.M. NelsonK.E. Metagenomic analysis of the human distal gut microbiome.Science200631257781355135910.1126/science.1124234 16741115
    [Google Scholar]
  18. QinJ. LiR. RaesJ. ArumugamM. BurgdorfK.S. ManichanhC. NielsenT. PonsN. LevenezF. YamadaT. MendeD.R. LiJ. XuJ. LiS. LiD. CaoJ. WangB. LiangH. ZhengH. XieY. TapJ. LepageP. BertalanM. BattoJ.M. HansenT. Le PaslierD. LinnebergA. NielsenH.B. PelletierE. RenaultP. Sicheritz-PontenT. TurnerK. ZhuH. YuC. LiS. JianM. ZhouY. LiY. ZhangX. LiS. QinN. YangH. WangJ. BrunakS. DoréJ. GuarnerF. KristiansenK. PedersenO. ParkhillJ. WeissenbachJ. BorkP. EhrlichS.D. WangJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature20104647285596510.1038/nature08821 20203603
    [Google Scholar]
  19. EckburgP.B. BikE.M. BernsteinC.N. PurdomE. DethlefsenL. SargentM. GillS.R. NelsonK.E. RelmanD.A. Diversity of the human intestinal microbial flora.Science200530857281635163810.1126/science.1110591 15831718
    [Google Scholar]
  20. ArumugamM. RaesJ. PelletierE. Le PaslierD. YamadaT. MendeD.R. FernandesG.R. TapJ. BrulsT. BattoJ.M. BertalanM. BorruelN. CasellasF. FernandezL. GautierL. HansenT. HattoriM. HayashiT. KleerebezemM. KurokawaK. LeclercM. LevenezF. ManichanhC. NielsenH.B. NielsenT. PonsN. PoulainJ. QinJ. Sicheritz-PontenT. TimsS. TorrentsD. UgarteE. ZoetendalE.G. WangJ. GuarnerF. PedersenO. de VosW.M. BrunakS. DoréJ. WeissenbachJ. EhrlichS.D. BorkP. AlmeidaM. BrechotC. CaraC. ChervauxC. CultroneA. DelormeC. DenariazG. DervynR. FoerstnerK.U. FrissC. van de GuchteM. GuedonE. HaimetF. HuberW. van Hylckama-VliegJ. JametA. JusteC. KaciG. KnolJ. LakhdariO. LayecS. Le RouxK. MaguinE. MérieuxA. Melo MinardiR. M’riniC. MullerJ. OozeerR. ParkhillJ. RenaultP. RescignoM. SanchezN. SunagawaS. TorrejonA. TurnerK. VandemeulebrouckG. VarelaE. WinogradskyY. ZellerG. WeissenbachJ. EhrlichS.D. BorkP. Enterotypes of the human gut microbiome.Nature2011473734617418010.1038/nature09944 21508958
    [Google Scholar]
  21. MorikiD. FrancinoM.P. KoumpagiotiD. BoutopoulouB. Rufián-HenaresJ.Á. PriftisK.N. DourosK. The role of the gut microbiome in cow’s milk allergy: A clinical approach.Nutrients20221421453710.3390/nu14214537 36364799
    [Google Scholar]
  22. AagaardK. MaJ. AntonyK.M. GanuR. PetrosinoJ. VersalovicJ. The placenta harbors a unique microbiome.Sci. Transl. Med.20146237237ra6510.1126/scitranslmed.3008599 24848255
    [Google Scholar]
  23. MariatD. FirmesseO. LevenezF. GuimarăesV.D. SokolH. DoréJ. CorthierG. FuretJ-P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age.BMC Microbiol.20099112310.1186/1471‑2180‑9‑123 19508720
    [Google Scholar]
  24. BäckhedF. RoswallJ. PengY. FengQ. JiaH. Kovatcheva-DatcharyP. LiY. XiaY. XieH. ZhongH. KhanM.T. ZhangJ. LiJ. XiaoL. Al-AamaJ. ZhangD. LeeY.S. KotowskaD. ColdingC. TremaroliV. YinY. BergmanS. XuX. MadsenL. KristiansenK. DahlgrenJ. WangJ. Dynamics and stabilization of the human gut microbiome during the first year of life.Cell Host Microbe201517569070310.1016/j.chom.2015.04.004 25974306
    [Google Scholar]
  25. ManS.M. KaakoushN.O. MitchellH.M. The role of bacteria and pattern-recognition receptors in Crohn’s disease.Nat. Rev. Gastroenterol. Hepatol.20118315216810.1038/nrgastro.2011.3 21304476
    [Google Scholar]
  26. LarsenN. VogensenF.K. van den BergF.W.J. NielsenD.S. AndreasenA.S. PedersenB.K. Al-SoudW.A. SørensenS.J. HansenL.H. JakobsenM. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.PLoS One201052e908510.1371/journal.pone.0009085 20140211
    [Google Scholar]
  27. TurnbaughP.J. LeyR.E. MahowaldM.A. MagriniV. MardisE.R. GordonJ.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature200644471221027103110.1038/nature05414 17183312
    [Google Scholar]
  28. KnightsD. WardT.L. McKinlayC.E. MillerH. GonzalezA. McDonaldD. KnightR. Rethinking “Enterotypes”.Cell Host Microbe201416443343710.1016/j.chom.2014.09.013 25299329
    [Google Scholar]
  29. BäckhedF. LeyR.E. SonnenburgJ.L. PetersonD.A. GordonJ.I. Host-bacterial mutualism in the human intestine.Science200530757171915192010.1126/science.1104816 15790844
    [Google Scholar]
  30. ThorburnA.N. MaciaL. MackayC.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases.Immunity201440683384210.1016/j.immuni.2014.05.014 24950203
    [Google Scholar]
  31. VipperlaK. O’KeefeS.J. The microbiota and its metabolites in colonic mucosal health and cancer risk.Nutr. Clin. Pract.201227562463510.1177/0884533612452012 22868282
    [Google Scholar]
  32. SmithP.M. HowittM.R. PanikovN. MichaudM. GalliniC.A. Bohlooly-YM. GlickmanJ.N. GarrettW.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.Science2013341614556957310.1126/science.1241165 23828891
    [Google Scholar]
  33. LouisP. HoldG.L. FlintH.J. The gut microbiota, bacterial metabolites and colorectal cancer.Nat. Rev. Microbiol.2014121066167210.1038/nrmicro3344 25198138
    [Google Scholar]
  34. NiY.F. WangJ. YanX.L. TianF. ZhaoJ.B. WangY.J. JiangT. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice.Respir. Res.20101113310.1186/1465‑9921‑11‑33 20302656
    [Google Scholar]
  35. SäemannM.D. BöhmigG.A. ÖsterreicherC.H. BurtscherH. ParoliniO. DiakosC. StöcklJ. HörlW.H. ZlabingerG.J. Anti‐inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL‐12 and up‐regulation of IL‐10 production.FASEB J.200014152380238210.1096/fj.00‑0359fje 11024006
    [Google Scholar]
  36. SegainJ-P. Raingeard de la BlétièreD. BourreilleA. LerayV. GervoisN. RosalesC. FerrierL. BonnetC. BlottièreH.M. GalmicheJ.P. Butyrate inhibits inflammatory responses through NFkappa B inhibition: Implications for Crohn’s disease.Gut200047339740310.1136/gut.47.3.397 10940278
    [Google Scholar]
  37. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature12726 24226773
    [Google Scholar]
  38. GuptaN. MartinP.M. PrasadP.D. GanapathyV. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter.Life Sci.200678212419242510.1016/j.lfs.2005.10.028 16375929
    [Google Scholar]
  39. WakabayashiK. SaitoH. KanekoF. NakamotoN. TadaS. HibiT. Gene expression associated with the decrease in malignant phenotype of human liver cancer cells following stimulation with a histone deacetylase inhibitor.Int. J. Oncol.200526123323910.3892/ijo.26.1.233 15586245
    [Google Scholar]
  40. TanJ. McKenzieC. PotamitisM. ThorburnA.N. MackayC.R. MaciaL. The role of short-chain fatty acids in health and disease.Adv. Immunol.20141219111910.1016/B978‑0‑12‑800100‑4.00003‑9 24388214
    [Google Scholar]
  41. BaldaM.S. MatterK. Tight junctions at a glance.J. Cell Sci.2008121223677368210.1242/jcs.023887 18987354
    [Google Scholar]
  42. LeeY.K. MazmanianS.K. Has the microbiota played a critical role in the evolution of the adaptive immune system?Science201033060121768177310.1126/science.1195568 21205662
    [Google Scholar]
  43. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  44. NoverrM.C. HuffnagleG.B. Does the microbiota regulate immune responses outside the gut?Trends Microbiol.2004121256256810.1016/j.tim.2004.10.008 15539116
    [Google Scholar]
  45. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  46. HooperL.V. MidtvedtT. GordonJ.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine.Annu. Rev. Nutr.200222128330710.1146/annurev.nutr.22.011602.092259 12055347
    [Google Scholar]
  47. LozuponeC.A. StombaughJ.I. GordonJ.I. JanssonJ.K. KnightR. Diversity, stability and resilience of the human gut microbiota.Nature2012489741522023010.1038/nature11550 22972295
    [Google Scholar]
  48. AllesinaS. TangS. Stability criteria for complex ecosystems.Nature2012483738820520810.1038/nature10832 22343894
    [Google Scholar]
  49. CardingS. VerbekeK. VipondD.T. CorfeB.M. OwenL.J. Dysbiosis of the gut microbiota in disease.Microb. Ecol. Health Dis.2015262619110.3402/mehd.v26.26191 25651997
    [Google Scholar]
  50. FlintH.J. ScottK.P. LouisP. DuncanS.H. The role of the gut microbiota in nutrition and health.Nat. Rev. Gastroenterol. Hepatol.201291057758910.1038/nrgastro.2012.156 22945443
    [Google Scholar]
  51. ZhangX. GérardP. Diet-gut microbiota interactions on cardiovascular disease.Comput. Struct. Biotechnol. J.2022201528154010.1016/j.csbj.2022.03.028 35422966
    [Google Scholar]
  52. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  53. WuG.D. ChenJ. HoffmannC. BittingerK. ChenY.Y. KeilbaughS.A. BewtraM. KnightsD. WaltersW.A. KnightR. SinhaR. GilroyE. GuptaK. BaldassanoR. NesselL. LiH. BushmanF.D. LewisJ.D. Linking long-term dietary patterns with gut microbial enterotypes.Science2011334605210510810.1126/science.1208344 21885731
    [Google Scholar]
  54. de La SerreC.B. EllisC.L. LeeJ. HartmanA.L. RutledgeJ.C. RaybouldH.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation.Am. J. Physiol. Gastrointest. Liver Physiol.20102992G440G44810.1152/ajpgi.00098.2010 20508158
    [Google Scholar]
  55. FragiadakisG.K. WastykH.C. RobinsonJ.L. SonnenburgE.D. SonnenburgJ.L. GardnerC.D. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight.The Amer. J. Clin. Nutri202311161127113610.1093/ajcn/nqaa046
    [Google Scholar]
  56. De FilippoC. CavalieriD. Di PaolaM. RamazzottiM. PoulletJ.B. MassartS. ColliniS. PieracciniG. LionettiP. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Proc. Natl. Acad. Sci. USA201010733146911469610.1073/pnas.1005963107 20679230
    [Google Scholar]
  57. YatsunenkoT. ReyF.E. ManaryM.J. TrehanI. Dominguez-BelloM.G. ContrerasM. MagrisM. HidalgoG. BaldassanoR.N. AnokhinA.P. HeathA.C. WarnerB. ReederJ. KuczynskiJ. CaporasoJ.G. LozuponeC.A. LauberC. ClementeJ.C. KnightsD. KnightR. GordonJ.I. Human gut microbiome viewed across age and geography.Nature2012486740222222710.1038/nature11053 22699611
    [Google Scholar]
  58. CotillardA. KennedyS.P. KongL.C. PriftiE. PonsN. Le ChatelierE. AlmeidaM. QuinquisB. LevenezF. GalleronN. GougisS. RizkallaS. BattoJ.M. RenaultP. DoréJ. ZuckerJ.D. ClémentK. EhrlichS.D. BlottièreH. LeclercM. JusteC. de WoutersT. LepageP. FouquerayC. BasdevantA. HenegarC. GodardC. FondacciM. RohiaA. HajduchF. WeissenbachJ. PelletierE. Le PaslierD. GauchiJ-P. GibratJ-F. LouxV. CarréW. MaguinE. van de GuchteM. JametA. BoumezbeurF. LayecS. Dietary intervention impact on gut microbial gene richness.Nature2013500746458558810.1038/nature12480 23985875
    [Google Scholar]
  59. BeamA. ClingerE. HaoL. Effect of diet and dietary components on the composition of the gut microbiota.Nutrients2021138279510.3390/nu13082795 34444955
    [Google Scholar]
  60. JaneiroM. RamírezM. MilagroF. MartínezJ. SolasM. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential biomarker or new therapeutic target.Nutrients20181010139810.3390/nu10101398 30275434
    [Google Scholar]
  61. MinihaneA.M. VinoyS. RussellW.R. BakaA. RocheH.M. TuohyK.M. TeelingJ.L. BlaakE.E. FenechM. VauzourD. McArdleH.J. KremerB.H.A. SterkmanL. VafeiadouK. BenedettiM.M. WilliamsC.M. CalderP.C. Low-grade inflammation, diet composition and health: current research evidence and its translation.Br. J. Nutr.20151147999101210.1017/S0007114515002093 26228057
    [Google Scholar]
  62. KoethR.A. WangZ. LevisonB.S. BuffaJ.A. OrgE. SheehyB.T. BrittE.B. FuX. WuY. LiL. SmithJ.D. DiDonatoJ.A. ChenJ. LiH. WuG.D. LewisJ.D. WarrierM. BrownJ.M. KraussR.M. TangW.H.W. BushmanF.D. LusisA.J. HazenS.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat. Med.201319557658510.1038/nm.3145 23563705
    [Google Scholar]
  63. SuzukiK. SusakiE.A. NagaokaI. Lipopolysaccharides and cellular senescence: Involvement in atherosclerosis.Int. J. Mol. Sci.202223191114810.3390/ijms231911148 36232471
    [Google Scholar]
  64. WillettW.C. SacksF. TrichopoulouA. DrescherG. Ferro-LuzziA. HelsingE. TrichopoulosD. Mediterranean diet pyramid: A cultural model for healthy eating.Am. J. Clin. Nutr.1995616Suppl.1402S1406S10.1093/ajcn/61.6.1402S 7754995
    [Google Scholar]
  65. KeysA. Mediterranean diet and public health: Personal reflections.Am. J. Clin. Nutr.1995616Suppl.1321S1323S10.1093/ajcn/61.6.1321S 7754982
    [Google Scholar]
  66. RosatoV. TempleN.J. La VecchiaC. CastellanG. TavaniA. GuercioV. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies.Eur. J. Nutr.201958117319110.1007/s00394‑017‑1582‑0 29177567
    [Google Scholar]
  67. SchwingshacklL. SchwedhelmC. GalbeteC. HoffmannG. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis.Nutrients2017910106310.3390/nu9101063 28954418
    [Google Scholar]
  68. EspositoK. MaiorinoM.I. BellastellaG. ChiodiniP. PanagiotakosD. GiuglianoD. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses.BMJ Open201558e00822210.1136/bmjopen‑2015‑008222 26260349
    [Google Scholar]
  69. PeterssonS.D. PhilippouE. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence.Adv. Nutr.20167588990410.3945/an.116.012138 27633105
    [Google Scholar]
  70. LoughreyD.G. LavecchiaS. BrennanS. LawlorB.A. KellyM.E. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis.Adv. Nutr.20178457158610.3945/an.117.015495 28710144
    [Google Scholar]
  71. KoumpagiotiD. BoutopoulouB. MorikiD. PriftisK.N. DourosK. Does adherence to the mediterranean diet have a protective effect against asthma and allergies in children? a systematic review.Nutrients2022148161810.3390/nu14081618 35458180
    [Google Scholar]
  72. Serra-MajemL. Ngo de la CruzJ. RibasL. TurJ.A. Olive oil and the Mediterranean diet: Beyond the rhetoric.Eur. J. Clin. Nutr.200357S1Suppl. 1S2S710.1038/sj.ejcn.1601801 12947443
    [Google Scholar]
  73. SlavinJ. Fiber and prebiotics: Mechanisms and health benefits.Nutrients2013541417143510.3390/nu5041417 23609775
    [Google Scholar]
  74. DesaiM.S. SeekatzA.M. KoropatkinN.M. KamadaN. HickeyC.A. WolterM. PudloN.A. KitamotoS. TerraponN. MullerA. YoungV.B. HenrissatB. WilmesP. StappenbeckT.S. NúñezG. MartensE.C. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility.Cell2016167513391353.e2110.1016/j.cell.2016.10.043 27863247
    [Google Scholar]
  75. VisioliF. GalliC. The role of antioxidants in the mediterranean diet.Lipids200136S1Suppl.S49S5210.1007/s11745‑001‑0682‑z 11837993
    [Google Scholar]
  76. Di RenzoL. CioccoloniG. Sinibaldi SalimeiP. CeravoloI. De LorenzoA. GratteriS. Alcoholic beverage and meal choices for the prevention of noncommunicable diseases: A randomized nutrigenomic trial.Oxid. Med. Cell. Longev.2018201811310.1155/2018/5461436 30050655
    [Google Scholar]
  77. DeianaM. SerraG. CoronaG. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds.Food Funct.2018984085409910.1039/C8FO00354H 30083682
    [Google Scholar]
  78. LuisiM.L.E. LucariniL. BiffiB. RafanelliE. PietramellaraG. DuranteM. VidaliS. ProvensiG. MadiaiS. GheriC.F. MasiniE. CeccheriniM.T. Effect of mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress, inflammation and gut microbiota in obese and normal weight adult subjects.Front. Pharmacol.201910136610.3389/fphar.2019.01366 31803056
    [Google Scholar]
  79. Martín-PeláezS. CastañerO. SolàR. MotilvaM. CastellM. Pérez-CanoF. FitóM. Influence of phenol-enriched olive oils on human intestinal immune function.Nutrients20168421310.3390/nu8040213 27077879
    [Google Scholar]
  80. De LorenzoA. BernardiniS. GualtieriP. CabibboA. PerroneM.A. GiambiniI. Di RenzoL. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: A randomized controlled trial for nutrigenomic approach in cardiometabolic risk.Acta Diabetol.201754214114910.1007/s00592‑016‑0917‑2 27709360
    [Google Scholar]
  81. NageswariK. BanerjeeR. MenonV.P. Effect of saturated, ω-3 and ω-6 polyunsaturated fatty acids on myocardial infarction.J. Nutr. Biochem.199910633834410.1016/S0955‑2863(99)00007‑8 15539308
    [Google Scholar]
  82. YamagishiK. IsoH. DateC. FukuiM. WakaiK. KikuchiS. InabaY. TanabeN. TamakoshiA. Fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study.J. Am. Coll. Cardiol.2008521298899610.1016/j.jacc.2008.06.018 18786479
    [Google Scholar]
  83. ZhuL. ShaL. LiK. WangZ. WangT. LiY. LiuP. DongX. DongY. ZhangX. WangH. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats.Lipids Health Dis.20201912010.1186/s12944‑019‑1167‑4 32028957
    [Google Scholar]
  84. KokC.R. HutkinsR. Yogurt and other fermented foods as sources of health-promoting bacteria.Nutr. Rev.201876Suppl. 141510.1093/nutrit/nuy056 30452699
    [Google Scholar]
  85. BabioN. Becerra-TomásN. Martínez-GonzálezM.Á. CorellaD. EstruchR. RosE. Sayón-OreaC. FitóM. Serra-MajemL. ArósF. Lamuela-RaventósR.M. LapetraJ. Gómez-GraciaE. FiolM. Díaz-LópezA. SorlíJ.V. MartínezJ.A. Salas-SalvadóJ. Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly mediterranean population.J. Nutr.2015145102308231610.3945/jn.115.214593 26290009
    [Google Scholar]
  86. SluijsI. ForouhiN.G. BeulensJ.W.J. van der SchouwY.T. AgnoliC. ArriolaL. BalkauB. BarricarteA. BoeingH. Bueno-de-MesquitaH.B. Clavel-ChapelonF. CroweF.L. de Lauzon-GuillainB. DroganD. FranksP.W. GavrilaD. GonzalezC. HalkjærJ. KaaksR. MoskalA. NilssonP. OvervadK. PalliD. PanicoS. QuirósJ.R. RicceriF. RinaldiS. RolandssonO. SacerdoteC. SánchezM.J. SlimaniN. SpijkermanA.M.W. TeucherB. TjonnelandA. TormoM.J. TuminoR. van der AD.L. SharpS.J. LangenbergC. FeskensE.J.M. RiboliE. WarehamN.J. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study.Am. J. Clin. Nutr.201296238239010.3945/ajcn.111.021907 22760573
    [Google Scholar]
  87. PalaV. SieriS. BerrinoF. VineisP. SacerdoteC. PalliD. MasalaG. PanicoS. MattielloA. TuminoR. GiurdanellaM.C. AgnoliC. GrioniS. KroghV. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort.Int. J. Cancer2011129112712271910.1002/ijc.26193 21607947
    [Google Scholar]
  88. PraagmanJ. DalmeijerG.W. van der SchouwY.T. Soedamah-MuthuS.S. Monique VerschurenW.M. Bas Bueno-de-MesquitaH. GeleijnseJ.M. BeulensJ.W.J. The relationship between fermented food intake and mortality risk in the european prospective investigation into cancer and nutrition-netherlands cohort.Br. J. Nutr.2015113349850610.1017/S0007114514003766 25599866
    [Google Scholar]
  89. De FilippisF. PellegriniN. VanniniL. JefferyI.B. La StoriaA. LaghiL. SerrazanettiD.I. Di CagnoR. FerrocinoI. LazziC. TurroniS. CocolinL. BrigidiP. NevianiE. GobbettiM. O’TooleP.W. ErcoliniD. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.Gut201665111812182110.1136/gutjnl‑2015‑309957 26416813
    [Google Scholar]
  90. StockJ. Gut microbiota: An environmental risk factor for cardiovascular disease.Atherosclerosis2013229244044210.1016/j.atherosclerosis.2013.05.019 23880200
    [Google Scholar]
  91. TangW.H.W. WangZ. LevisonB.S. KoethR.A. BrittE.B. FuX. WuY. HazenS.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N. Engl. J. Med.2013368171575158410.1056/NEJMoa1109400 23614584
    [Google Scholar]
  92. PastoriD. CarnevaleR. NocellaC. NovoM. SantulliM. CammisottoV. MenichelliD. PignatelliP. VioliF. Gut‐derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to mediterranean diet.J. Am. Heart Assoc.201766e00578410.1161/JAHA.117.005784 28584074
    [Google Scholar]
  93. MitsouE.K. KakaliA. AntonopoulouS. MountzourisK.C. YannakouliaM. PanagiotakosD.B. KyriacouA. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population.Br. J. Nutr.2017117121645165510.1017/S0007114517001593 28789729
    [Google Scholar]
  94. Duda-ChodakA. TarkoT. SatoraP. SrokaP. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review.Eur. J. Nutr.201554332534110.1007/s00394‑015‑0852‑y 25672526
    [Google Scholar]
  95. GaoX. JiaR. XieL. KuangL. FengL. WanC. Obesity in school-aged children and its correlation with Gut E. coli and Bifidobacteria: A case–control study.BMC Pediatr.20151516410.1186/s12887‑015‑0384‑x 26024884
    [Google Scholar]
  96. Garcia-MantranaI. Selma-RoyoM. AlcantaraC. ColladoM.C. Shifts on Gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population.Front. Microbiol.2018989010.3389/fmicb.2018.00890 29867803
    [Google Scholar]
  97. Gutiérrez-DíazI. Fernández-NavarroT. SánchezB. MargollesA. GonzálezS. Mediterranean diet and faecal microbiota: A transversal study.Food Funct.2016752347235610.1039/C6FO00105J 27137178
    [Google Scholar]
  98. Gutiérrez-DíazI. Fernández-NavarroT. SalazarN. BartoloméB. Moreno-ArribasM.V. de Andres-GalianaE.J. Fernández-MartínezJ.L. de los Reyes-GavilánC.G. GueimondeM. GonzálezS. Adherence to a mediterranean diet influences the fecal metabolic profile of microbial-derived phenolics in a spanish cohort of middle-age and older people.J. Agric. Food Chem.201765358659510.1021/acs.jafc.6b04408 28029051
    [Google Scholar]
  99. GrafD. Di CagnoR. FåkF. FlintH.J. NymanM. SaarelaM. WatzlB. Contribution of diet to the composition of the human gut microbiota.Microb. Ecol. Health Dis.2015262616410.3402/mehd.v26.26164 25656825
    [Google Scholar]
  100. PetakhP. OksenychV. KamyshnyiA. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin.Biomed. Pharmacother.202316311489210.1016/j.biopha.2023.114892 37196542
    [Google Scholar]
  101. HoutmanT.A. EckermannH.A. SmidtH. de WeerthC. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers.Sci. Rep.2022121314010.1038/s41598‑022‑07176‑6 35210542
    [Google Scholar]
  102. MeslierV. LaiolaM. RoagerH.M. De FilippisF. RoumeH. QuinquisB. GiaccoR. MennellaI. FerracaneR. PonsN. PasolliE. RivelleseA. DragstedL.O. VitaglioneP. EhrlichS.D. ErcoliniD. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake.Gut20206971258126810.1136/gutjnl‑2019‑320438 32075887
    [Google Scholar]
  103. SinghR. ChandrashekharappaS. BodduluriS.R. BabyB.V. HegdeB. KotlaN.G. HiwaleA.A. SaiyedT. PatelP. Vijay-KumarM. LangilleM.G.I. DouglasG.M. ChengX. RouchkaE.C. WaigelS.J. DrydenG.W. AlatassiH. ZhangH.G. HaribabuB. VemulaP.K. JalaV.R. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway.Nat. Commun.20191018910.1038/s41467‑018‑07859‑7 30626868
    [Google Scholar]
  104. SelmaM.V. González-SarríasA. Salas-SalvadóJ. Andrés-LacuevaC. AlasalvarC. ÖremA. Tomás-BarberánF.A. EspínJ.C. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome.Clin. Nutr.201837389790510.1016/j.clnu.2017.03.012 28347564
    [Google Scholar]
  105. De FilippisF. PasolliE. TettA. TaralloS. NaccaratiA. De AngelisM. NevianiE. CocolinL. GobbettiM. SegataN. ErcoliniD. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets.Cell Host Microbe2019253444453.e310.1016/j.chom.2019.01.004 30799264
    [Google Scholar]
  106. HaroC. Garcia-CarpinteroS. Alcala-DiazJ.F. Gomez-DelgadoF. Delgado-ListaJ. Perez-MartinezP. Rangel ZuñigaO.A. Quintana-NavarroG.M. LandaB.B. ClementeJ.C. Lopez-MirandaJ. CamargoA. Perez-JimenezF. The gut microbial community in metabolic syndrome patients is modified by diet.J. Nutr. Biochem.201627273110.1016/j.jnutbio.2015.08.011 26376027
    [Google Scholar]
  107. HaroC. Montes-BorregoM. Rangel-ZúñigaO.A. Alcalá-DíazJ.F. Gómez-DelgadoF. Pérez-MartínezP. Delgado-ListaJ. Quintana-NavarroG.M. TinahonesF.J. LandaB.B. López-MirandaJ. CamargoA. Pérez-JiménezF. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population.J. Clin. Endocrinol. Metab.2016101123324210.1210/jc.2015‑3351 26505825
    [Google Scholar]
  108. KarlssonF.H. TremaroliV. NookaewI. BergströmG. BehreC.J. FagerbergB. NielsenJ. BäckhedF. Gut metagenome in European women with normal, impaired and diabetic glucose control.Nature201349874529910310.1038/nature12198 23719380
    [Google Scholar]
  109. QinJ. LiY. CaiZ. LiS. ZhuJ. ZhangF. LiangS. ZhangW. GuanY. ShenD. PengY. ZhangD. JieZ. WuW. QinY. XueW. LiJ. HanL. LuD. WuP. DaiY. SunX. LiZ. TangA. ZhongS. LiX. ChenW. XuR. WangM. FengQ. GongM. YuJ. ZhangY. ZhangM. HansenT. SanchezG. RaesJ. FalonyG. OkudaS. AlmeidaM. LeChatelierE. RenaultP. PonsN. BattoJ.M. ZhangZ. ChenH. YangR. ZhengW. LiS. YangH. WangJ. EhrlichS.D. NielsenR. PedersenO. KristiansenK. WangJ. A metagenome-wide association study of gut microbiota in type 2 diabetes.Nature20124907418556010.1038/nature11450 23023125
    [Google Scholar]
  110. HatziioanouD. MayerM.J. DuncanS.H. FlintH.J. NarbadA. A representative of the dominant human colonic Firmicutes, Roseburia faecis M72/1, forms a novel bacteriocin-like substance.Anaerobe2013235810.1016/j.anaerobe.2013.07.006 23916720
    [Google Scholar]
  111. MarlowG. EllettS. FergusonI.R. ZhuS. KarunasingheN. JesuthasanA.C. HanD.Y. FraserA.G. FergusonL.R. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients.Hum. Genomics2013712410.1186/1479‑7364‑7‑24 24283712
    [Google Scholar]
  112. KimbleR. GouinguenetP. AshorA. StewartC. DeightonK. MatuJ. GriffithsA. MalcomsonF.C. JoelA. HoughtonD. StevensonE. MinihaneA.M. SiervoM. ShannonO.M. MathersJ.C. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies.Crit. Rev. Food Sci. Nutr.202363278698871910.1080/10408398.2022.2057416 35361035
    [Google Scholar]
  113. OkadaE. NakamuraK. UkawaS. WakaiK. DateC. IsoH. TamakoshiA. The Japanese food score and risk of all-cause, CVD and cancer mortality: The Japan Collaborative Cohort Study.Br. J. Nutr.2018120446447110.1017/S000711451800154X 29923480
    [Google Scholar]
  114. ShimazuT. KuriyamaS. HozawaA. OhmoriK. SatoY. NakayaN. NishinoY. TsubonoY. TsujiI. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study.Intern. J. Epidem.202336360060910.1093/ije/dym005
    [Google Scholar]
  115. WHO. global health observatory (gho) data; overweight and obesity.Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-obesity-among-adults-bmi-=-30-(crude-estimate)-(-)
  116. SuzukiN. GotoY. OtaH. KitoK. ManoF. JooE. IkedaK. InagakiN. NakayamaT. Characteristics of the japanese diet described in epidemiologic publications: A qualitative systematic review.J. Nutr. Sci. Vitaminol.201864212913710.3177/jnsv.64.129 29710030
    [Google Scholar]
  117. ChengI.C. ShangH.F. LinT.F. WangT.H. LinH.S. LinS.H. Effect of fermented soy milk on the intestinal bacterial ecosystem.World J. Gastroenterol.20051181225122710.3748/wjg.v11.i8.1225 15754410
    [Google Scholar]
  118. ShannonE. ConlonM. HayesM. Seaweed components as potential modulators of the gut microbiota.Mar. Drugs202119735810.3390/md19070358 34201794
    [Google Scholar]
  119. WangL. ShuX.O. CaiH. YangY. XuW. WuJ. CaiQ. ZhengW. YuD. Tea consumption and gut microbiome in older chinese adults.J. Nutr.2023153129330010.1016/j.tjnut.2022.12.002 36913464
    [Google Scholar]
  120. AsanoM. NakanoF. NakatsukasaE. TsudukiT. The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice.Biosci. Biotechnol. Biochem.20208471475148510.1080/09168451.2020.1747973 32255390
    [Google Scholar]
  121. SchweigerM. SchreiberR. HaemmerleG. LassA. FledeliusC. JacobsenP. TornqvistH. ZechnerR. ZimmermannR. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.J. Biol. Chem.200628152402364024110.1074/jbc.M608048200 17074755
    [Google Scholar]
  122. SugawaraS. KushidaM. IwagakiY. AsanoM. YamamotoK. TomataY. TsujiI. TsudukiT. The 1975 type japanese diet improves lipid metabolic parameters in younger adults: A randomized controlled trial.J. Oleo Sci.201867559960710.5650/jos.ess17259 29710042
    [Google Scholar]
  123. KushidaM. SugawaraS. AsanoM. YamamotoK. FukudaS. TsudukiT. Effects of the 1975 Japanese diet on the gut microbiota in younger adults.J. Nutr. Biochem.20196412112710.1016/j.jnutbio.2018.10.011 30502656
    [Google Scholar]
  124. SeuraT. FukuwatariT. Japanese diet score is associated with gut microbiota composition in young japanese adults.J. Nutr. Sci. Vitaminol.201965541442010.3177/jnsv.65.414 31666478
    [Google Scholar]
  125. NamY.D. JungM.J. RohS.W. KimM.S. BaeJ.W. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing.PLoS One201167e2210910.1371/journal.pone.0022109 21829445
    [Google Scholar]
  126. LarsenJ.M. The immune response to Prevotella bacteria in chronic inflammatory disease.Immunology2017151436337410.1111/imm.12760 28542929
    [Google Scholar]
  127. HosomiK. SaitoM. ParkJ. MurakamiH. ShibataN. AndoM. NagatakeT. KonishiK. OhnoH. TanisawaK. MohsenA. ChenY.A. KawashimaH. Natsume-KitataniY. OkaY. ShimizuH. FurutaM. TojimaY. SawaneK. SaikaA. KondoS. YonejimaY. TakeyamaH. MatsutaniA. MizuguchiK. MiyachiM. KunisawaJ. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota.Nat. Commun.2022131447710.1038/s41467‑022‑32015‑7 35982037
    [Google Scholar]
  128. NishijimaS. SudaW. OshimaK. KimS.W. HiroseY. MoritaH. HattoriM. The gut microbiome of healthy Japanese and its microbial and functional uniqueness.DNA Res.201623212513310.1093/dnares/dsw002 26951067
    [Google Scholar]
  129. HehemannJ.H. CorrecG. BarbeyronT. HelbertW. CzjzekM. MichelG. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.Nature2010464729090891210.1038/nature08937 20376150
    [Google Scholar]
  130. AgnoliC. KroghV. GrioniS. SieriS. PalliD. MasalaG. SacerdoteC. VineisP. TuminoR. FrascaG. PalaV. BerrinoF. ChiodiniP. MattielloA. PanicoS. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort.J. Nutr.201114181552155810.3945/jn.111.140061 21628636
    [Google Scholar]
  131. PastoriD. CarnevaleR. BartimocciaS. NocellaC. TanzilliG. CangemiR. VicarioT. CatenaM. VioliF. PignatelliP. Does mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation?Antioxid. Redox Signal.201523868268710.1089/ars.2015.6326 25825798
    [Google Scholar]
  132. PanagiotakosD.B. PitsavosC. StefanadisC. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk.Nutr. Metab. Cardiovasc. Dis.200616855956810.1016/j.numecd.2005.08.006 17126772
    [Google Scholar]
  133. Martínez-GonzálezM.A. CorellaD. Salas-SalvadóJ. RosE. CovasM.I. FiolM. WärnbergJ. ArósF. Ruíz-GutiérrezV. Lamuela-RaventósR.M. LapetraJ. MuñozM.A. MartínezJ.A. SáezG. Serra-MajemL. PintóX. MitjavilaM.T. TurJ.A. PortilloM.P. EstruchR. Cohort Profile: Design and methods of the predimed study.Int. J. Epidemiol.201241237738510.1093/ije/dyq250 21172932
    [Google Scholar]
  134. TrichopoulouA. Kouris-BlazosA. WahlqvistM.L. GnardellisC. LagiouP. PolychronopoulosE. VassilakouT. LipworthL. TrichopoulosD. Diet and overall survival in elderly people.BMJ199531170181457146010.1136/bmj.311.7018.1457 8520331
    [Google Scholar]
  135. TomataY. ZhangS. KaihoY. TanjiF. SugawaraY. TsujiI. Nutritional characteristics of the Japanese diet: A cross-sectional study of the correlation between Japanese Diet Index and nutrient intake among community-based elderly Japanese.Nutrition20195711512110.1016/j.nut.2018.06.011 30157468
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303261069231124092259
Loading
/content/journals/emiddt/10.2174/0118715303261069231124092259
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diet; dietary pattern; Gut; Japanese; mediterranean; microbiome; SCFAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test