- Home
- A-Z Publications
- Recent Patents on Drug Delivery & Formulation
- Previous Issues
- Volume 6, Issue 2, 2012
Recent Patents on Drug Delivery & Formulation - Volume 6, Issue 2, 2012
Volume 6, Issue 2, 2012
-
-
Recent Overview of Ocular Patents
Authors: Ripal J. Gaudana, Mitan R. Gokulgandhi, Sai H.S. Boddu and Ashim K. MitraOcular drug therapy has always been considered as a major challenge in the field of drug delivery. The presence of blood ocular barriers and efflux pumps has imposed a great concern as well. Various vision threatening disorders require a long term therapy of drug molecules, especially for the diseases that affect the posterior segment. Pharmaceutical companies and other research institutes have adopted a multidisciplinary approach to meet the current challenges which is evidenced by the trends seen in the published and filed U.S. patents. Various strategies have been employed to achieve long term sustained and targeted delivery for both the anterior and the posterior segments of the ocular diseases. These strategies include formulating drugs into implant, micro or nanoparticulate systems and hydrogel-based systems. Transporter targeted approach has also allowed scientists to deliver drugs to both the segments of the eye. Recent developments such as delivery of drugs utilizing ultrasound, iontophoresis and microneedle based devices have been promising. Genebased therapeutics has opened a new avenue for vision threatening disorders. In all, the current developments in the entire field have been very exciting for finding out new strategies to treat vision threatening disorders.
-
-
-
Structural and Functional Properties, Chaperone Activity and Posttranslational Modifications of Alpha-Crystallin and its Related Subunits in the Crystalline Lens: N-acetylcarnosine, Carnosine and Carcinine act as Alpha- Crystallin/Small Heat Shock Protein Enhancers in Prevention and Dissolution of Cataract in Ocular Drug Delivery Formulations of Novel Therapeutic Agents
More LessCataract is a leading cause of blindness worldwide and is responsible for ∼40-80% of the estimated 45 million cases of blindness that occur across the globe. In addition to providing refractive properties to the lens for focusing the image, it is believed that the molecular chaperone function of α-crystallin is essential in preventing the light scattering due to aggregation of other proteins and thus in the maintenance of lens transparency and thereby prevention of cataract. By now, it is fairly acknowledged that chaperoning ability of α-crystallin is instrumental in the maintenance of crystalline lens transparency, and decreased chaperone-like activity of α-crystallin is associated with various types and stages of cataract. A better pharmacological targeting of safeguarding the α-crystallin chaperone activity may aid the development of therapeutic strategies that could evade the need for cataract surgery and revive lens transparency of the cataractous lenses. This article originally summarizes the significance of modulation and enhancing of α-crystallin chaperone activity with imidazole-containing dipeptides N-acetylcarnosine, carnosine and carcinine in consequence to prevent, delay or dissolve the human cataract. A growing evidence and discussion of recent patents are presented in this study that demonstrate the ability of N-acetylcarnosine (lubricant eye drops) or carcinine (lubricant eye drops) (universal antioxidant and deglycation agent) resistant to enzymatic hydrolysis with carnosinase to act as pharmacological chaperones, to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, age-related macular degeneration (AMD) and ocular complications of diabetes (OCD). The therapeutic strategies are highlighted in the study for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human age-related eye disease, such as cataracts and advanced glycation tissue proteins - engineered systems.
-
-
-
Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine
Authors: Xiaofeng Cui, Thomas Boland, Darryl D.D'Lima and Martin K. LotzWith the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field.
-
-
-
Recent Advances in Chitosan Films for Controlled Release of Drugs
Authors: Luciano N. Mengatto, Ignacio M. Helbling and Julio A. LunaChitosan is a versatile carrier for biologically active agent from a small molecule such as an antibiotic to macromolecules such as proteins and nucleic acids. In addition, drug delivery devices based on chitosan can be available in a variety of morphologies including films, fibers, nanoparticles and microspheres. Otherwise the inherent advantages of this polymer such as biocompatibility, tissue adhesions and hydrophilic nature, chitosan can be modified to accomplish a specific purpose, for example improves release kinetics. In this review, recent patents of chitosan-based film systems for drug delivery are presented and discussed. This review include matrix type systems, membrane coated systems and film forming solution. For each one of these systems, several examples of manufacture processes, bioactive agents to be delivered and specifics applications are considered. This work highlights the use of chitosan in the film technology for drug delivery, presenting examples of chitosan used in an unmodified state and examples of modifications of the polymer backbone.
-
-
-
Chronomodulated Delivery System: a Tailored Cap to Fit Different Heads
Authors: Vaibhav Agarwal and Mayank Bansal“Blind race ends in a pit”. A similar scenario is observed with the use of conventional dosage forms for different pathological conditions. Of late various disease states had regularly been reported to bear direct concurrence to the body’s secretions that bear a constant rotationary cycle. Moreover the pharmacokinetic as well as pharmacodynamic responsiveness of various drugs had been reported to bear constant swings with the changing hours of the day. Thus, usage of the conventional zero order dosage form for every disease state or every active moiety developed, will only leave the researchers as well as the consumers in doldrums. Chronomodulated dosage forms are a silver lining in these overshadowed clouds. They are the dosage forms that spearhead the innovative researches because of their pre-programmed and pre-regulated pulsed release of the drug, at desired sites. Drug release pattern from these dosage forms considerably mimics the circadian timing of the body’s secretion which are held responsible for the symptoms of the pathological irregularities arising in one’s body. Thus, in a way these dosage forms are a shield against the inducers of the disease symptoms. Current review enlists the pathological states for which the chronomodulated delivery systems can prove to be a miraculous cure. This review emphasizes to summarize the patents granted as well as the novel researches undertaken by various researchers to upgrade the previously existing dosage form scenario. Moreover, this work is an attempt to summarize the various proprietary techniques and marketed formulations, thus trying to help the researchers to fabricate a better and novel dosage form from previously existing ones.
-
-
-
Patent Selections
More LessThe patents annotated in this section have been selected from various patent databases. These recent patents are relevant to the articles published in this journal issue, categorized by therapeutic areas/targets and therapeutic agents related to drug delivery and formulations.
-