Skip to content
2000
image of Understanding DNA and PARP in Cancer: Tackling Inhibitor Resistance

Abstract

Deoxyribonucleic acid (DNA) is the crucial molecule that stores and transmits genetic information in living organisms. DNA can incur damage from various sources, necessitating efficient DNA repair mechanisms to maintain genomic stability. Cells employ multiple repair pathways, including single-strand repair and double-strand break repair, each involving specific proteins and enzymes. PARPs play a fundamental role in the repair of DNA to detect damage to DNA and facilitate the repair process. PARPi are drugs that inhibit PARP activity, leading to DNA damage accumulation and cell death, particularly in cancer cells with impairments in DNA repair pathways, such as BRCA1/2 mutations. Additionally, PARPi is promising in treating cancer, offering a targeted therapeutic approach. Resistance to PARP inhibitors continues to be an issue in a major clinical challenge. Mechanisms of resistance include homologous recombination repair restoration, increased drug efflux, and mutations in the PARP1 enzyme. Moreover, to overcome this resistance, researchers are investigating combination therapies, targeted therapies that inhibit complementary DNA repair pathways, and novel agents that can counteract resistance mechanisms. Future perspectives focus on enhancing our understanding of resistance mechanisms, developing more effective and selective PARP inhibitors, and identifying predictive biomarkers for therapy response. These advancements aim to improve the efficacy and durability of PARP inhibitor-based treatments, ultimately leading to better outcomes for cancer patients. This review article focuses on the reasons for the evolution of PARP inhibitors, the mechanisms behind resistance, and new strategies to overcome this resistance.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128343916250212094926
2025-03-13
2025-07-06
Loading full text...

Full text loading...

References

  1. Travers A. Muskhelishvili G. DNA structure and function. FEBS J. 2015 282 12 2279 2295 10.1111/febs.13307 25903461
    [Google Scholar]
  2. Watson JD Crick FH The structure of DNA. Cold. Spring. Harb. Symp. Quant. Biol. 1953 18 123 131 10.1101/SQB.1953.018.01.020
    [Google Scholar]
  3. Kornberg A. DNA replication. Trends Biochem. Sci. 1984 9 4 122 124 10.1016/0968‑0004(84)90114‑2
    [Google Scholar]
  4. Alberts Johnson A. Lewis J. The structure and Function of DNA. 4th ed New York Garland Science 2001
    [Google Scholar]
  5. McKay M.J. Craig J. Kalitsis P. Kozlov S. Verschoor S. Chen P. Lobachevsky P. Vasireddy R. Yan Y. Ryan J. McGillivray G. Savarirayan R. Lavin M.F. Ramsay R.G. Xu H. A roberts syndrome individual with differential genotoxin sensitivity and a dna damage response defect. Int. J. Radiat. Oncol. Biol. Phys. 2019 103 5 1194 1202 10.1016/j.ijrobp.2018.11.047 30508616
    [Google Scholar]
  6. Yousefzadeh M. Henpita C. Vyas R. Soto-Palma C. Robbins P. Niedernhofer L. DNA damage—how and why we age? eLife 2021 10 e62852 10.7554/eLife.62852 33512317
    [Google Scholar]
  7. Norbury C.J. Hickson I.D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 2001 41 1 367 401 10.1146/annurev.pharmtox.41.1.367 11264462
    [Google Scholar]
  8. Bouwman P. Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer 2012 12 9 587 598 10.1038/nrc3342 22918414
    [Google Scholar]
  9. Ghosal G. Chen J. DNA damage tolerance: A double-edged sword guarding the genome. Transl. Cancer Res. 2013 2 3 107 129 24058901
    [Google Scholar]
  10. Dexheimer TS DNA repair pathways and mechanisms. DNA Rep. Cancer Stem. Cells. 2013 19 32 10.1007/978‑94‑007‑4590‑2_2
    [Google Scholar]
  11. Helleday T. Petermann E. Lundin C. Hodgson B. Sharma R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008 8 3 193 204 10.1038/nrc2342 18256616
    [Google Scholar]
  12. Burgess J.T. Rose M. Boucher D. Plowman J. Molloy C. Fisher M. O’Leary C. Richard D.J. O’Byrne K.J. Bolderson E. The therapeutic potential of DNA damage repair pathways and genomic stability in lung cancer. Front. Oncol. 2020 10 1256 10.3389/fonc.2020.01256 32850380
    [Google Scholar]
  13. Almeida K.H. Sobol R.W. A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 2007 6 6 695 711 10.1016/j.dnarep.2007.01.009 17337257
    [Google Scholar]
  14. Akbari M. Peña-Diaz J. Andersen S. Liabakk N.B. Otterlei M. Krokan H.E. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair 2009 8 7 834 843 10.1016/j.dnarep.2009.04.002 19442590
    [Google Scholar]
  15. Gohil D. Sarker A.H. Roy R. Base excision repair: Mechanisms and impact in biology, disease, and medicine. Int. J. Mol. Sci. 2023 24 18 14186 10.3390/ijms241814186 37762489
    [Google Scholar]
  16. Kumar N. Moreno N.C. Feltes B.C. Menck C.F.M. Houten B.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet. Mol. Biol. 2020 43 1 suppl 1 e20190104 10.1590/1678‑4685‑gmb‑2019‑0104 32141475
    [Google Scholar]
  17. Yokoyama H. Mizutani R. Structural biology of DNA (6-4) photoproducts formed by ultraviolet radiation and interactions with their binding proteins. Int. J. Mol. Sci. 2014 15 11 20321 20338 10.3390/ijms151120321 25383676
    [Google Scholar]
  18. Mu H. Geacintov N.E. Broyde S. Yeo J.E. Schärer O.D. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair 2018 71 33 42 10.1016/j.dnarep.2018.08.005 30174301
    [Google Scholar]
  19. Kusakabe M. Onishi Y. Tada H. Kurihara F. Kusao K. Furukawa M. Iwai S. Yokoi M. Sakai W. Sugasawa K. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. 2019 41 1 2 10.1186/s41021‑019‑0119‑6 30700997
    [Google Scholar]
  20. Sertic S. Mollica A. Campus I. Roma S. Tumini E. Aguilera A. Muzi-Falconi M. Coordinated activity of y family TLS Polymerases and EXO1 protects Non-S Phase Cells from UV-induced cytotoxic lesions. Mol. Cell 2018 70 1 34 47.e4 10.1016/j.molcel.2018.02.017 29551515
    [Google Scholar]
  21. Moser J. Kool H. Giakzidis I. Caldecott K. Mullenders L.H.F. Fousteri M.I. RETRACTED: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol. Cell 2007 27 2 311 323 10.1016/j.molcel.2007.06.014 17643379
    [Google Scholar]
  22. Hanawalt P.C. Spivak G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008 9 12 958 970 10.1038/nrm2549 19023283
    [Google Scholar]
  23. Kunkel T.A. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 2009 74 0 91 101 10.1101/sqb.2009.74.027 19903750
    [Google Scholar]
  24. Schmidt M.H.M. Pearson C.E. Disease-associated repeat instability and mismatch repair. DNA Repair 2016 38 117 126 10.1016/j.dnarep.2015.11.008 26774442
    [Google Scholar]
  25. Johannesen K.M. Karstensen J.G. Rasmussen A.Ø. Scott E.A.H. Birkedal U. Hansen T.O. Steenholdt C. Jelsig A.M. A novel case of biallelic mlh3 variants in a patient with rectal cancer and polyps. Clin. Genet. 2025 cge.14689 10.1111/cge.14689 39789695
    [Google Scholar]
  26. Culligan K.M. Meyer-Gauen G. Lyons-Weiler J. Hays J.B. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res. 2000 28 2 463 471 10.1093/nar/28.2.463 10606644
    [Google Scholar]
  27. Amaral-Silva G.K. Martins M.D. Pontes H.A.R. Fregnani E.R. Lopes M.A. Fonseca F.P. Vargas P.A. Mismatch repair system proteins in oral benign and malignant lesions. J. Oral Pathol. Med. 2017 46 4 241 245 10.1111/jop.12484 27509575
    [Google Scholar]
  28. Reyes G.X. Schmidt T.T. Kolodner R.D. Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015 124 4 443 462 10.1007/s00412‑015‑0514‑0 25862369
    [Google Scholar]
  29. Brown M.W. Kim Y. Williams G.M. Huck J.D. Surtees J.A. Finkelstein I.J. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat. Commun. 2016 7 1 10607 10.1038/ncomms10607 26837705
    [Google Scholar]
  30. Jiricny J. Postreplicative mismatch repair. Cold Spring Harb. Perspect. Biol. 2013 5 4 a012633 10.1101/cshperspect.a012633 23545421
    [Google Scholar]
  31. Kawakami T. Shiina H. Igawa M. Deguchi M. Nakajima K. Ogishima T. Tokizane T. Urakami S. Enokida H. Miura K. Ishii N. Kane C.J. Carroll P.R. Dahiya R. Inactivation of the hMSH3 mismatch repair gene in bladder cancer. Biochem. Biophys. Res. Commun. 2004 325 3 934 942 10.1016/j.bbrc.2004.10.114 15541380
    [Google Scholar]
  32. Yamamoto H. Imai K. Microsatellite instability: An update. Arch. Toxicol. 2015 89 6 899 921 10.1007/s00204‑015‑1474‑0 25701956
    [Google Scholar]
  33. Clark N. Wu X. Her C. MutS homologues hMSH4 and hMSH5: Genetic variations, functions, and implications in human diseases. Curr. Genomics 2013 14 2 81 90 10.2174/1389202911314020002 24082819
    [Google Scholar]
  34. Farrag M.S. Abdelwahab H.W. Abdellateef A. Anber N. Ellayeh M.A. Hussein D.T. Eldesoky A.R. Sheta H. DNA mismatch repair (MMR) genes expression in lung cancer and its correlation with different clinicopathologic parameters. Sci. Rep. 2025 15 1 885 10.1038/s41598‑024‑83067‑2 39762286
    [Google Scholar]
  35. Edelbrock M.A. Kaliyaperumal S. Williams K.J. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat. Res. 2013 743-744 53 66 10.1016/j.mrfmmm.2012.12.008 23391514
    [Google Scholar]
  36. Liu D. Keijzers G. Rasmussen L.J. DNA mismatch repair and its many roles in eukaryotic cells. Mutat. Res. Rev. Mutat. Res. 2017 773 174 187 10.1016/j.mrrev.2017.07.001 28927527
    [Google Scholar]
  37. Kadyrov F.A. Dzantiev L. Constantin N. Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006 126 2 297 308 10.1016/j.cell.2006.05.039 16873062
    [Google Scholar]
  38. Cannavo E. Gerrits B. Marra G. Schlapbach R. Jiricny J. Characterization of the interactome of the human MutL homologues MLH1, PMS1, and PMS2. J. Biol. Chem. 2007 282 5 2976 2986 10.1074/jbc.M609989200 17148452
    [Google Scholar]
  39. Fishel R. Mismatch Repair. J. Biol. Chem. 2015 290 44 26395 26403 10.1074/jbc.R115.660142 26354434
    [Google Scholar]
  40. Prindle M.J. Loeb L.A. DNA polymerase delta in dna replication and genome maintenance. Environ. Mol. Mutagen. 2012 53 9 666 682 10.1002/em.21745 23065663
    [Google Scholar]
  41. Halabi A. Fuselier K.T.B. Grabczyk E. GAA•TTC repeat expansion in human cells is mediated by mismatch repair complex MutLγ and depends upon the endonuclease domain in MLH3 isoform one. Nucleic Acids Res. 2018 46 8 4022 4032 10.1093/nar/gky143 29529236
    [Google Scholar]
  42. Lipkin S.M. Wang V. Jacoby R. Banerjee-Basu S. Baxevanis A.D. Lynch H.T. Elliott R.M. Collins F.S. MLH3: A DNA mismatch repair gene associated with mammalian microsatellite instability. Nat. Genet. 2000 24 1 27 35 10.1038/71643 10615123
    [Google Scholar]
  43. Cannavo E. Marra G. Sabates-Bellver J. Menigatti M. Lipkin S.M. Fischer F. Cejka P. Jiricny J. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res. 2005 65 23 10759 10766 10.1158/0008‑5472.CAN‑05‑2528 16322221
    [Google Scholar]
  44. Jeon Y. Kim D. Martín-López J.V. Lee R. Oh J. Hanne J. Fishel R. Lee J.B. Dynamic control of strand excision during human DNA mismatch repair. Proc. Natl. Acad. Sci. USA 2016 113 12 3281 3286 10.1073/pnas.1523748113 26951673
    [Google Scholar]
  45. Kowalczykowski S.C. Hunter N. Heyer W.D. DNA Recombination. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press 2016
    [Google Scholar]
  46. Prakash R. Zhang Y. Feng W. Jasin M. Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 2015 7 4 a016600 10.1101/cshperspect.a016600 25833843
    [Google Scholar]
  47. Kowalczykowski S.C. Snapshots of DNA repair. Nature 2008 453 7194 463 465 10.1038/453463a 18497811
    [Google Scholar]
  48. Veaute X. Jeusset J. Soustelle C. Kowalczykowski S. C. Cam L.E. Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 2003 423 6937 309 312 10.1038/nature01585
    [Google Scholar]
  49. Piazza A. Wright W.D. Heyer W.D. Multi-invasions are recombination by-products that induce chromosomal rearrangements. Cell 2017 170 4 760 773.e15 10.1016/j.cell.2017.06.052 28781165
    [Google Scholar]
  50. Li X. Stith C.M. Burgers P.M. Heyer W.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase δ. Mol. Cell 2009 36 4 704 713 10.1016/j.molcel.2009.09.036 19941829
    [Google Scholar]
  51. Falck J. Coates J. Jackson S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005 434 7033 605 611 10.1038/nature03442 15758953
    [Google Scholar]
  52. Ochi T. Blackford A.N. Coates J. Jhujh S. Mehmood S. Tamura N. Travers J. Wu Q. Draviam V.M. Robinson C.V. Blundell T.L. Jackson S.P. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science 2015 347 6218 185 188 10.1126/science.1261971 25574025
    [Google Scholar]
  53. Chaudhuri J. Alt F.W. Class-switch recombination: Interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 2004 4 7 541 552 10.1038/nri1395 15229473
    [Google Scholar]
  54. Soutoglou E. Dorn J.F. Sengupta K. Jasin M. Nussenzweig A. Ried T. Danuser G. Misteli T. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 2007 9 6 675 682 10.1038/ncb1591 17486118
    [Google Scholar]
  55. Ioannes D.P. Malu S. Cortes P. Aggarwal A.K. Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining. Cell Rep. 2012 2 6 1505 1512 10.1016/j.celrep.2012.11.004 23219551
    [Google Scholar]
  56. Gibson B.A. Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012 13 7 411 424 10.1038/nrm3376 22713970
    [Google Scholar]
  57. Barkauskaite E. Jankevicius G. Ladurner A.G. Ahel I. Timinszky G. The recognition and removal of cellular poly( ADP ‐ribose) signals. FEBS J. 2013 280 15 3491 3507 10.1111/febs.12358 23711178
    [Google Scholar]
  58. Denu J.M. The Sir2 family of protein deacetylases. Curr. Opin. Chem. Biol. 2005 9 5 431 440 10.1016/j.cbpa.2005.08.010 16122969
    [Google Scholar]
  59. Amé J.C. Rolli V. Schreiber V. Niedergang C. Apiou F. Decker P. Muller S. Höger T. Murcia J.M. Murcia d.G. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 1999 274 25 17860 17868 10.1074/jbc.274.25.17860 10364231
    [Google Scholar]
  60. Amé J.C. Spenlehauer C. Murcia d.G. The PARP superfamily. BioEssays 2004 26 8 882 893 10.1002/bies.20085 15273990
    [Google Scholar]
  61. Langelier M.F. Servent K.M. Rogers E.E. Pascal J.M. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J. Biol. Chem. 2008 283 7 4105 4114 10.1074/jbc.M708558200 18055453
    [Google Scholar]
  62. Tao Z. Gao P. Hoffman D.W. Liu H. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 2008 47 21 5804 5813 10.1021/bi800018a 18452307
    [Google Scholar]
  63. Cuneo M.J. London R.E. Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase β binding affinity. Proc. Natl. Acad. Sci. USA 2010 107 15 6805 6810 10.1073/pnas.0914077107 20351257
    [Google Scholar]
  64. Ali A.A.E. Jukes R.M. Pearl L.H. Oliver A.W. Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK. Nucleic Acids Res. 2009 37 5 1701 1712 10.1093/nar/gkn1086 19155274
    [Google Scholar]
  65. Date H. Igarashi S. Sano Y. Takahashi T. Takahashi T. Takano H. Tsuji S. Nishizawa M. Onodera O. The FHA domain of aprataxin interacts with the C-terminal region of XRCC1. Biochem. Biophys. Res. Commun. 2004 325 4 1279 1285 10.1016/j.bbrc.2004.10.162 15555565
    [Google Scholar]
  66. Lévy N. Oehlmann M. Delalande F. Nasheuer H.P. Dorsselaer V.A. Schreiber V. Murcia d.G. Murcia M.d.J. Maiorano D. Bresson A. XRCC1 interacts with the p58 subunit of DNA Pol α-primase and may coordinate DNA repair and replication during S phase. Nucleic Acids Res. 2009 37 10 3177 3188 10.1093/nar/gkp144 19305001
    [Google Scholar]
  67. Mendoza-Alvarez H. Alvarez-Gonzalez R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J. Biol. Chem. 1993 268 30 22575 22580 10.1016/S0021‑9258(18)41568‑2 8226768
    [Google Scholar]
  68. Belenchón R.I. Ruiz C.C.B. Saez C. García O.I. López M.R.A. Parp inhibitors and radiotherapy: A new combination for prostate cancer (systematic review). Int. J. Mol. Sci. 2023 24 16 12978 10.3390/ijms241612978 37629155
    [Google Scholar]
  69. Dantzer F. Rubia l.d.G. Ménissier-de Murcia J. Hostomsky Z. Murcia d.G. Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1. Biochemistry 2000 39 25 7559 7569 10.1021/bi0003442 10858306
    [Google Scholar]
  70. Dantzer F. Schreiber V. Niedergang C. Trucco C. Flatter E. Rubia G.D.L. Oliver J. Rolli V. Ménissier-de Murcia J. Murcia d.G. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 1999 81 1-2 69 75 10.1016/S0300‑9084(99)80040‑6 10214912
    [Google Scholar]
  71. Hanzlikova H. Gittens W. Krejcikova K. Zeng Z. Caldecott K.W. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 2017 45 5 2546 2557 27965414
    [Google Scholar]
  72. Fisher A.E.O. Hochegger H. Takeda S. Caldecott K.W. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol. 2007 27 15 5597 5605 10.1128/MCB.02248‑06 17548475
    [Google Scholar]
  73. Bi F.F. Li D. Yang Q. Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer. BioMed Res. Int. 2013 2013 1 5 10.1155/2013/946268 23762867
    [Google Scholar]
  74. Li D. Bi F.F. Cao J.M. Cao C. Li C.Y. Liu B. Yang Q. Poly (ADP-ribose) polymerase 1 transcriptional regulation: A novel crosstalk between histone modification H3K9ac and ETS1 motif hypomethylation in BRCA1-mutated ovarian cancer. Oncotarget 2014 5 1 291 297 10.18632/oncotarget.1549 24448423
    [Google Scholar]
  75. Bi F.F. Li D. Yang Q. Promoter hypomethylation, especially around the E26 transformation-specific motif, and increased expression of poly (ADP-ribose) polymerase 1 in BRCA-mutated serous ovarian cancer. BMC Cancer 2013 13 1 90 10.1186/1471‑2407‑13‑90 23442605
    [Google Scholar]
  76. Newman E.A. Lu F. Bashllari D. Wang L. Opipari A.W. Castle V.P. Alternative NHEJ pathway components are therapeutic targets in high-risk neuroblastoma. Mol. Cancer Res. 2015 13 3 470 482 10.1158/1541‑7786.MCR‑14‑0337 25563294
    [Google Scholar]
  77. Liu Q. Ma L. Jones T. Palomero L. Pujana M.A. Martinez-Ruiz H. Subjugation of TGFβ signalling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining. Clin. Cancer Res. 2018 24 23 6001 6014 10.1158/1078‑0432.CCR‑18‑1346 30087144
    [Google Scholar]
  78. Mego M. Cierna Z. Svetlovska D. Macak D. Machalekova K. Miskovska V. Chovanec M. Usakova V. Obertova J. Babal P. Mardiak J. PARP expression in germ cell tumours. J. Clin. Pathol. 2013 66 7 607 612 10.1136/jclinpath‑2012‑201088 23486608
    [Google Scholar]
  79. Newman R. Soldatenkov V. Dritschilo A. Notario V. Poly(ADP-ribose) polymerase turnover alterations do not contribute to PARP overexpression in Ewing’s sarcoma cells. Oncol. Rep. 2002 9 3 529 532 10.3892/or.9.3.529 11956622
    [Google Scholar]
  80. Tomoda T. Kurashige T. Moriki T. Yamamoto H. Fujimoto S. Taniguchi T. Enhanced expression of poly(ADP‐ribose) synthetase gene in malignant lymphoma. Am. J. Hematol. 1991 37 4 223 227 10.1002/ajh.2830370402 1907096
    [Google Scholar]
  81. Rojo F. García-Parra J. Zazo S. Tusquets I. Ferrer-Lozano J. Menendez S. Eroles P. Chamizo C. Servitja S. Ramírez-Merino N. Lobo F. Bellosillo B. Corominas J.M. Yelamos J. Serrano S. Lluch A. Rovira A. Albanell J. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann. Oncol. 2012 23 5 1156 1164 10.1093/annonc/mdr361 21908496
    [Google Scholar]
  82. Dziaman T. Ludwiczak H. Ciesla J.M. Banaszkiewicz Z. Winczura A. Chmielarczyk M. Wisniewska E. Marszalek A. Tudek B. Olinski R. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. PLoS One 2014 9 12 e115558 10.1371/journal.pone.0115558 25526641
    [Google Scholar]
  83. Zhou Y. Tang S. Chen T. Niu M.M. Structure-based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly (ADP-Ribose) polymerase-1 (PARP-1) inhibitors. Molecules 2019 24 23 4258 10.3390/molecules24234258 31766720
    [Google Scholar]
  84. Almeleebia T.M. Ahamad S. Ahmad I. Alshehri A. Alkhathami A.G. Mohammad Y. Identification of PARP12 inhibitors by virtual screening and molecular dynamics simulations. Front. Pharmacol. 2022 3 847499
    [Google Scholar]
  85. Chen A. PARP inhibitors: Its role in treatment of cancer. Chin. J. Cancer 2011 30 7 463 471 10.5732/cjc.011.10111 21718592
    [Google Scholar]
  86. Plummer R. Jones C. Middleton M. Wilson R. Evans J. Olsen A. Curtin N. Boddy A. McHugh P. Newell D. Harris A. Johnson P. Steinfeldt H. Dewji R. Wang D. Robson L. Calvert H. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 2008 14 23 7917 7923 10.1158/1078‑0432.CCR‑08‑1223 19047122
    [Google Scholar]
  87. Bauer P.I. Buki K.G. Hakam A. Kun E. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem. J. 1990 270 1 17 26 10.1042/bj2700017 2144419
    [Google Scholar]
  88. Zhou P. Wang J. Mishail D. Wang C.Y. Recent advancements in PARP inhibitors-based targeted cancer therapy. Precis. Clin. Med. 2020 3 3 187 201 10.1093/pcmedi/pbaa030 32983586
    [Google Scholar]
  89. Underhill C. Toulmonde M. Bonnefoi H. A review of PARP inhibitors: From bench to bedside. Ann. Oncol. 2011 22 2 268 279 10.1093/annonc/mdq322 20643861
    [Google Scholar]
  90. Mitri Z. Goodyear S.M. Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev. Anticancer Ther. 2024 24 10 959 975 10.1080/14737140.2024.2393251 39145413
    [Google Scholar]
  91. Chaudhuri R.A. Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017 18 10 610 621 10.1038/nrm.2017.53 28676700
    [Google Scholar]
  92. Robson M.E. Im S.A. Senkus E. Xu B. Domchek S.M. Masuda N. Delaloge S. Tung N. Armstrong A. Dymond M. Fielding A. Allen A. Conte P. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur. J. Cancer 2023 184 39 47 10.1016/j.ejca.2023.01.031 36893711
    [Google Scholar]
  93. Litton J.K. Rugo H.S. Ettl J. Hurvitz S.A. Gonçalves A. Lee K.H. Fehrenbacher L. Yerushalmi R. Mina L.A. Martin M. Roché H. Im Y.H. Quek R.G.W. Markova D. Tudor I.C. Hannah A.L. Eiermann W. Blum J.L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 2018 379 8 753 763 10.1056/NEJMoa1802905 30110579
    [Google Scholar]
  94. Freyer G Pothuri B Han S Chase D Monk B Heitz F Burger R Gaba L Le V.L Guerra E Bender D. 17 Safety and patient-reported outcomes in patients receiving niraparib in the PRIMA/ENGOT-OV26/GOG-3012 trial. Inter. J. Gynecolog. Cancer 2020 30 3 A12 A13
    [Google Scholar]
  95. Coleman R.L. Fleming G.F. Brady M.F. Swisher E.M. Steffensen K.D. Friedlander M. Okamoto A. Moore K.N. Efrat Ben-Baruch N. Werner T.L. Cloven N.G. Oaknin A. DiSilvestro P.A. Morgan M.A. Nam J.H. Leath C.A. III Nicum S. Hagemann A.R. Littell R.D. Cella D. Baron-Hay S. Garcia-Donas J. Mizuno M. Bell-McGuinn K. Sullivan D.M. Bach B.A. Bhattacharya S. Ratajczak C.K. Ansell P.J. Dinh M.H. Aghajanian C. Bookman M.A. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N. Engl. J. Med. 2019 381 25 2403 2415 10.1056/NEJMoa1909707 31562800
    [Google Scholar]
  96. Moore K. Colombo N. Scambia G. Kim B.G. Oaknin A. Friedlander M. Lisyanskaya A. Floquet A. Leary A. Sonke G.S. Gourley C. Banerjee S. Oza A. González-Martín A. Aghajanian C. Bradley W. Mathews C. Liu J. Lowe E.S. Bloomfield R. DiSilvestro P. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 2018 379 26 2495 2505 10.1056/NEJMoa1810858 30345884
    [Google Scholar]
  97. Geethakumari R.P. Schiewer M.J. Knudsen K.E. Kelly W.K. PARP inhibitors in prostate cancer. Curr. Treat. Options Oncol. 2017 18 6 37 10.1007/s11864‑017‑0480‑2 28540598
    [Google Scholar]
  98. Bono d.J. Mateo J. Fizazi K. Saad F. Shore N. Sandhu S. Chi K.N. Sartor O. Agarwal N. Olmos D. Thiery-Vuillemin A. Twardowski P. Mehra N. Goessl C. Kang J. Burgents J. Wu W. Kohlmann A. Adelman C.A. Hussain M. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020 382 22 2091 2102 10.1056/NEJMoa1911440 32343890
    [Google Scholar]
  99. Fizazi K. Foulon S. Carles J. Roubaud G. McDermott R. Fléchon A. Tombal B. Supiot S. Berthold D. Ronchin P. Kacso G. Gravis G. Calabro F. Berdah J.F. Hasbini A. Silva M. Thiery-Vuillemin A. Latorzeff I. Mourey L. Laguerre B. Abadie-Lacourtoisie S. Martin E. Kouri E.C. Escande A. Rosello A. Magne N. Schlurmann F. Priou F. Chand-Fouche M.E. Freixa S.V. Jamaluddin M. Rieger I. Bossi A. PEACE-1 investigators Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet 2022 399 10336 1695 1707 10.1016/S0140‑6736(22)00367‑1 35405085
    [Google Scholar]
  100. Bono d.J.S. Mehra N. Scagliotti G.V. Castro E. Dorff T. Stirling A. Stenzl A. Fleming M.T. Higano C.S. Saad F. Buttigliero C. Oort v.I.M. Laird A.D. Mata M. Chen H.C. Healy C.G. Czibere A. Fizazi K. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): An open-label, phase 2 trial. Lancet Oncol. 2021 22 9 1250 1264 10.1016/S1470‑2045(21)00376‑4 34388386
    [Google Scholar]
  101. Jackson L.M. Moldovan G.C. Mechanisms of PARP 1 inhibitor resistance and their Implications for cancer Treatment. NAR Cancer 2022 4 4 zcac042
    [Google Scholar]
  102. Kim D. Nam H.J. PARP inhibitors: Clinical limitations and recent attempts to overcome them. Int. J. Mol. Sci. 2022 23 15 8412 10.3390/ijms23158412 35955544
    [Google Scholar]
  103. Collot T. Niogret J. Carnet M. Chevrier S. Humblin E. Favier L. Bengrine-lefevre L. Desmoulins I. Arnould L. Boidot R. PARP inhibitor resistance and TP53 mutations in patients treated with olaparib for BRCA-mutated cancer: Four case reports. Mol. Med. Rep. 2020 23 1 75 10.3892/mmr.2020.11713 33236159
    [Google Scholar]
  104. Carreira S. Porta N. Arce-Gallego S. Seed G. Llop-Guevara A. Bianchini D. Rescigno P. Paschalis A. Bertan C. Baker C. Goodall J. Miranda S. Riisnaes R. Figueiredo I. Ferraira A. Pereira R. Crespo M. Gurel B. Rodrigues T.N. Pettitt S.J. Yuan W. Serra V. Rekowski J . Lord C.J. Hall E. Mateo J. Bono d.J.S. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 2021 11 11 2812 2827 10.1158/2159‑8290.CD‑21‑0007
    [Google Scholar]
  105. Heeke A.L. Pishvaian M.J. Lynce F. Heeke A.L. Pishvaian M. Lynce F. Xiu J. Brody J.R. Chen W.J. Baker T.M. Marshall J.L. Isaacs C.S. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. 2018 2018 PO.17.00286 10.1200/PO.17.00286
    [Google Scholar]
  106. Peng Y. Liao Q. Tan W. Peng C. Hu Z. Chen Y. Li Z. Li J. Zhen B. Zhu W. Li X. Yao Y. Song Q. Liu C. Qi X. He F. Pei H. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat. Commun. 2019 10 1 1224 10.1038/s41467‑019‑09232‑8 30874560
    [Google Scholar]
  107. Rottenberg S Jaspers JE Kersbergen A Burg d.E High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA. 2008 105 44 17079e17084
    [Google Scholar]
  108. Kim H. Xu H. George E. Hallberg D. Kumar S. Jagannathan V. Medvedev S. Kinose Y. Devins K. Verma P. Ly K. Wang Y. Greenberg R.A. Schwartz L. Johnson N. Scharpf R.B. Mills G.B. Zhang R. Velculescu V.E. Brown E.J. Simpkins F. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat. Commun. 2020 11 1 3726 10.1038/s41467‑020‑17127‑2 32709856
    [Google Scholar]
  109. Foote K.M. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1- (methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): A potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J. Med. Chem. 2013 56 2125 2138 10.1021/jm301859s 23394205
    [Google Scholar]
  110. Kim H. George E. Ragland R.L. Rafail S. Zhang R. Krepler C. Morgan M.A. Herlyn M. Brown E.J. Simpkins F. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 2017 23 12 3097 3108 10.1158/1078‑0432.CCR‑16‑2273 27993965
    [Google Scholar]
  111. Yazinski S.A. Comaills V. Buisson R. Genois M.M. Nguyen H.D. Ho C.K. Kwan T.T. Morris R. Lauffer S. Nussenzweig A. Ramaswamy S. Benes C.H. Haber D.A. Maheswaran S. Birrer M.J. Zou L. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017 31 3 318 332 10.1101/gad.290957.116 28242626
    [Google Scholar]
  112. Karnitz L.M. Zou L. Molecular pathways: Targeting ATR in cancer therapy. Clin. Cancer Res. 2015 21 21 4780 4785 10.1158/1078‑0432.CCR‑15‑0479 26362996
    [Google Scholar]
  113. Ngoi N.Y.L. Pham M.M. Tan D.S.P. Yap T.A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 2021 7 10 930 957 10.1016/j.trecan.2021.06.002 34215565
    [Google Scholar]
  114. Jiao S. Xia W. Yamaguchi H. Wei Y. Chen M.K. Hsu J.M. Hsu J.L. Yu W.H. Du Y. Lee H.H. Li C.W. Chou C.K. Lim S.O. Chang S.S. Litton J. Arun B. Hortobagyi G.N. Hung M.C. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 2017 23 14 3711 3720 10.1158/1078‑0432.CCR‑16‑3215 28167507
    [Google Scholar]
  115. Vekariya U. Minakhin L. Chandramouly G. Tyagi M. Kent T. Sullivan-Reed K. Atkins J. Ralph D. Nieborowska-Skorska M. Kukuyan A.M. Tang H.Y. Pomerantz R.T. Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat. Commun. 2024 15 1 5822 10.1038/s41467‑024‑50158‑7 38987289
    [Google Scholar]
  116. Feng F.Y. Bono d.J.S. Rubin M.A. Knudsen K.E. Chromatin to clinic: The molecular rationale for PARP1 inhibitor function. Mol. Cell 2015 58 6 925 934 10.1016/j.molcel.2015.04.016 26091341
    [Google Scholar]
  117. Chand S.N. Zarei M. Schiewer M.J. Kamath A.R. Romeo C. Lal S. Cozzitorto J.A. Nevler A. Scolaro L. Londin E. Jiang W. Meisner-Kober N. Pishvaian M.J. Knudsen K.E. Yeo C.J. Pascal J.M. Winter J.M. Brody J.R. Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors. Cancer Res. 2017 77 18 5011 5025 10.1158/0008‑5472.CAN‑16‑2704 28687616
    [Google Scholar]
  118. Sun C. Fang Y. Yin J. Chen J. Ju Z. Zhang D. Chen X. Vellano C.P. Jeong K.J. Ng P.K.S. Eterovic A.K.B. Bhola N.H. Lu Y. Westin S.N. Grandis J.R. Lin S.Y. Scott K.L. Peng G. Brugge J. Mills G.B. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci. Transl. Med. 2017 9 392 eaal5148 10.1126/scitranslmed.aal5148 28566428
    [Google Scholar]
  119. Yang B. Li X. Fu Y. Guo E. Ye Y. Li F. Liu S. Xiao R. Liu C. Lu F. Huang J. Qin T. Han L. Peng G. Mills G.B. Sun C. Chen G. MEK inhibition remodels the immune landscape of mutant KRAS tumours to overcome resistance to PARP and immune checkpoint inhibitors. Cancer Res. 2021 81 10 2714 2729
    [Google Scholar]
  120. Szumilak M. Wiktorowska-Owczarek A. Stanczak A. Hybrid drugs—A strategy for overcoming anticancer drug resistance? Molecules 2021 26 9 2601 10.3390/molecules26092601 33946916
    [Google Scholar]
  121. Wei L. Wang M. Wang Q. Han Z. Dual targeting, a new strategy for novel PARP inhibitor discovery. Drug Discov. Ther. 2021 15 6 300 309 10.5582/ddt.2021.01100 35034923
    [Google Scholar]
  122. Juvekar A. Burga L.N. Hu H. Lunsford E.P. Ibrahim Y.H. Balmañà J. Rajendran A. Papa A. Spencer K. Lyssiotis C.A. Nardella C. Pandolfi P.P. Baselga J. Scully R. Asara J.M. Cantley L.C. Wulf G.M. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012 2 11 1048 1063 10.1158/2159‑8290.CD‑11‑0336 22915751
    [Google Scholar]
  123. Zhou S. Li D. Xiao D. Wu T. Inhibition of PKM2 enhances sensitivity of olaparib to ovarian cancer cells and induces DNA damage. Int. J. Biol. Sci. 2022 18 4 1555e1568
    [Google Scholar]
  124. Stewart R.A. Pilié P.G. Yap T.A. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 2018 78 24 6717 6725 10.1158/0008‑5472.CAN‑18‑2652 30498083
    [Google Scholar]
  125. Ofori S. Awuah S.G. Small-molecule poly(ADP-ribose) polymerase and PD-L1 inhibitor conjugates as dual-action anticancer agents. ACS Omega 2019 4 7 12584 12597 10.1021/acsomega.9b01106 31460379
    [Google Scholar]
  126. Yuan Z. Chen S. Chen C. Chen J. Chen C. Dai Q. Gao C. Jiang Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem. 2017 138 1135 1146 10.1016/j.ejmech.2017.07.050 28763648
    [Google Scholar]
  127. Gogola E. Duarte A.A. Ruiter d.J.R. Wiegant W.W. Schmid J.A. Bruijn d.R. James D.I. Llobet G.S. Vis D.J. Annunziato S. Broek d.v.B. Barazas M. Kersbergen A. Ven d.v.M. Tarsounas M. Ogilvie D.J. Vugt v.M. Wessels L.F.A. Bartkova J. Gromova I. Andújar-Sánchez M. Bartek J. Lopes M. Attikum v.H. Borst P. Jonkers J. Rottenberg S. Selective loss of parg restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 2018 33 6 1078 1093.e12 10.1016/j.ccell.2018.05.008 29894693
    [Google Scholar]
  128. Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020 34 5-6 360 394 10.1101/gad.334516.119 32029455
    [Google Scholar]
  129. Burslem G.M. Crews C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020 181 1 102 114 10.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  130. Alabi S.B. Crews C.M. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 2021 296 100647 10.1016/j.jbc.2021.100647 33839157
    [Google Scholar]
  131. Cao C. Yang J. Chen Y. Zhou P. Wang Y. Du W. Zhao L. Chen Y. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting chimera degrader of PARP1 for treating cancers. J. Med. Chem. 2020 63 19 11012 11033 10.1021/acs.jmedchem.0c00821 32924477
    [Google Scholar]
  132. Zhang Z. Chang X. Zhang C. Zeng S. Liang M. Ma Z. Wang Z. Huang W. Shen Z. Identification of probe-quality degraders for Poly(ADP-ribose) polymerase-1 (PARP-1). J. Enzyme Inhib. Med. Chem. 2020 35 1 1606 1615 10.1080/14756366.2020.1804382 32779949
    [Google Scholar]
  133. Zhao Q. Lan T. Su S. Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem. Commun. 2019 55 3 369 372 10.1039/C8CC07813K 30540295
    [Google Scholar]
  134. Fried W. Tyagi M. Minakhin L. Chandramouly G. Tredinnick T. Ramanjulu M. Auerbacher W. Calbert M. Rusanov T. Hoang T. Borisonnik N. Betsch R. Krais J.J. Wang Y. Vekariya U.M. Gordon J. Morton G. Kent T. Skorski T. Johnson N. Childers W. Chen X.S. Pomerantz R.T. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors. Nat. Commun. 2024 15 1 2862 10.1038/s41467‑024‑46593‑1 38580648
    [Google Scholar]
  135. Zatreanu D. Robinson H.M.R. Alkhatib O. Boursier M. Finch H. Geo L. Grande D. Grinkevich V. Heald R.A. Langdon S. Majithiya J. McWhirter C. Martin N.M.B. Moore S. Neves J. Rajendra E. Ranzani M. Schaedler T. Stockley M. Wiggins K. Brough R. Sridhar S. Gulati A. Shao N. Badder L.M. Novo D. Knight E.G. Marlow R. Haider S. Callen E. Hewitt G. Schimmel J. Prevo R. Alli C. Ferdinand A. Bell C. Blencowe P. Bot C. Calder M. Charles M. Curry J. Ekwuru T. Ewings K. Krajewski W. MacDonald E. McCarron H. Pang L. Pedder C. Rigoreau L. Swarbrick M. Wheatley E. Willis S. Wong A.C. Nussenzweig A. Tijsterman M. Tutt A. Boulton S.J. Higgins G.S. Pettitt S.J. Smith G.C.M. Lord C.J. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 2021 12 1 3636 10.1038/s41467‑021‑23463‑8 34140467
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128343916250212094926
Loading
/content/journals/dmbl/10.2174/0118723128343916250212094926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test