Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2949-6810
  • E-ISSN: 2949-6829

Abstract

Introduction

One of the world's most serious health issues is arsenic toxicity. Prolonged consumption of Arsenic contaminated water causes cognitive damage in the developing and adult brain. The present research investigated how sodium arsenite-induced neurotoxicity in SD rats was affected by rolipram, a PDE4 inhibitor, and vinpocetine, a PDE1 inhibitor.

Methods

The arsenic concentration was determined, which indicates the accumulation of arsenic in blood. The low weight of the brain indicates the adverse effects on the brain, which was significantly improved by rolipram and vinpocetine. Biochemical markers (MDA, GSH, CAT, and SOD) and protein expression of CREB and P-CREB were studied in the hippocampal region of the brain.

Results

The reduced antioxidant activity and elevated levels of inflammation were significantly improved by rolipram and vinpocetine administration. Additionally, rolipram and vinpocetine significantly increased the CREB and P-CREB expression in the hippocampi of rat brains.

Conclusion

PDE4 and PDE1 inhibition in arsenic-induced neurotoxicity could be a novel approach and a new drug therapy for arsenic-induced neurotoxicity.

Loading

Article metrics loading...

/content/journals/dmbl/10.2174/0118723128343703250103063848
2025-01-28
2025-04-13
Loading full text...

Full text loading...

References

  1. TolinsM. RuchirawatM. LandriganP. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure.Ann. Glob. Health201480430331410.1016/j.aogh.2014.09.005 25459332
    [Google Scholar]
  2. TylerC.R. AllanA.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review.Curr. Environ. Health Rep.20141213214710.1007/s40572‑014‑0012‑1 24860722
    [Google Scholar]
  3. BriffaJ. SinagraE. BlundellR. Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon202069e0469110.1016/j.heliyon.2020.e04691 32964150
    [Google Scholar]
  4. LiZ. LiuY. WangF. GaoZ. ElhefnyM.A. HabottaO.A. MoneimA.A.E. KassabR.B. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis.Chem. Biol. Interact.202133710939210.1016/j.cbi.2021.109392 33497687
    [Google Scholar]
  5. KucukkurtI. InceS. DemirelH.H. TurkmenR. AkbelE. CelikY. The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats.J. Biochem. Mol. Toxicol.2015291256457110.1002/jbt.21729 26184899
    [Google Scholar]
  6. AzevedoM.F. FauczF.R. BimpakiE. HorvathA. LevyI. AlexandreD.R.B. AhmadF. ManganielloV. StratakisC.A. Clinical and molecular genetics of the phosphodiesterases (PDEs).Endocr. Rev.201435219523310.1210/er.2013‑1053 24311737
    [Google Scholar]
  7. WangH. XuJ. LazaroviciP. QuirionR. ZhengW. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia.Front. Mol. Neurosci.20181125510.3389/fnmol.2018.00255 30214393
    [Google Scholar]
  8. TibboA.J. BaillieG.S. Phosphodiesterase 4B: Master regulator of brain signaling.Cells202095125410.3390/cells9051254 32438615
    [Google Scholar]
  9. SchreiberR. HollandsR. BloklandA. A mechanistic rationale for PDE-4 inhibitors to treat residual cognitive deficits in acquired brain injury.Curr. Neuropharmacol.202018318820110.2174/1570159X17666191010103044 31660837
    [Google Scholar]
  10. YuH. ZouZ. ZhangX. PengW. ChenC. YeY. XuJ. WangH. Inhibition of phosphodiesterase 4 by FCPR03 alleviates lipopolysaccharide-induced depressive-like behaviors in mice: Involvement of p38 and JNK signaling pathways.Int. J. Mol. Sci.201819251310.3390/ijms19020513 29419799
    [Google Scholar]
  11. XuB. QinY. LiD. CaiN. WuJ. JiangL. JieL. ZhouZ. XuJ. WangH. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway.Redox Biol.20202810134210.1016/j.redox.2019.101342 31639651
    [Google Scholar]
  12. TibboA.J. TejedaG.S. BaillieG.S. Understanding PDE4's function in Alzheimer’s disease; A target for novel therapeutic approaches.Biochem. Soc. Trans.20194751557156510.1042/BST20190763 31642904
    [Google Scholar]
  13. ShangY. WangL. LiY. GuP. Vinpocetine improves scopolamine induced learning and memory dysfunction in C57 BL/6J mice.Biol. Pharm. Bull.20163991412141810.1248/bpb.b15‑00881 27334578
    [Google Scholar]
  14. ZhangY. LiJ. YanC. An update on vinpocetine: New discoveries and clinical implications.Eur. J. Pharmacol.2018819303410.1016/j.ejphar.2017.11.041 29183836
    [Google Scholar]
  15. SunH. YangY. ShaoH. SunW. GuM. WangH. JiangL. QuL. SunD. GaoY. Sodium arsenite-induced learning and memory impairment is associated with endoplasmic reticulum stress-mediated apoptosis in rat hippocampus.Front. Mol. Neurosci.20171028610.3389/fnmol.2017.00286 28936164
    [Google Scholar]
  16. ZhangW. FengH. GaoY. SunL. WangJ. LiY. WangC. ZhaoL. HuX. SunH. WeiY. SunD. Role of pigment epithelium-derived factor (PEDF) in arsenic-induced cell apoptosis of liver and brain in a rat model.Biol. Trace Elem. Res.2013151226927610.1007/s12011‑012‑9558‑7 23229538
    [Google Scholar]
  17. CallaghanC.K. O’MaraS.M. Long-term cognitive dysfunction in the rat following docetaxel treatment is ameliorated by the phosphodiesterase-4 inhibitor, rolipram.Behav. Brain Res.2015290848910.1016/j.bbr.2015.04.044 25940764
    [Google Scholar]
  18. GuoH. ChengY. WangC. WuJ. ZouZ. NiuB. YuH. WangH. XuJ. FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/CREB signaling and anti-inflammatory effects.Neuropharmacology201711626026910.1016/j.neuropharm.2017.01.004 28065587
    [Google Scholar]
  19. ShekarianM. KomakiA. ShahidiS. SarihiA. SalehiI. RaoufiS. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide.Behav. Brain Res.202038311251210.1016/j.bbr.2020.112512 31991177
    [Google Scholar]
  20. ZhuoY. GuoH. ChengY. WangC. WangC. WuJ. ZouZ. GanD. LiY. XuJ. Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25–35 in rats.Metab. Brain Dis.201631477979110.1007/s11011‑016‑9814‑1 26920899
    [Google Scholar]
  21. KotaniS. YamauchiT. TeramotoT. OguraH. Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis.Chem. Biol. Interact.20081751-322723010.1016/j.cbi.2008.04.004 18501884
    [Google Scholar]
  22. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  23. SharmaA. KshetrimayumC. SadhuH.G. KumarS. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants vitamin E and coenzyme Q10.Environ. Sci. Pollut. Res. Int.20182524239462395310.1007/s11356‑018‑2398‑z 29948670
    [Google Scholar]
  24. KakkarP. DasB. ViswanathanP.N. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys.1984212130132 6490072
    [Google Scholar]
  25. ChandravanshiL.P. GuptaR. ShuklaR.K. Developmental neurotoxicity of arsenic: Involvement of oxidative stress and mitochondrial functions.Biol. Trace Elem. Res.2018186118519810.1007/s12011‑018‑1286‑1 29502250
    [Google Scholar]
  26. ClaiborneA.J.F.C.P. Handbook of Methods for Oxygen Radical Research. Florida.Boca RatonCRC Press1985283284
    [Google Scholar]
  27. BuegeJ.A. AustS.D. Microsomal lipid peroxidation.Methods Enzymol.19785230231010.1016/S0076‑6879(78)52032‑6 672633
    [Google Scholar]
  28. SinghM.K. YadavS.S. YadavR.S. ChauhanA. KatiyarD. KhattriS. Protective effect of Emblica-officinalis in arsenic induced biochemical alteration and inflammation in mice.Springerplus20154143810.1186/s40064‑015‑1227‑9 26312203
    [Google Scholar]
  29. BurnetteW.N. “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Anal. Biochem.1981112219520310.1016/0003‑2697(81)90281‑5 6266278
    [Google Scholar]
  30. FirdausF. ZafeerM.F. AnisE. AhmadM. AfzalM. Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis.Toxicol. Rep.2018541141710.1016/j.toxrep.2018.02.017 29854611
    [Google Scholar]
  31. ForkanA.M. IslamS. AkterR. AlamS.S. KhaledaL. RahmanZ. ChowdhuryS.D.U. A sub-chronic exposure study of arsenic on hematological parameters, liver enzyme activities, histological studies and accumulation pattern of arsenic in organs of Wistar albino rats.J. Cytol. Histol. S.20165217
    [Google Scholar]
  32. TwaddleN.C. VanlandinghamM. FisherJ.W. DoergeD.R. Metabolism and disposition of arsenic species from controlled dosing with sodium arsenite in adult female CD-1 mice. III. Toxicokinetic studies following oral and intravenous administration.Food Chem. Toxicol.201812167668610.1016/j.fct.2018.09.068 30278242
    [Google Scholar]
  33. LiJ. GuoY. DuanX. LiB. Tissue-and region-specific accumulation of arsenic species, especially in the brain of mice, after long-term arsenite exposure in drinking water.Biol. Trace Elem. Res.2020198116817610.1007/s12011‑020‑02033‑x 31925743
    [Google Scholar]
  34. PeñaS.L.C. PetrosyanP. MoralesM. GonzálezN.B. OspinaG.G. RazoD.L.M. GonsebattM.E. Arsenic species, AS3MT amount, and AS3MT gen expression in different brain regions of mouse exposed to arsenite.Environ. Res.2010110542843410.1016/j.envres.2010.01.007 20138265
    [Google Scholar]
  35. LiJ. DuanX. DongD. ZhangY. ZhaoL. LiW. ChenJ. SunG. LiB. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite.J. Trace Elem. Med. Biol.201743152210.1016/j.jtemb.2016.10.002 27745987
    [Google Scholar]
  36. A, H.; Ahmed, M.G.; Manikoth, S. Mechanism behind arsenic induced neurotoxicity with emphasis on neural-protein expression.J. Indian Soc. Toxicol.2019151343810.31736/jist/v15.i1.2019.34‑38
    [Google Scholar]
  37. NiñoS.A. MartínezM.A. AhumadaC.E. CarrizalesL. DelgadoS.R. SeverianoP.F. CintraD.S. CapdevilleJ.M.E. ZarazúaS. Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model.ACS Chem. Neurosci.201910132333610.1021/acschemneuro.8b00278 30141907
    [Google Scholar]
  38. EdwardsM. JohnsonL. MauerC. BarberR. HallJ. O’BryantS. Regional specific groundwater arsenic levels and neuropsychological functioning: A cross-sectional study.Int. J. Environ. Health Res.201424654655710.1080/09603123.2014.883591 24506178
    [Google Scholar]
  39. ArmentaM.M. RuízN.C. RebollarJ.D. MartínezR.E. GómezY.P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy.Oxid. Med. Cell. Longev.2014201411210.1155/2014/293689 25614776
    [Google Scholar]
  40. PiccaA. CalvaniR. JuniorC.H.J. LandiF. BernabeiR. MarzettiE. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration.Antioxidants20209864710.3390/antiox9080647 32707949
    [Google Scholar]
  41. SrivastavaP. DhuriyaY.K. KumarV. SrivastavaA. GuptaR. ShuklaR.K. YadavR.S. DwivediH.N. PantA.B. KhannaV.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin.Neurotoxicology20186719020510.1016/j.neuro.2018.04.018 29723552
    [Google Scholar]
  42. LiuX. WangJ. N-methyl-d-aspartate receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure.Neuroscience202249830031010.1016/j.neuroscience.2022.07.017 35905926
    [Google Scholar]
  43. XuM. RuiD. YanY. XuS. NiuQ. FengG. WangY. LiS. JingM. Oxidative damage induced by arsenic in mice or rats: A systematic review and meta-analysis.Biol. Trace Elem. Res.2017176115417510.1007/s12011‑016‑0810‑4 27498811
    [Google Scholar]
  44. DuanX. GaoS. LiJ. WuL. ZhangY. LiW. ZhaoL. ChenJ. YangS. SunG. LiB. Acute arsenic exposure induces inflammatory responses and CD4+ T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2.Mol. Immunol.20178116017210.1016/j.molimm.2016.12.005 27978490
    [Google Scholar]
  45. ChoudhuryS. GuptaP. GhoshS. MukherjeeS. ChakrabortyP. ChatterjiU. ChattopadhyayS. Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses.Toxicology2016357-358859610.1016/j.tox.2016.06.005 27289040
    [Google Scholar]
  46. YanN. XuG. ZhangC. LiuX. LiX. SunL. WangD. DuanX. LiB. Chronic arsenic exposure induces the time-dependent modulation of inflammation and immunosuppression in spleen.Cell Biosci.20201019110.1186/s13578‑020‑00448‑6 32760496
    [Google Scholar]
  47. ReddyP.S. RaniG.P. SainathS.B. MeenaR. SupriyaC. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice.J. Trace Elem. Med. Biol.201125424725310.1016/j.jtemb.2011.08.145 21924885
    [Google Scholar]
  48. HeZ. ZhangY. ZhangH. ZhouC. MaQ. DengP. LuM. MouZ. LinM. YangL. LiY. YueY. PiH. LuY. HeM. ZhangL. ChenC. ZhouZ. YuZ. NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in oli-neu cells.Ecotoxicol. Environ. Saf.202122311255410.1016/j.ecoenv.2021.112554 34332247
    [Google Scholar]
  49. GermolecD.R. ShipkowskiK.A. FrawleyR.P. EvansE. Markers of inflammation.Methods Protoc.20181803577910.1007/978‑1‑4939‑8549‑4_5
    [Google Scholar]
  50. AnsarW. GhoshS. AnsarW. GhoshS. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. Biol. C React.Prot. Health Dis.2016246710
    [Google Scholar]
  51. PrakashC. SoniM. KumarV. Biochemical and molecular alterations following arsenic-induced oxidative stress and mitochondrial dysfunction in rat brain.Biol. Trace Elem. Res.2015167112112910.1007/s12011‑015‑0284‑9 25764338
    [Google Scholar]
  52. KrishnaG. Developmental neurotoxicity: Insights into the neuro-development and behavior. In: A Closer Look at Neurotoxicity.Nova Science Pub Inc.2019
    [Google Scholar]
  53. ZhaoF. LiaoY. TangH. PiaoJ. WangG. JinY. Effects of developmental arsenite exposure on hippocampal synapses in mouse offspring.Metallomics20179101394141210.1039/C7MT00053G 28901367
    [Google Scholar]
  54. QuL. GaoY. SunH. WangH. LiuX. SunD. Role of PTEN-Akt-CREB signaling pathway in nervous system impairment of rats with chronic arsenite exposure.Biol. Trace Elem. Res.2016170236637210.1007/s12011‑015‑0478‑1 26296331
    [Google Scholar]
  55. KimH.K. KwonJ.Y. YooC. AbdiS. The analgesic effect of rolipram, a phosphodiesterase 4 inhibitor, on chemotherapy-induced neuropathic pain in rats.Anesth. Analg.2015121382282810.1213/ANE.0000000000000853 26214551
    [Google Scholar]
  56. LiQ.Q. ShiG.X. YangJ.W. LiZ.X. ZhangZ.H. HeT. WangJ. LiuL.Y. LiuC.Z. Hippocampal cAMP/PKA/CREB is required for neuroprotective effect of acupuncture.Physiol. Behav.201513948249010.1016/j.physbeh.2014.12.001 25481359
    [Google Scholar]
  57. ZhongY. ChenJ. LiL. QinY. WeiY. PanS. JiangY. ChenJ. XieY. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.Brain Res.20181691647410.1016/j.brainres.2018.04.022 29684336
    [Google Scholar]
  58. NarasimhamurthyR.K. AndradeD. MumbrekarK.D. Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity.Mol. Cell. Biochem.2022477112581259310.1007/s11010‑022‑04472‑7 35596844
    [Google Scholar]
  59. ZhengC.X. LuM. GuoY.B. ZhangF.X. LiuH. GuoF. HuangX.L. HanX.H. Electroacupuncture ameliorates learning and memory and improves synaptic plasticity via activation of the PKA/CREB signaling pathway in cerebral hypoperfusion.Evid. Based Compl. Alt. Med.20162016789371010.1155/2016/7893710
    [Google Scholar]
  60. DongY. PuK. DuanW. ChenH. ChenL. WangY. Involvement of Akt/CREB signaling pathways in the protective effect of EPA against interleukin-1β-induced cytotoxicity and BDNF down-regulation in cultured rat hippocampal neurons.BMC Neurosci.20181915210.1186/s12868‑018‑0455‑7 30189852
    [Google Scholar]
  61. NazirS. AnwarF. SaleemU. AhmadB. RazaZ. SanawarM. RehmanA. IsmailT. Drotaverine inhibitor of PDE4: Reverses the streptozotocin induced Alzheimer’s disease in mice.Neurochem. Res.20214671814182910.1007/s11064‑021‑03327‑9 33877499
    [Google Scholar]
  62. DeshmukhR. SharmaV. MehanS. SharmaN. BediK.L. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine — A PDE1 inhibitor.Eur. J. Pharmacol.20096201-3495610.1016/j.ejphar.2009.08.027 19699735
    [Google Scholar]
  63. DubeyA. KumarN. MishraA. SinghY. TiwariM. Review on vinpocetine.Int. J. Pharm. Life Sci.202011565906597
    [Google Scholar]
  64. GuptaS. SharmaB. Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntington׳s disease.Eur. J. Pharmacol.201473211112210.1016/j.ejphar.2014.03.032 24690258
    [Google Scholar]
  65. KuraishyA.H. GareebA.A. NamiA.M. Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury.Int. J. Prev. Med.201910114210.4103/ijpvm.IJPVM_5_19 31516683
    [Google Scholar]
  66. XuY. DengC. ZhengY. LiuN. FuB. Applying vinpocetine to reverse synaptic ultrastructure by regulating BDNF-related PSD-95 in alleviating schizophrenia-like deficits in rat.Compr. Psychiatry20199415212210.1016/j.comppsych.2019.152122 31473552
    [Google Scholar]
  67. HallM. ChenY. AhsanH. SlavkovichV. GeenV.A. ParvezF. GrazianoJ. Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study.Toxicology20062252-322523310.1016/j.tox.2006.06.010 16860454
    [Google Scholar]
/content/journals/dmbl/10.2174/0118723128343703250103063848
Loading
/content/journals/dmbl/10.2174/0118723128343703250103063848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test