Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Cardioimmunology is an emerging branch of medicine whose development has been facilitated by more sophisticated diagnostic procedures. Recent studies have mainly focused on the immune response during myocardial infarction (MI), and there is evidence that both resident and external immune cells participate in acute inflammatory disease, as well as tissue remodeling. Following MI, macrophages, dendritic cells (DCs) and mast cells (MCs) are the main players in the heart. Under steady-state conditions, cardiac resident macrophages (CRMs) protect the heart against stress and infectious events, being involved in cell and matrix turnover, as well as phagocytosis of apoptotic cells. Moreover, CRMs contribute to the resolution of inflammation release of interleukin (IL)-10, and efferocytosis of dying cells. Conversely, CCR2+ monocyte-derived macrophages promote inflammation in the acute phase of myocardial damage, with the release of pro-inflammatory cytokines. Conventional (c) DCs possess enhanced capacity to present antigens to T lymphocytes. In MI patient autopsies, massive infiltration of T helper (Th) cells and CDs has been detected in the myocardium. Cardiac MCs play a dual role during MI, with the production of cytokines for early inflammatory response, and the release of anti-inflammatory cytokines, IL10 and IL-13 during the resolution phase. In experimental coronary artery ligation, the myocardium is infiltrated with Th1, Th2, Th17, and T regulatory (TREG) cells, which participate in the acute inflammation. In cardiac repair, T cell reparative response is mediated by TREG cells, with improved ventricular remodeling and function post-ischemia. this review, emphasis will be placed on the innate and adaptive immune response during and post-MI. At the same time, immunotherapy-based cardiac failure following chimeric antigen receptor T-cell and immune checkpoint inhibitory therapy will be pointed out.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611325234241202073459
2025-01-10
2025-05-25
Loading full text...

Full text loading...

References

  1. PanahiM. PapanikolaouA. TorabiA. Immunomodulatory interventions in myocardial infarction and heart failure: A systematic review of clinical trials and meta-analysis of IL-1 inhibition.Cardiovasc. Res.2018114111445146110.1093/cvr/cvy145 30010800
    [Google Scholar]
  2. BouvainP. DingZ. KadirS. Non-invasive mapping of systemic neutrophil dynamics upon cardiovascular injury.Nat Cardiovasc Res20232212614310.1038/s44161‑022‑00210‑w 39196054
    [Google Scholar]
  3. SattlerS. Campos RamosG. LudewigB. RainerP.P. Cardioimmunology: The new frontier!Eur. Heart J.202344262355235710.1093/eurheartj/ehad230 37165516
    [Google Scholar]
  4. ForteE. PerkinsB. SintouA. Cross-priming dendritic cells exacerbate immunopathology after ischemic tissue damage in the heart.Circulation2021143882183610.1161/CIRCULATIONAHA.120.044581 33297741
    [Google Scholar]
  5. NgwenyamaN. KaurK. BuggD. Antigen presentation by cardiac fibroblasts promotes cardiac dysfunction.Nat Cardiovasc Res20221876177410.1038/s44161‑022‑00116‑7 36092510
    [Google Scholar]
  6. ZerneckeA. WeberC. Chemokines in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201434474275010.1161/ATVBAHA.113.301655 24436368
    [Google Scholar]
  7. KuppeC. Ramirez FloresR.O. LiZ. Spatial multi-omic map of human myocardial infarction.Nature2022608792476677710.1038/s41586‑022‑05060‑x 35948637
    [Google Scholar]
  8. SteffensS. NahrendorfM. MadonnaR. Immune cells in cardiac homeostasis and disease: Emerging insights from novel technologies.Eur. Heart J.202243161533154110.1093/eurheartj/ehab842 34897403
    [Google Scholar]
  9. TawakolA. IshaiA. TakxR.A.P. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study.Lancet20173891007183484510.1016/S0140‑6736(16)31714‑7 28088338
    [Google Scholar]
  10. NahrendorfM. Myeloid cell contributions to cardiovascular health and disease.Nat. Med.201824671172010.1038/s41591‑018‑0064‑0 29867229
    [Google Scholar]
  11. CaiatiC. JirilloE. Novel trends on the pathogenesis of cardiovascular diseases and potential therapeutic applications: A perspective.Endocr. Metab. Immune Disord. Drug Targets202323121480148210.2174/1871530323666230503094723 37138417
    [Google Scholar]
  12. CaiatiC. JirilloE. Pathogenesis of the left ventricular diastolic dysfunction: The immune system keeps playing at the backstage.Endocr. Metab. Immune Disord. Drug Targets2024242173177
    [Google Scholar]
  13. BarronH.V. CannonC.P. MurphyS.A. BraunwaldE. GibsonC.M. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: A thrombolysis in myocardial infarction 10 substudy.Circulation2000102192329233410.1161/01.CIR.102.19.2329 11067784
    [Google Scholar]
  14. SwirskiF.K. NahrendorfM. Cardioimmunology: The immune system in cardiac homeostasis and disease.Nat. Rev. Immunol.2018181273374410.1038/s41577‑018‑0065‑8 30228378
    [Google Scholar]
  15. LazzeriniP.E. Laghi-PasiniF. BoutjdirM. CapecchiP.L. Cardioimmunology of arrhythmias: The role of autoimmune and inflammatory cardiac channelopathies.Nat. Rev. Immunol.2019191636410.1038/s41577‑018‑0098‑z 30552387
    [Google Scholar]
  16. XiaoG.Q. HuK. BoutjdirM. Direct inhibition of expressed cardiac l- and t-type calcium channels by igg from mothers whose children have congenital heart block.Circulation2001103111599160410.1161/01.CIR.103.11.1599 11257091
    [Google Scholar]
  17. KarnabiE. QuY. WadgaonkarR. Congenital heart block: Identification of autoantibody binding site on the extracellular loop (domain I, S5–S6) of α1D L-type Ca channel.J. Autoimmun.2010342808610.1016/j.jaut.2009.06.005 19640679
    [Google Scholar]
  18. KorkmazS. ZitronE. BangertA. Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats.J. Am. Coll. Cardiol.201362434034910.1016/j.jacc.2013.04.041 23684688
    [Google Scholar]
  19. YueY. CastrichiniM. SrivastavaU. Pathogenesis of the novel autoimmune-associated long-QT syndrome.Circulation2015132423024010.1161/CIRCULATIONAHA.115.009800 25995318
    [Google Scholar]
  20. LazzeriniP.E. YueY. SrivastavaU. Arrhythmogenicity of anti-Ro/SSA antibodies in patients with torsades de pointes.Circ. Arrhythm. Electrophysiol.201694e00341910.1161/CIRCEP.115.003419 27030700
    [Google Scholar]
  21. LazzeriniP.E. CapecchiP.L. El-SherifN. Laghi-PasiniF. BoutjdirM. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies.J. Am. Heart Assoc.2018722e01059510.1161/JAHA.118.010595 30571503
    [Google Scholar]
  22. HuangS. FrangogiannisN.G. Anti‐inflammatory therapies in myocardial infarction: Failures, hopes and challenges.Br. J. Pharmacol.201817591377140010.1111/bph.14155 29394499
    [Google Scholar]
  23. PiotC. CroisilleP. StaatP. Effect of cyclosporine on reperfusion injury in acute myocardial infarction.N. Engl. J. Med.2008359547348110.1056/NEJMoa071142 18669426
    [Google Scholar]
  24. ThorpE.B. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction.J. Clin. Invest.202313318e17195310.1172/JCI171953
    [Google Scholar]
  25. EpelmanS. LavineK.J. BeaudinA.E. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.Immunity20144019110410.1016/j.immuni.2013.11.019 24439267
    [Google Scholar]
  26. HeidtT. CourtiesG. DuttaP. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction.Circ. Res.2014115228429510.1161/CIRCRESAHA.115.303567 24786973
    [Google Scholar]
  27. DickS.A. WongA. HamidzadaH. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles.Sci. Immunol.2022767eabf777710.1126/sciimmunol.abf7777 34995099
    [Google Scholar]
  28. HarariE. GuoL. SmithS.L. BraumannR.E. VirmaniR. FinnA.V. Heart-resident macrophages: Are they involved in the rhythm of every beat?J. Thorac. Dis.2017982264226710.21037/jtd.2017.07.43 28932520
    [Google Scholar]
  29. HulsmansM. ClaussS. XiaoL. Macrophages facilitate electrical conduction in the heart.Cell20171693510522.e2010.1016/j.cell.2017.03.050 28431249
    [Google Scholar]
  30. HulinA. AnstineL.J. KimA.J. Macrophage transitions in heart valve development and myxomatous valve disease.Arterioscler. Thromb. Vasc. Biol.201838363664410.1161/ATVBAHA.117.310667 29348122
    [Google Scholar]
  31. GomezI. DuvalV. SilvestreJ.S. Cardiomyocytes and macrophages discourse on the method to govern cardiac repair.Front. Cardiovasc. Med.2018513410.3389/fcvm.2018.00134 30333983
    [Google Scholar]
  32. FrangogiannisN.G. Emerging roles for macrophages in cardiac injury: Cytoprotection, repair, and regeneration.J. Clin. Invest.201512582927293010.1172/JCI83191 26214519
    [Google Scholar]
  33. WangW.E. LiL. XiaX. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury.Circulation2017136983484810.1161/CIRCULATIONAHA.116.024307 28642276
    [Google Scholar]
  34. LeorJ. PalevskiD. AmitU. KonfinoT. Macrophages and regeneration: Lessons from the heart.Semin. Cell Dev. Biol.201658263310.1016/j.semcdb.2016.04.012 27118656
    [Google Scholar]
  35. WijelathE.S. RahmanS. NamekataM. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: Enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism.Circ. Res.200699885386010.1161/01.RES.0000246849.17887.66 17008606
    [Google Scholar]
  36. MizunoT. MickleD.A.G. KianiC.G. LiR.K. Overexpression of elastin fragments in infarcted myocardium attenuates scar expansion and heart dysfunction.Am. J. Physiol. Heart Circ. Physiol.20052886H2819H282710.1152/ajpheart.00862.2004 15681698
    [Google Scholar]
  37. LavineK.J. EpelmanS. UchidaK. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart.Proc. Natl. Acad. Sci. USA201411145160291603410.1073/pnas.1406508111 25349429
    [Google Scholar]
  38. RheeA.J. LavineK.J. New approaches to target inflammation in heart failure: Harnessing insights from studies of immune cell diversity.Annu. Rev. Physiol.202082112010.1146/annurev‑physiol‑021119‑034412 31658002
    [Google Scholar]
  39. BajpaiG. BredemeyerA. LiW. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury.Circ. Res.2019124226327810.1161/CIRCRESAHA.118.314028 30582448
    [Google Scholar]
  40. LiW. HsiaoH.M. HigashikuboR. SaundersB.T. BharatA. GoldsteinD.R. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling.JCI Insight2016112e87315
    [Google Scholar]
  41. ElliottM.R. KosterK.M. MurphyP.S. Efferocytosis signaling in the regulation of macrophage inflammatory responses.J. Immunol.201719841387139410.4049/jimmunol.1601520 28167649
    [Google Scholar]
  42. MotleyM.P. MadsenD.H. JürgensenH.J. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo.Blood201612791085109610.1182/blood‑2015‑05‑644260 26647393
    [Google Scholar]
  43. ChenR. CaoY. TianY. PGE2 ameliorated viral myocarditis development and promoted IL-10-producing regulatory B cell expansion via MAPKs/AKT-AP1 axis or AhR signaling.Cell. Immunol.202034710402510.1016/j.cellimm.2019.104025 31837749
    [Google Scholar]
  44. FrangogiannisN.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities.Mol. Aspects Med.201965709910.1016/j.mam.2018.07.001 30056242
    [Google Scholar]
  45. EisenbarthS.C. Dendritic cell subsets in T cell programming: Location dictates function.Nat. Rev. Immunol.20191928910310.1038/s41577‑018‑0088‑1 30464294
    [Google Scholar]
  46. GuilliamsM. GinhouxF. JakubzickC. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny.Nat. Rev. Immunol.201414857157810.1038/nri3712 25033907
    [Google Scholar]
  47. LiuZ. WangH. LiZ. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors.Immunity202356817611777.e610.1016/j.immuni.2023.07.001 37506694
    [Google Scholar]
  48. DutertreC.A. BechtE. IracS.E. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells.Immunity2019513573589.e810.1016/j.immuni.2019.08.008 31474513
    [Google Scholar]
  49. InuiH. NishidaM. IchiiM. XCR1+ conventional dendritic cell-induced CD4+ T helper 1 cell activation exacerbates cardiac remodeling after ischemic myocardial injury.J. Mol. Cell. Cardiol.2023176688310.1016/j.yjmcc.2023.01.011 36739942
    [Google Scholar]
  50. Van der BorghtK. ScottC.L. MartensL. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells.Front. Immunol.20189271410.3389/fimmu.2018.02714 30524444
    [Google Scholar]
  51. ZhangJ. YuZ.X. FujitaS. YamaguchiM.L. FerransV.J. Interstitial dendritic cells of the rat heart. Quantitative and ultrastructural changes in experimental myocardial infarction.Circulation199387390992010.1161/01.CIR.87.3.909 8443911
    [Google Scholar]
  52. LiaoY.H. ChengX. Autoimmunity in myocardial infarction.Int. J. Cardiol.20061121212610.1016/j.ijcard.2006.05.009 16837084
    [Google Scholar]
  53. PistulliR. AndreasE. KönigS. Characterization of dendritic cells in human and experimental myocarditis.ESC Heart Fail.2020752305231710.1002/ehf2.12767 32619089
    [Google Scholar]
  54. SmithS.C. AllenP.M. Myosin-induced acute myocarditis is a T cell-mediated disease.J. Immunol.199114772141214710.4049/jimmunol.147.7.2141 1918949
    [Google Scholar]
  55. AnzaiA. MindurJ.E. HalleL. Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis.J. Exp. Med.2019216236938310.1084/jem.20180722 30670465
    [Google Scholar]
  56. GerschC. DewaldO. ZoerleinM. MichaelL.H. EntmanM.L. FrangogiannisN.G. Mast cells and macrophages in normal C57/BL/6 mice.Histochem. Cell Biol.20021181414910.1007/s00418‑002‑0425‑z 12122446
    [Google Scholar]
  57. BalakumarP. SinghA.P. GantiS.S. KrishanP. RamasamyS. SinghM. Resident cardiac mast cells: Are they the major culprit in the pathogenesis of cardiac hypertrophy?Basic Clin. Pharmacol. Toxicol.200810215910.1111/j.1742‑7843.2007.00147.x 17973902
    [Google Scholar]
  58. VarricchiG. RossiF.W. GaldieroM.R. Physiological roles of mast cells: Collegium internationale allergologicum update 2019.Int. Arch. Allergy Immunol.2019179424726110.1159/000500088 31137021
    [Google Scholar]
  59. ChenH.I. SharmaB. AkerbergB.N. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.Development2014141234500451210.1242/dev.113639 25377552
    [Google Scholar]
  60. ShaoZ. NazariM. GuoL. The cardiac repair benefits of inflammation do not persist: Evidence from mast cell implantation.J. Cell. Mol. Med.201519122751276210.1111/jcmm.12703 26471858
    [Google Scholar]
  61. YangZ. ZingarelliB. SzabóC. Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury.Circulation200010191019102610.1161/01.CIR.101.9.1019 10704170
    [Google Scholar]
  62. TheoharidesT.C. TsilioniI. ContiP. Mast cells may regulate the anti-inflammatory activity of IL-37.Int. J. Mol. Sci.20192015370110.3390/ijms20153701
    [Google Scholar]
  63. BraddingP. PejlerG. The controversial role of mast cells in fibrosis.Immunol. Rev.2018282119823110.1111/imr.12626 29431218
    [Google Scholar]
  64. BozkurtB. ColvinM. CookJ. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: A scientific statement from the American Heart Association.Circulation201613423e579e64610.1161/CIR.0000000000000455 27832612
    [Google Scholar]
  65. NoutsiasM. PauschingerM. SchultheissH.P. KühlU. Intramyocardial inflammation in dilated cardiomyopathy--what makes a difference?Med. Sci. Monit.2002810LE45 12434790
    [Google Scholar]
  66. BansalS.S. IsmahilM.A. GoelM. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure.Circ. Heart Fail.2017103e00368810.1161/CIRCHEARTFAILURE.116.003688 28242779
    [Google Scholar]
  67. WernlyB. PaarV. AignerA. PilzP.M. PodesserB.K. ForsterM. Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction.Cells20209229510.3390/cells9020295
    [Google Scholar]
  68. Santos-ZasI. LemariéJ. ZlatanovaI. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling.Nat. Commun.2021121148310.1038/s41467‑021‑21737‑9 33674611
    [Google Scholar]
  69. BansalS.S. IsmahilM.A. GoelM. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy.Circulation2019139220622110.1161/CIRCULATIONAHA.118.036065 30586716
    [Google Scholar]
  70. RieckmannM. DelgoboM. GaalC. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses.J. Clin. Invest.2019129114922493610.1172/JCI123859 31408441
    [Google Scholar]
  71. FengG. BajpaiG. MaP. CCL17 aggravates myocardial injury by suppressing recruitment of regulatory T cells.Circulation20221451076578210.1161/CIRCULATIONAHA.121.055888 35113652
    [Google Scholar]
  72. SuetomiT. WillefordA. BrandC.S. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca 2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling.Circulation2018138222530254410.1161/CIRCULATIONAHA.118.034621 30571348
    [Google Scholar]
  73. NeversT. SalvadorA.M. VelazquezF. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure.J. Exp. Med.2017214113311332910.1084/jem.20161791 28970239
    [Google Scholar]
  74. MaZ.G. DaiJ. YuanY.P. T-bet deficiency attenuates cardiac remodelling in rats.Basic Res. Cardiol.201811331910.1007/s00395‑018‑0678‑x 29564567
    [Google Scholar]
  75. NgwenyamaN. SalvadorA.M. VelazquezF. NeversT. LevyA. AronovitzM. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction.JCI Insight201947e125527
    [Google Scholar]
  76. LaroumanieF. Douin-EchinardV. PozzoJ. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload.Circulation2014129212111212410.1161/CIRCULATIONAHA.113.007101 24657994
    [Google Scholar]
  77. TangT.T. ZhuZ.F. WangJ. Impaired thymic export and apoptosis contribute to regulatory T-cell defects in patients with chronic heart failure.PLoS One201169e2427210.1371/journal.pone.0024272 21935395
    [Google Scholar]
  78. PatelR.B. ColangeloL.A. ReinerA.P. Cellular adhesion molecules in young adulthood and cardiac function in later life.J. Am. Coll. Cardiol.202075172156216510.1016/j.jacc.2020.02.060 32194198
    [Google Scholar]
  79. FukunagaT. SoejimaH. IrieA. Relation between CD4+ T-cell activation and severity of chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.Am. J. Cardiol.2007100348348810.1016/j.amjcard.2007.03.052 17659933
    [Google Scholar]
  80. Carrillo-SalinasF.J. AnastasiouM. NgwenyamaN. Gut dysbiosis induced by cardiac pressure overload enhances adverse cardiac remodeling in a T cell-dependent manner.Gut Microbes2020121182380110.1080/19490976.2020.1823801 33103561
    [Google Scholar]
  81. JawiM.M. FrohlichJ. ChanS.Y. Lipoprotein(a) the insurgent: A new insight into the structure, function, metabolism, pathogenicity, and medications affecting lipoprotein(a) molecule.J. Lipids2020202012610.1155/2020/3491764 32099678
    [Google Scholar]
  82. IannuzzoG. TripaldellaM. MallardoV. MorgilloM. VitelliN. IannuzziA. Lipoprotein(a) where do we stand? from the physiopathology to innovative therapy.Biomedicines202197838
    [Google Scholar]
  83. CeglaJ. NeelyR.D.G. FranceM. HEART UK consensus statement on Lipoprotein(a): A call to action.Atherosclerosis2019291627010.1016/j.atherosclerosis.2019.10.011 31704552
    [Google Scholar]
  84. PoznyakA.V. NikiforovN.G. MarkinA.M. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis.Front. Pharmacol.20211161378010.3389/fphar.2020.613780 33510639
    [Google Scholar]
  85. CaiatiC. StancaA. LeperaM.E. Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease.Metabolites202313671210.3390/metabo13060712 37367870
    [Google Scholar]
  86. CaiatiC. Contrast-enhanced ultrasound reveals that lipoprotein apheresis improves myocardial but not skeletal muscle perfusion.JACC Cardiovasc. Imaging20191281441144310.1016/j.jcmg.2018.06.029 30553683
    [Google Scholar]
  87. PatelS. GuoM.K. Abdul SamadM. HoweK.L. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis.Front. Cardiovasc. Med.202310120218710.3389/fcvm.2023.1202187 37304965
    [Google Scholar]
  88. PanS.Y. TianH.M. ZhuY. Cardiac damage in autoimmune diseases: Target organ involvement that cannot be ignored.Front. Immunol.202213105640010.3389/fimmu.2022.1056400 36483559
    [Google Scholar]
  89. NussinovitchU. ShoenfeldY. Autoimmunity and heart diseases: Pathogenesis and diagnostic criteria.Arch. Immunol. Ther. Exp. (Warsz.)20095729510410.1007/s00005‑009‑0013‑1 19333734
    [Google Scholar]
  90. VojdaniA. A potential link between environmental triggers and autoimmunity.Autoimmune Dis.2014201411810.1155/2014/437231 24688790
    [Google Scholar]
  91. VojdaniA. PollardK.M. CampbellA.W. Environmental triggers and autoimmunity.Autoimmune Dis.20142014798029[Journal Article.] 25610638
    [Google Scholar]
  92. KharrazianD. Exposure to environmental toxins and autoimmune conditions.Integr. Med. (Encinitas)20212022024 34377090
    [Google Scholar]
  93. PollardK.M. CauviD.M. ToomeyC.B. HultmanP. KonoD.H. Mercury-induced inflammation and autoimmunity.Biochim. Biophys. Acta, Gen. Subj.201918631212929910.1016/j.bbagen.2019.02.001 30742953
    [Google Scholar]
  94. VojdaniA. PangbornJ.B. VojdaniE. CooperE.L. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism.Int. J. Immunopathol. Pharmacol.200316318919910.1177/039463200301600302 14611720
    [Google Scholar]
  95. CaiatiC. PolliceP. FavaleS. LeperaM.E. The herbicide glyphosate and its apparently controversial effect on human health: An updated clinical perspective.Endocr. Metab. Immune Disord. Drug Targets202020448950510.2174/1871530319666191015191614 31613732
    [Google Scholar]
  96. SamselA. SeneffS. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.Interdiscip. Toxicol.20136415918410.2478/intox‑2013‑0026 24678255
    [Google Scholar]
  97. SobieszczańskiJ. MertowskiS. Sarna-BośK. StachurskiP. GrywalskaE. ChałasR. Root canal infection and its impact on the oral cavity microenvironment in the context of immune system disorders in selected diseases: A narrative review.J. Clin. Med.20231212410210.3390/jcm12124102
    [Google Scholar]
  98. DedeogluF. Drug-induced autoimmunity.Curr. Opin. Rheumatol.200921554755110.1097/BOR.0b013e32832f13db 19593142
    [Google Scholar]
  99. ChenY. XuZ. WangP. New‐onset autoimmune phenomena post‐COVID‐19 vaccination.Immunology2022165438640110.1111/imm.13443 34957554
    [Google Scholar]
  100. ShererY. ShoenfeldY. Immunomodulation for treatment and prevention of atherosclerosis.Autoimmun. Rev.200211-2212710.1016/S1568‑9972(01)00003‑9 12849054
    [Google Scholar]
  101. ShoenfeldY. GerliR. DoriaA. Accelerated atherosclerosis in autoimmune rheumatic diseases.Circulation2005112213337334710.1161/CIRCULATIONAHA.104.507996 16301360
    [Google Scholar]
  102. MatsuuraE. KobayashiK. KoikeT. ShoenfeldY. Autoantibody-mediated atherosclerosis.Autoimmun. Rev.20021634835310.1016/S1568‑9972(02)00084‑8 12848990
    [Google Scholar]
  103. AfekA. GeorgeJ. GilburdB. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis.J. Autoimmun.200014211512110.1006/jaut.1999.0351 10677242
    [Google Scholar]
  104. NeelapuS.S. LockeF.L. BartlettN.L. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.N. Engl. J. Med.2017377262531254410.1056/NEJMoa1707447 29226797
    [Google Scholar]
  105. GuhaA. AddisonD. JainP. Cardiovascular events associated with chimeric antigen receptor T cell therapy: Cross-sectional FDA adverse events reporting system analysis.Biol. Blood Marrow Transplant.202026122211221610.1016/j.bbmt.2020.08.036 32966880
    [Google Scholar]
  106. LeeD.H. ChandrasekharS. JainM.D. Cardiac and inflammatory biomarker differences in adverse cardiac events after chimeric antigen receptor T-Cell therapy: An exploratory study.Cardiooncology2023911810.1186/s40959‑023‑00170‑5 37005652
    [Google Scholar]
  107. MarcusG.M. WhooleyM.A. GliddenD.V. PawlikowskaL. ZaroffJ.G. OlginJ.E. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: Data from the heart and soul study.Am. Heart J.2008155230330910.1016/j.ahj.2007.09.006 18215601
    [Google Scholar]
  108. BorowiecA. KontnyE. Smolis-BąkE. Prospective assessment of cytokine IL-15 activity in patients with refractory atrial fibrillation episodes.Cytokine201574116417010.1016/j.cyto.2015.04.002 25936571
    [Google Scholar]
  109. PatelM. HudsonO. HanJ. Update on immunotherapy cardiotoxicity: Checkpoint inhibitors, CAR T, and beyond.Curr. Treat. Options Oncol.202324111489150310.1007/s11864‑023‑01130‑y 37624557
    [Google Scholar]
  110. LefebvreB. KangY. SmithA.M. FreyN.V. CarverJ.R. Scherrer-CrosbieM. Cardiovascular effects of CAR T cell therapy.JACC Cardiooncol20202219320310.1016/j.jaccao.2020.04.012 32776016
    [Google Scholar]
  111. FradleyM.G. DamrongwatanasukR. ChandrasekharS. AlomarM. KipK.E. SarnaikA.A. Cardiovascular toxicity and mortality associated with adoptive cell therapy and tumor-infiltrating Lymphocytes for advanced stage melanoma.J. Immunother.2021442868910.1097/CJI.0000000000000341 33044384
    [Google Scholar]
  112. PatelN.P. DalalP.J. MengZ. Myocardial strain is associated with adverse cardiac events in patients treated with chimeric antigen receptor (CAR) T‐cell therapy.Eur. J. Haematol.2024112110211010.1111/ejh.14088 37649240
    [Google Scholar]
  113. GedyeC. van der WesthuizenA. JohnT. Checkpoint immunotherapy for cancer: Superior survival, unaccustomed toxicities.Intern. Med. J.201545769670110.1111/imj.12653 25444021
    [Google Scholar]
  114. MagroneT. JirilloE. Update on mechanisms of adaptive resistance to immune check point blockers in malignancies: A short commentary.Curr. Pharm. Des.201924455349535110.2174/138161282445190416154917 31012396
    [Google Scholar]
  115. LiZ. SongW. RubinsteinM. LiuD. Recent updates in cancer immunotherapy: A comprehensive review and perspective of the 2018 China cancer immunotherapy workshop in Beijing.J. Hematol. Oncol.201811114210.1186/s13045‑018‑0684‑3 30577797
    [Google Scholar]
  116. CaiatiC. JirilloE. Immune checkpoint inhibitor-mediated cardiovascular disease: The dark side of the monoclonal anti-body therapy against cancer.Endocr. Metab. Immune Disord. Drug Targets202323111365136710.2174/1871530323666230416153426 37062060
    [Google Scholar]
  117. GergelyT.G. KucseraD. TóthV.E. Characterization of immune checkpoint inhibitor‐induced cardiotoxicity reveals interleukin‐17A as a driver of cardiac dysfunction after anti‐PD‐1 treatment.Br. J. Pharmacol.2023180674076110.1111/bph.15984 36356191
    [Google Scholar]
  118. PoelsK. van LeentM.M.T. ReicheM.E. KustersP.J.H. HuveneersS. de WintherM.P.J. Antibody-mediated inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice.Cells202099198710.3390/cells9091987
    [Google Scholar]
  119. LutgensE. SeijkensT.T.P. Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease.J. Immunother. Cancer202081e00030010.1136/jitc‑2019‑000300
    [Google Scholar]
  120. SolinasC. SabaL. SganzerlaP. PetrelliF. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review.Thromb. Res.202019644445310.1016/j.thromres.2020.09.038 33065409
    [Google Scholar]
  121. DrobniZ.D. AlviR.M. TaronJ. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque.Circulation2020142242299231110.1161/CIRCULATIONAHA.120.049981 33003973
    [Google Scholar]
  122. HuJ.R. FloridoR. LipsonE.J. Cardiovascular toxicities associated with immune checkpoint inhibitors.Cardiovasc. Res.2019115585486810.1093/cvr/cvz026 30715219
    [Google Scholar]
  123. BermasB.L. ZahaV.G. Mending broken hearts.Circulation2021143876776910.1161/CIRCULATIONAHA.120.052307 33617309
    [Google Scholar]
  124. WangC.Y. ZoungasS. VoskoboynikM. MarV. Cardiovascular disease and malignant melanoma.Melanoma Res.202232313514110.1097/CMR.0000000000000817 35377865
    [Google Scholar]
  125. JaiswalS. NatarajanP. SilverA.J. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.N. Engl. J. Med.2017377211112110.1056/NEJMoa1701719 28636844
    [Google Scholar]
  126. JaiswalS. FontanillasP. FlannickJ. Age-related clonal hematopoiesis associated with adverse outcomes.N. Engl. J. Med.2014371262488249810.1056/NEJMoa1408617 25426837
    [Google Scholar]
  127. CaiatiC. JirilloE. Transplantation of mesenchymal stem cells as a new approach for cardiovascular diseases: From bench to bedside: a perspective.Endocr. Metab. Immune Disord. Drug Targets202323111359136410.2174/1871530323666230411142308 37055907
    [Google Scholar]
  128. GaoL.R. ChenY. ZhangN.K. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial.BMC Med.201513116210.1186/s12916‑015‑0399‑z 26162993
    [Google Scholar]
  129. AttarA. Bahmanzadegan JahromiF. KavousiS. MonabatiA. KazemiA. Mesenchymal stem cell transplantation after acute myocardial infarction: A meta-analysis of clinical trials.Stem Cell Res. Ther.202112160010.1186/s13287‑021‑02667‑1 34876213
    [Google Scholar]
  130. AttarA. NouriF. YazdanshenasA. Single vs. double intracoronary injection of mesenchymal stromal cell after acute myocardial infarction: The study protocol from a randomized clinical trial: BOOSTER-TAHA7 trial.Trials202223129310.1186/s13063‑022‑06276‑y 35413932
    [Google Scholar]
  131. ArjmandB. AbediM. ArabiM. Regenerative medicine for the treatment of ischemic heart disease; status and future perspectives.Front. Cell Dev. Biol.2021970490310.3389/fcell.2021.704903 34568321
    [Google Scholar]
  132. ChangD. FanT. GaoS. JinY. ZhangM. OnoM. Application of mesenchymal stem cell sheet to treatment of ischemic heart disease.Stem Cell Res. Ther.202112138410.1186/s13287‑021‑02451‑1 34233729
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611325234241202073459
Loading
/content/journals/cvp/10.2174/0115701611325234241202073459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test