Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611370569241221155617
2024-12-26
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/cvp/23/2/CVP-23-2-01.html?itemId=/content/journals/cvp/10.2174/0115701611370569241221155617&mimeType=html&fmt=ahah

References

  1. ZacharyI. MorganR.D. Therapeutic angiogenesis for cardiovascular disease: Biological context, challenges, prospects.Heart201197318118910.1136/hrt.2009.18041420884790
    [Google Scholar]
  2. QuillardT. FranckG. MawsonT. FolcoE. LibbyP. Mechanisms of erosion of atherosclerotic plaques.Curr. Opin. Lipidol.201728543444110.1097/MOL.000000000000044028682809
    [Google Scholar]
  3. SopelM.J. RosinN.L. LeeT.D.G. LégaréJ.F. Myocardial fibrosis in response to Angiotensin II is preceded by the recruitment of mesenchymal progenitor cells.Lab. Invest.201191456557810.1038/labinvest.2010.19021116240
    [Google Scholar]
  4. LiJ. ZhaoY. ZhuW. Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review).Exp. Ther. Med.20212316410.3892/etm.2021.1098634934435
    [Google Scholar]
  5. ShibuyaM. Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies.Genes Cancer20112121097110510.1177/194760191142303122866201
    [Google Scholar]
  6. XiaJ.B. WuH.Y. LaiB.L. Gene delivery of hypoxia-inducible VEGF targeting collagen effectively improves cardiac function after myocardial infarction.Sci. Rep.2017711327310.1038/s41598‑017‑13547‑129038511
    [Google Scholar]
  7. AkilA. Gutiérrez-GarcíaA.K. GuenterR. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: An update and prospective.Front. Cell Dev. Biol.2021964235210.3389/fcell.2021.64235233681228
    [Google Scholar]
  8. MünzbergH. SinghP. HeymsfieldS.B. YuS. MorrisonC.D. Recent advances in understanding the role of leptin in energy homeostasis.F1000 Res.20209F100010.12688/f1000research.24260.132518627
    [Google Scholar]
  9. DeckC.A. HoneycuttJ.L. CheungE. ReynoldsH.M. BorskiR.J. Assessing the functional role of leptin in energy homeostasis and the stress response in vertebrates.Front. Endocrinol. (Lausanne)201786310.3389/fendo.2017.0006328439255
    [Google Scholar]
  10. ObradovicM. Sudar-MilovanovicE. SoskicS. Leptin and obesity: Role and clinical implication.Front. Endocrinol. (Lausanne)20211258588710.3389/fendo.2021.58588734084149
    [Google Scholar]
  11. YangW.H. ChangA.C. WangS.W. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.Sci. Rep.2016612864710.1038/srep2864727345723
    [Google Scholar]
  12. YangW.H. ChenJ.C. HsuK.H. Leptin increases VEGF expression and enhances angiogenesis in human chondrosarcoma cells.Biochim. Biophys. Acta, Gen. Subj.20141840123483349310.1016/j.bbagen.2014.09.01225230157
    [Google Scholar]
  13. MukherjeeT. PattnaikA. SahuS.S. Analyzing VEGFA/VEGFR1 interaction: Application of the resonant recognition model-stockwell transform method to explore potential therapeutics for angiogenesis-related diseases.Protein J.202443469771010.1007/s10930‑024‑10219‑839014261
    [Google Scholar]
  14. MahapatraS. SahuS.S. Integrating resonant recognition model and stockwell transform for localization of hotspots in tubulin.IEEE Trans. Nanobiosci.202120334535310.1109/TNB.2021.307771033950844
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611370569241221155617
Loading
/content/journals/cvp/10.2174/0115701611370569241221155617
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test