Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Aim

The current study focused on formulating ocular films embedded with levofloxacin for the treatment of conjunctivitis by employing the solvent-casting technique.

Methods

These films were formulated with gelatin, Aloe barbadensis leaves mucilage (ABLM), and HPMC K4M to enhance the therapeutic effectiveness of levofloxacin. Various evaluations were carried out to confirm the quality and stability of the films, including assessments of thickness, weight uniformity, uniformity in LFX, % loss of moisture, and permeation. drug release studies were conducted to simulate ocular environments and analyze the precise release of LFX.

Results

The films exhibited uniform thickness (0.15–0.19 mm) and weight (61.85–65.54 mg) with a consistent film area (0.502 cm2). LFX content ranged from 85.66% to 97.03%, with T-6 being the most uniform. Moisture loss was found to be 7.98–9.55%, and absorption (highest in T-6, ., 18.05%) increased with gelatin. LFX permeation peaked at 97.03% (T-6) in 24-h diffusion studies. T-8 demonstrated exceptional mucoadhesion (>10 h), and ANOVA confirmed the important influence of gelatin, ABLM, and HPMC K4M on LFX content (F-value: 129.91, =0.0010).

Conclusion

The study concluded that combining ABLM with HPMC K4M enabled consistent, diffusion-controlled release of LFX, offering an effective and sustained formulation for treating conjunctivitis.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128364823250130094219
2025-02-06
2025-04-24
Loading full text...

Full text loading...

References

  1. DragoL. MinasiV. LemboA. UslenghiA. BenedettiS. CoviM. NucciP. DeflorioL. Antibiotic resistance profiles in eye infections: A local concern with a retrospective focus on a large hospital in Northern Italy.Microorganisms202412598410.3390/microorganisms12050984 38792813
    [Google Scholar]
  2. PetrilloF. TortoriA. VallinoV. GaldieroM. FeaA.M. De SanctisU. ReibaldiM. Understanding Acanthamoeba Keratitis: An in-depth review of a sight-threatening eye infection.Microorganisms202412475810.3390/microorganisms12040758 38674702
    [Google Scholar]
  3. MilliganA.L. RandagA.C. LekkerkerkS. FiferH. Increased incidence of adult gonococcal keratoconjunctivitis at two tertiary eye hospitals in Western Europe: Clinical features, complications and antimicrobial susceptibility.Br. J. Ophthalmol.2024108678879210.1136/bjo‑2023‑324750 38365428
    [Google Scholar]
  4. LiuS. BaiQ. JiangY. GaoY. ChenZ. ShangL. ZhangS. YuL. YangD. SuiN. ZhuZ. Multienzyme‐like nanozyme encapsulated ocular microneedles for keratitis treatment.Small20242021230840310.1002/smll.202308403 38098457
    [Google Scholar]
  5. YangQ. ZhangT. WuY. LiangQ. ZhaoW. LiuR. JinX. Progress in the application of microneedles in eye disorders and the proposal of the upgraded microneedle with spinule.Pharm. Res.202441220322210.1007/s11095‑024‑03658‑6 38337104
    [Google Scholar]
  6. PelusiL. MandatoriD. MastropasquaL. AgnifiliL. AllegrettiM. NubileM. PandolfiA. Innovation in the development of synthetic and natural ocular drug delivery systems for eye diseases treatment: Focusing on drug-loaded ocular inserts, contacts, and intraocular lenses.Pharmaceutics202315262510.3390/pharmaceutics15020625 36839947
    [Google Scholar]
  7. Al-QaysiZ.K. BeadhamI.G. SchwikkardS.L. BearJ.C. Al-KinaniA.A. AlanyR.G. Sustained release ocular drug delivery systems for glaucoma therapy.Expert Opin. Drug Deliv.202320790591910.1080/17425247.2023.2219053 37249548
    [Google Scholar]
  8. BisenA.C. BiswasA. DubeyA. SanapS.N. AgrawalS. YadavK.S. SinghV. RawatP. SagarS. MugaleM.N. BhattaR.S. A review on polymers in ocular drug delivery systems. MedComm.Biomater. Appl.202432e7710.1002/mba2.77
    [Google Scholar]
  9. BaturE. ÖzdemirS. DurgunM.E. ÖzsoyY. Vesicular drug delivery systems: Promising approaches in ocular drug delivery.Pharmaceuticals202417451110.3390/ph17040511 38675470
    [Google Scholar]
  10. DesiatoA. IyireA. Gil-CazorlaR. Bilayered desing of a novel ocular drug delivey system to improve sustained release of levofloxacin.Invest. Ophthalmol. Vis. Sci.2023644742
    [Google Scholar]
  11. ShindeU. BarkatY. SinghK. Coloaded surface–modified PLGA nanoparticles for sustained ocular delivery of levofloxacin and flurbiprofen.J. Pharm. Innov.20231842348236110.1007/s12247‑023‑09796‑5
    [Google Scholar]
  12. ZhaoL. SongJ. DuY. RenC. GuoB. BiH. Therapeu-tic applications of contact lens-based drug delivery systems in ophthalmic diseases.Drug Deliv.2023301221941910.1080/10717544.2023.2219419 37264930
    [Google Scholar]
  13. AghaO.A. GirgisG.N.S. El-SokkaryM.M.A. SolimanO.A.E.A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study.Int. J. Pharm. X2023610020110.1016/j.ijpx.2023.100201 37560488
    [Google Scholar]
  14. ShafiqM. RafiqueM. CuiY. PanL. DoC.W. HoE.A. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers.J. Control. Release202336244646710.1016/j.jconrel.2023.08.041 37640109
    [Google Scholar]
  15. JainP. JaiswalC.P. MirzaM.A. AnwerM.K. IqbalZ. Preparation of levofloxacin loaded in situ gel for sustained ocular delivery: In vitro and ex vivo evaluations.Drug Dev. Ind. Pharm.2020461505610.1080/03639045.2019.1698598 31818154
    [Google Scholar]
  16. AhmedS. AminM.M. SayedS. Ocular drug delivery: A comprehensive review.AAPS PharmSciTech20232426610.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  17. TsungT.H. TsaiY.C. LeeH.P. ChenY.H. LuD.W. Biodegradable polymer-based drug-delivery systems for ocular diseases.Int. J. Mol. Sci.202324161297610.3390/ijms241612976 37629157
    [Google Scholar]
  18. AhmedB. JaiswalS. NaryalS. ShahR.M. AlanyR.G. KaurI.P. In situ gelling systems for ocular drug delivery.J. Control. Release2024371678410.1016/j.jconrel.2024.05.031 38768662
    [Google Scholar]
  19. Suresh babu, J.; Saravanan, A.; Muthuvel, B.; George, R.; Narayanan, J. Synthesis and characterization of natural biomaterial composite nanofibers for ocular drug delivery systems.OpenNano20231010012210.1016/j.onano.2023.100122
    [Google Scholar]
  20. CheluM. MusucA.M. PopaM. CalderonM.J. Aloe vera-based hydrogels for wound healing: Properties and therapeutic effects.Gels20239753910.3390/gels9070539 37504418
    [Google Scholar]
  21. MirzaeeiS. TagheS. AlanyR.G. NokhodchiA. Eudragit® L100/Polyvinyl alcohol nanoparticles impregnated mucoadhesive films as ocular inserts for controlled delivery of erythromycin: Development, characterization and in vivo evaluation.Biomedicines2022108191710.3390/biomedicines10081917 36009463
    [Google Scholar]
  22. DasB. NayakA.K. MallickS. Lipid-based nanocarriers for ocular drug delivery: An updated review.J. Drug Deliv. Sci. Technol.20227610378010.1016/j.jddst.2022.103780
    [Google Scholar]
  23. TsungT.H. ChenY.H. LuD.W. Updates on biodegradable formulations for ocular drug delivery.Pharmaceutics202315373410.3390/pharmaceutics15030734 36986595
    [Google Scholar]
  24. PolatH.K. ÜnalS. AytekinE. KarakuyuN.F. PezikE. HaydarM.K. KurtN. DoğanO. MokhtareB. Formulation development of Lornoxicam loaded heat triggered ocular in-situ gel using factorial design.Drug Dev. Ind. Pharm.202349960161510.1080/03639045.2023.2264932 37788164
    [Google Scholar]
  25. BhosaleA. JyothiV.G.S.S. DevanganP. BajadG. SinghH. PatraB. GuruS.K. MadanJ. Emu oil enriched nanostructured lipid carriers of lornoxicam burdened polymeric gel augmented drug delivery and assisted cartilage repairing in knee osteoarthritis: In-vitro and in-vivo studies.J. Drug Deliv. Sci. Technol.20249810591410.1016/j.jddst.2024.105914
    [Google Scholar]
  26. SaidM. ElsayedI. AboelwafaA.A. ElshafeeyA.H. HassanM. Ocular mucoadhesive and biodegradable sponge-like inserts for the sustained and controlled delivery of Voriconazole; preparation, D-optimal factorial optimization and in-vivo evaluation.J. Pharm. Sci.2024113496197310.1016/j.xphs.2023.09.026 37949171
    [Google Scholar]
  27. SalamaA. El-HashemyH.A. DarwishA.B. Formulation and optimization of lornoxicam-loaded bilosomes using 23 full factorial design for the management of osteoarthritis in rats: Modulation of MAPK/Erk1 signaling pathway.J. Drug Deliv. Sci. Technol.20226910317510.1016/j.jddst.2022.103175
    [Google Scholar]
  28. BhosaleV.A. SrivastavaV. ValamlaB. YadavR. SinghS.B. MehraN.K. Preparation and evaluation of modified chitosan nanoparticles using anionic sodium alginate polymer for treatment of ocular disease.Pharmaceutics20221412280210.3390/pharmaceutics14122802 36559295
    [Google Scholar]
  29. GilaniS.J. JumahM.N. ZafarA. ImamS.S. YasirM. KhalidM. AlshehriS. GhuneimM.M. AlbohairyF.M. Formulation and evaluation of nano lipid carrier-based ocular gel system: Optimization to antibacterial activity.Gels20228525510.3390/gels8050255 35621552
    [Google Scholar]
  30. SwainR. MoharanaA. HabibullahS. NandiS. BoseA. MohapatraS. MallickS. Ocular delivery of felodipine for the management of intraocular pressure and inflammation: Effect of film plasticizer and in vitro in vivo evaluation.Int. J. Pharm.202364212315310.1016/j.ijpharm.2023.123153 37339688
    [Google Scholar]
  31. SanapS.N. BisenA.C. KedarA. YadavK.S. KrishnaA. AkhirA. ChopraS. MugaleM.N. BhattaR.S. Chitosan/HPMCbased mucoadhesive film co-loaded with fluconazole and ofloxacin for management of polymicrobial keratitis.Int. J. Biol. Macromol.2022222Pt B2785279510.1016/j.ijbiomac.2022.10.05836240895
    [Google Scholar]
  32. SuvarnaP. ChaudhariP. BirangalS. MallelaL.S. RoyS. KoteshwaraA. AranjaniJ.M. LewisS.A. Voriconazole–cyclodextrin supramolecular ternary complex-loaded ocular films for management of fungal keratitis.Mol. Pharm.202219125827310.1021/acs.molpharmaceut.1c00746 34928610
    [Google Scholar]
  33. Abdul AhadH. Aravind KumarG. ChinthaginjalaH. GnaneswarP. BabaH.A. KrishnaA. A quick reference to the Decade’s literature reviewed on ocular films.J. Young Pharm.2023151495410.5530/097515050553
    [Google Scholar]
  34. ChandraN.S. GorantlaS. PriyaS. SinghviG. Insight on updates in polysaccharides for ocular drug delivery.Carbohydr. Polym.202229712001410.1016/j.carbpol.2022.120014 36184137
    [Google Scholar]
  35. UnerB. OzdemirS. YildirimE. YabaA. TasC. UnerM. OzsoyY. Loteprednol loaded nanoformulations for corneal delivery: Ex-vivo permeation study, ocular safety assessment and stability studies.J. Drug Deliv. Sci. Technol.20238110425210.1016/j.jddst.2023.104252
    [Google Scholar]
  36. AlsaidanO.A. ZafarA. YasirM. AlzareaS.I. AlqinyahM. KhalidM. Development of ciprofloxacin-loaded bilosomes in-situ gel for ocular delivery: Pptimization, in-vitro characterization, ex-vivo permeation, and antimicrobial study.Gels202281168710.3390/gels8110687 36354595
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128364823250130094219
Loading
/content/journals/dmbl/10.2174/0118723128364823250130094219
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Biodegradable; evaluation; eye; film; levofloxacin; ocular
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test