Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

The adventitia, the artery's most intricate layer, has received little attention. During atherosclerosis, adventitia components undergo significant changes, such as angiogenesis, lymphangiogenesis, Artery Tertiary Lymphoid Organ (ATLO) formation, axon density increase, fibroblast activation, and stem cell differentiation. The reasons behind these changes and their contribution to atherosclerosis are beginning to be understood. In this review, we summarize the adventitia components and their role in normal arteries and then discuss the changes, pathogenesis, and potential clinical application of the adventitia in atherosclerosis.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611306375241211084246
2025-01-13
2025-06-23
Loading full text...

Full text loading...

References

  1. GallinoA. AboyansV. DiehmC. Non-coronary atherosclerosis.Eur. Heart J.201435171112111910.1093/eurheartj/ehu071 24595865
    [Google Scholar]
  2. SongP. RudanD. ZhuY. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis.Lancet Glob. Health201978e1020e103010.1016/S2214‑109X(19)30255‑4 31303293
    [Google Scholar]
  3. SongP. FangZ. WangH. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study.Lancet Glob. Health202085e721e72910.1016/S2214‑109X(20)30117‑0 32353319
    [Google Scholar]
  4. LaslettL.J. AlagonaP.Jr ClarkB.A.III The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology.J. Am. Coll. Cardiol.20126025Suppl.S1S4910.1016/j.jacc.2012.11.002 23257320
    [Google Scholar]
  5. WolfD. LeyK. Immunity and inflammation in atherosclerosis.Circ. Res.2019124231532710.1161/CIRCRESAHA.118.313591 30653442
    [Google Scholar]
  6. WillisT. Pharmaceutice rationalis.London1674
    [Google Scholar]
  7. WinternitzM.C. TRM, LeCompte PM. Biology of Arteriosclerosis.BaltimoreC. C. Thomas Publisher1938
    [Google Scholar]
  8. PelsK. LabinazM. O’BrienE.R. Arterial wall neovascularization--potential role in atherosclerosis and restenosis.Jpn. Circ. J.1997611189390410.1253/jcj.61.893 9391856
    [Google Scholar]
  9. BoyleE.C. SeddingD.G. HaverichA. Targeting vasa vasorum dysfunction to prevent atherosclerosis.Vascul. Pharmacol.201796-9851010.1016/j.vph.2017.08.003 28830735
    [Google Scholar]
  10. HaverichA. A surgeon’s view on the pathogenesis of atherosclerosis.Circulation2017135320520710.1161/CIRCULATIONAHA.116.025407 28093492
    [Google Scholar]
  11. TaruyaA. TanakaA. NishiguchiT. Vasa vasorum restructuring in human atherosclerotic plaque vulnerability.J. Am. Coll. Cardiol.201565232469247710.1016/j.jacc.2015.04.020 26065984
    [Google Scholar]
  12. ClarkeJ.A. An x-ray microscopic study of the postnatal development of the vasa vasorum in the human aorta.J. Anat.196599Pt 4877889 5867173
    [Google Scholar]
  13. SanoM. UnnoN. SasakiT. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia – Implications for the prevalence of aortic diseases.Atherosclerosis201624712713410.1016/j.atherosclerosis.2016.02.007 26897260
    [Google Scholar]
  14. GeiringerE. Intimal vascularisation and atherosclerosis.J. Pathol. Bacteriol.195163220121110.1002/path.1700630204 14851161
    [Google Scholar]
  15. WolinskyH. GlagovS. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals.Circ. Res.196720440942110.1161/01.RES.20.4.409 4960913
    [Google Scholar]
  16. WilensS.L. MalcolmJ.A. VazquezJ.M. Experimental infarction (medial necrosis) of the dog’s aorta.Am. J. Pathol.1965474695711 5320023
    [Google Scholar]
  17. HeistadD.D. MarcusM.L. LarsenG.E. ArmstrongM.L. Role of vasa vasorum in nourishment of the aortic wall.Am. J. Physiol.19812405H781H787 7235037
    [Google Scholar]
  18. ClarkeJ.A. An x-ray microscopic study of the postnatal development of the vasa vasorum in the root of neck arteries.Anat. Anz.19651174280290 5868928
    [Google Scholar]
  19. HogganG. HogganF.E. The lymphatics of the walls of the larger blood-vessels and lymphatics.J Anat Physiol188217Pt 1123 17231448
    [Google Scholar]
  20. SacchiG. WeberE. CompariniL. Histological framework of lymphatic vasa vasorum of major arteries: An experimental study.Lymphology1990233135139 2250482
    [Google Scholar]
  21. EliskaO. EliskovaM. MillerA.J. The morphology of the lymphatics of the coronary arteries in the dog.Lymphology19993224557 10389111
    [Google Scholar]
  22. JohnsonR.A. Lymphatics of blood vessels.Lymphology1969224456 5352857
    [Google Scholar]
  23. YeoK.P. LimH.Y. ThiamC.H. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe.Sci. Adv.2020650eabc269710.1126/sciadv.abc2697 33310846
    [Google Scholar]
  24. VaahtomeriK. KaramanS. MäkinenT. AlitaloK. Lymphangiogenesis guidance by paracrine and pericellular factors.Genes Dev.201731161615163410.1101/gad.303776.117 28947496
    [Google Scholar]
  25. MartelC. LiW. FulpB. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.J. Clin. Invest.201312341571157910.1172/JCI63685 23524964
    [Google Scholar]
  26. MohantaS.K. PengL. LiY. Neuroimmune cardiovascular interfaces control atherosclerosis.Nature2022605790815215910.1038/s41586‑022‑04673‑6 35477759
    [Google Scholar]
  27. FurnessJ.B. MarshallJ.M. Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves.J. Physiol.19742391758810.1113/jphysiol.1974.sp010556 4851199
    [Google Scholar]
  28. SchwartzC.J. MitchellJ.R.A. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques.Circulation1962261737810.1161/01.CIR.26.1.73 13909681
    [Google Scholar]
  29. MoosM.P.W. JohnN. GräbnerR. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice.Arterioscler. Thromb. Vasc. Biol.200525112386239110.1161/01.ATV.0000187470.31662.fe 16179593
    [Google Scholar]
  30. SatoY. SilinaK. van den BroekM. HiraharaK. YanagitaM. The roles of tertiary lymphoid structures in chronic diseases.Nat. Rev. Nephrol.202319852553710.1038/s41581‑023‑00706‑z 37046081
    [Google Scholar]
  31. GräbnerR. LötzerK. DöppingS. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE −/− mice.J. Exp. Med.2009206123324810.1084/jem.20080752 19139167
    [Google Scholar]
  32. BeryA.I. ShepherdH.M. LiW. KrupnickA.S. GelmanA.E. KreiselD. Role of tertiary lymphoid organs in the regulation of immune responses in the periphery.Cell. Mol. Life Sci.202279735910.1007/s00018‑022‑04388‑x 35689679
    [Google Scholar]
  33. DamåsJ.K. SmithC. ØieE. Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: Possible pathogenic role in plaque destabilization.Arterioscler. Thromb. Vasc. Biol.200727361462010.1161/01.ATV.0000255581.38523.7c 17170367
    [Google Scholar]
  34. GuW. NiZ. TanY.Q. Adventitial cell atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-deficient mice defined by single-cell RNA sequencing.Arterioscler. Thromb. Vasc. Biol.20193961055107110.1161/ATVBAHA.119.312399 30943771
    [Google Scholar]
  35. EvrardS.M. LecceL. MichelisK.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability.Nat. Commun.2016711185310.1038/ncomms11853 27340017
    [Google Scholar]
  36. WirkaR.C. WaghD. PaikD.T. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis.Nat. Med.20192581280128910.1038/s41591‑019‑0512‑5 31359001
    [Google Scholar]
  37. JollyA.J. LuS. StrandK.A. Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodelling.Cardiovasc. Res.202211861452146510.1093/cvr/cvab174 33989378
    [Google Scholar]
  38. StenmarkK.R. YeagerM.E. El KasmiK.C. The adventitia: Essential regulator of vascular wall structure and function.Annu. Rev. Physiol.2013751234710.1146/annurev‑physiol‑030212‑183802 23216413
    [Google Scholar]
  39. PlikusM.V. WangX. SinhaS. Fibroblasts: Origins, definitions, and functions in health and disease.Cell2021184153852387210.1016/j.cell.2021.06.024 34297930
    [Google Scholar]
  40. KuwabaraJ.T. TallquistM.D. Tracking adventitial fibroblast contribution to disease.Arterioscler. Thromb. Vasc. Biol.20173791598160710.1161/ATVBAHA.117.308199 28705796
    [Google Scholar]
  41. TillieR.J.H.A. van KuijkK. SluimerJ.C. Fibroblasts in atherosclerosis: Heterogeneous and plastic participants.Curr. Opin. Lipidol.202031527327810.1097/MOL.0000000000000700 32773464
    [Google Scholar]
  42. SoundararajanM. KannanS. Fibroblasts and mesenchymal stem cells: Two sides of the same coin?J. Cell. Physiol.2018233129099910910.1002/jcp.26860 29943820
    [Google Scholar]
  43. van KuijkK. McCrackenI.R. TillieR.J.H.A. Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol.Cardiovasc. Res.202311971509152310.1093/cvr/cvad016 36718802
    [Google Scholar]
  44. DutzmannJ. KochA. WeisheitS. Sonic hedgehog-dependent activation of adventitial fibroblasts promotes neointima formation.Cardiovasc. Res.2017113131653166310.1093/cvr/cvx158 29088375
    [Google Scholar]
  45. AnS.J. LiuP. ShaoT.M. Characterization and functions of vascular adventitial fibroblast subpopulations.Cell. Physiol. Biochem.20153531137115010.1159/000373939 25766526
    [Google Scholar]
  46. ScottR.A. KharkarP.M. KiickK.L. AkinsR.E. Aortic adventitial fibroblast sensitivity to mitogen activated protein kinase inhibitors depends on substrate stiffness.Biomaterials201713711010.1016/j.biomaterials.2017.05.010 28527302
    [Google Scholar]
  47. ChenY. WongM.M. CampagnoloP. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation.Arterioscler. Thromb. Vasc. Biol.20133381844185110.1161/ATVBAHA.113.300902 23744989
    [Google Scholar]
  48. PassmanJ.N. DongX.R. WuS.P. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1 + smooth muscle progenitor cells.Proc. Natl. Acad. Sci. USA2008105279349935410.1073/pnas.0711382105 18591670
    [Google Scholar]
  49. CrisanM. ChenC.W. CorselliM. AndrioloG. LazzariL. PéaultB. Perivascular multipotent progenitor cells in human organs.Ann. N. Y. Acad. Sci.20091176111812310.1111/j.1749‑6632.2009.04967.x 19796239
    [Google Scholar]
  50. HuY. ZhangZ. TorsneyE. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice.J. Clin. Invest.200411391258126510.1172/JCI19628 15124016
    [Google Scholar]
  51. WillemsenL. de WintherM.P.J. Macrophage subsets in atherosclerosis as defined by single‐cell technologies.J. Pathol.2020250570571410.1002/path.5392 32003464
    [Google Scholar]
  52. CochainC. VafadarnejadE. ArampatziP. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis.Circ. Res.2018122121661167410.1161/CIRCRESAHA.117.312509 29545365
    [Google Scholar]
  53. LimH.Y. LimS.Y. TanC.K. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen.Immunity2018492326341.e710.1016/j.immuni.2018.06.008 30054204
    [Google Scholar]
  54. StaryH.C. BlankenhornD.H. ChandlerA.B. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.Circulation199285139140510.1161/01.CIR.85.1.391 1728483
    [Google Scholar]
  55. LiX.D. HongM.N. ChenJ. Adventitial fibroblast-derived vascular endothelial growth factor promotes vasa vasorum-associated neointima formation and macrophage recruitment.Cardiovasc. Res.2020116370872010.1093/cvr/cvz159 31241138
    [Google Scholar]
  56. KleefeldtF. UpcinB. BömmelH. Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis.Cell Death Dis.202213322010.1038/s41419‑022‑04605‑2 35264563
    [Google Scholar]
  57. JaipersadA.S. LipG.Y.H. SilvermanS. ShantsilaE. The role of monocytes in angiogenesis and atherosclerosis.J. Am. Coll. Cardiol.201463111110.1016/j.jacc.2013.09.019 24140662
    [Google Scholar]
  58. DavieN.J. GerasimovskayaE.V. HofmeisterS.E. Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: A process mediated by hypoxia and endothelin-1.Am. J. Pathol.200616861793180710.2353/ajpath.2006.050754 16723696
    [Google Scholar]
  59. McCullyK.S. Homocysteine and the pathogenesis of atherosclerosis.Expert Rev. Clin. Pharmacol.20158221121910.1586/17512433.2015.1010516 25653125
    [Google Scholar]
  60. BarkerS.G. TalbertA. CottamS. BaskervilleP.A. MartinJ.F. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig.Arterioscler. Thromb.1993131707710.1161/01.ATV.13.1.70 8422341
    [Google Scholar]
  61. RademakersT. DoumaK. HackengT.M. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo.Arterioscler. Thromb. Vasc. Biol.201333224925610.1161/ATVBAHA.112.300087 23241413
    [Google Scholar]
  62. DunmoreB.J. McCarthyM.J. NaylorA.R. BrindleN.P.J. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques.J. Vasc. Surg.200745115515910.1016/j.jvs.2006.08.072 17210401
    [Google Scholar]
  63. NakashimaY. FujiiH. SumiyoshiS. WightT.N. SueishiK. Early human atherosclerosis: Accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration.Arterioscler. Thromb. Vasc. Biol.20072751159116510.1161/ATVBAHA.106.134080 17303781
    [Google Scholar]
  64. MoultonK.S. VakiliK. ZurakowskiD. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis.Proc. Natl. Acad. Sci. USA200310084736474110.1073/pnas.0730843100 12682294
    [Google Scholar]
  65. SluimerJ.C. KolodgieF.D. BijnensA.P.J.J. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage.J. Am. Coll. Cardiol.200953171517152710.1016/j.jacc.2008.12.056 19389562
    [Google Scholar]
  66. VirmaniR. KolodgieF.D. BurkeA.P. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage.Arterioscler. Thromb. Vasc. Biol.200525102054206110.1161/01.ATV.0000178991.71605.18 16037567
    [Google Scholar]
  67. ParmaL. BaganhaF. QuaxP.H.A. de VriesM.R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis.Eur. J. Pharmacol.201781610711510.1016/j.ejphar.2017.04.028 28435093
    [Google Scholar]
  68. JainR.K. FinnA.V. KolodgieF.D. GoldH.K. VirmaniR. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: A potential strategy for plaque stabilization.Nat. Clin. Pract. Cardiovasc. Med.20074949150210.1038/ncpcardio0979 17712362
    [Google Scholar]
  69. KolodgieF.D. GoldH.K. BurkeA.P. Intraplaque hemorrhage and progression of coronary atheroma.N. Engl. J. Med.2003349242316232510.1056/NEJMoa035655 14668457
    [Google Scholar]
  70. BoyleJ.J. JohnsM. KampferT. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection.Circ. Res.20121101203310.1161/CIRCRESAHA.111.247577 22052915
    [Google Scholar]
  71. GuoL. AkahoriH. HarariE. CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis.J. Clin. Invest.201812831106112410.1172/JCI93025 29457790
    [Google Scholar]
  72. NishimiyaK. MatsumotoY. TakahashiJ. Enhanced adventitial vasa vasorum formation in patients with vasospastic angina.J. Am. Coll. Cardiol.201667559860010.1016/j.jacc.2015.11.031 26846957
    [Google Scholar]
  73. OhyamaK. MatsumotoY. TakanamiK. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina.J. Am. Coll. Cardiol.201871441442510.1016/j.jacc.2017.11.046 29389358
    [Google Scholar]
  74. BrezinskiM. WillardF. RupnickM. Inadequate intimal angiogenesis as a source of coronary plaque instability.Circulation2019140231857185910.1161/CIRCULATIONAHA.119.042192 31790293
    [Google Scholar]
  75. GersteinH.C. NairV. ChaubeR. StouteH. WerstuckG. Dysglycemia and the density of the coronary vasa vasorum.Diabetes Care201942598098210.2337/dc18‑2483 30862652
    [Google Scholar]
  76. ChenK. MouR. ZhuP. The effect of lymphangiogenesis in transplant arteriosclerosis.Circulation2023147648249710.1161/CIRCULATIONAHA.122.060799 36515099
    [Google Scholar]
  77. CzepielewskiR.S. ErlichE.C. OnuferE.J. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor.Immunity2021541227952811.e910.1016/j.immuni.2021.10.003 34788601
    [Google Scholar]
  78. TaherM. NakaoS. ZandiS. MelhornM.I. HayesK.C. Hafezi-MoghadamA. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: A regulatory role for soluble VEGF receptor 2.FASEB J.20163072490249910.1096/fj.201500112 27006449
    [Google Scholar]
  79. YinC. MohantaS.K. SrikakulapuP. WeberC. HabenichtA.J.R. Artery tertiary lymphoid organs: Powerhouses of atherosclerosis immunity.Front. Immunol.2016738710.3389/fimmu.2016.00387 27777573
    [Google Scholar]
  80. AkhavanpoorM. GleissnerC.A. AkhavanpoorH. Adventitial tertiary lymphoid organ classification in human atherosclerosis.Cardiovasc. Pathol.20183281410.1016/j.carpath.2017.08.002 29078120
    [Google Scholar]
  81. HanssonG.K. HermanssonA. The immune system in atherosclerosis.Nat. Immunol.201112320421210.1038/ni.2001 21321594
    [Google Scholar]
  82. GisteråA. HanssonG.K. The immunology of atherosclerosis.Nat. Rev. Nephrol.201713636838010.1038/nrneph.2017.51 28392564
    [Google Scholar]
  83. HuD. MohantaS.K. YinC. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors.Immunity20154261100111510.1016/j.immuni.2015.05.015 26084025
    [Google Scholar]
  84. KyawT. TayC. KrishnamurthiS. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions.Circ. Res.2011109883084010.1161/CIRCRESAHA.111.248542 21868694
    [Google Scholar]
  85. SrikakulapuP. HuD. YinC. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis b-cell responses in aged ApoE−/− mice.Arterioscler. Thromb. Vasc. Biol.20163661174118510.1161/ATVBAHA.115.306983 27102965
    [Google Scholar]
  86. ManuckS.B. KaplanJ.R. AdamsM.R. ClarksonT.B. Effects of stress and the sympathetic nervous system on coronary artery atherosclerosis in the cynomolgus macaque.Am. Heart J.1988116132833310.1016/0002‑8703(88)90110‑X 2899392
    [Google Scholar]
  87. PaternitiS. ZureikM. DucimetièreP. TouboulP.J. FèveJ.M. AlpérovitchA. Sustained anxiety and 4-year progression of carotid atherosclerosis.Arterioscler. Thromb. Vasc. Biol.200121113614110.1161/01.ATV.21.1.136 11145945
    [Google Scholar]
  88. MatthewsK.A. HaynesS.C. Type A behavior pattern and coronary disease risk. Update and critical evaluation.Am. J. Epidemiol.1986123692396010.1093/oxfordjournals.aje.a114347 3518413
    [Google Scholar]
  89. SaraJ.D.S. ToyaT. AhmadA. Mental stress and its effects on vascular health.Mayo Clin. Proc.202297595199010.1016/j.mayocp.2022.02.004 35512885
    [Google Scholar]
  90. NollerC.M. MendezA.J. SzetoA. Structural remodeling of sympathetic innervation in atherosclerotic blood vessels: Role of atherosclerotic disease progression and chronic social stress.Psychosom. Med.2017791597010.1097/PSY.0000000000000360 27359178
    [Google Scholar]
  91. HinterdoblerJ. SchottS. JinH. Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis.Eur. Heart J.202142394077408810.1093/eurheartj/ehab371 34279021
    [Google Scholar]
  92. XuF. JiJ. LiL. ChenR. HuW. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse.Biochem. Biophys. Res. Commun.2007352368168810.1016/j.bbrc.2006.11.073 17141183
    [Google Scholar]
  93. ZamaniM. ChengY.H. CharbonierF. Single‐cell transcriptomic census of endothelial changes induced by matrix stiffness and the association with atherosclerosis.Adv. Funct. Mater.20223247220306910.1002/adfm.202203069 36816792
    [Google Scholar]
  94. SwiatlowskaP. SitB. FengZ. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching.Sci. Adv.2022815eabm347110.1126/sciadv.abm3471 35427166
    [Google Scholar]
  95. ChenW. TianB. LiangJ. YuS. ZhouY. LiS. Matrix stiffness regulates the interactions between endothelial cells and monocytes.Biomaterials201922111936210.1016/j.biomaterials.2019.119362 31442696
    [Google Scholar]
  96. FaleevaM. AhmadS. TheofilatosK. Sox9 accelerates vascular aging by regulating extracellular matrix composition and stiffness.Circ. Res.2024134330732410.1161/CIRCRESAHA.123.323365 38179698
    [Google Scholar]
  97. SutherlandT.E. DyerD.P. AllenJ.E. The extracellular matrix and the immune system: A mutually dependent relationship.Science20233796633eabp896410.1126/science.abp8964 36795835
    [Google Scholar]
  98. LiN. ChengW. HuangT. YuanJ. WangX. SongM. Vascular adventitia calcification and its underlying mechanism.PLoS One2015107e013250610.1371/journal.pone.0132506 26148272
    [Google Scholar]
  99. ScottN.A. CipollaG.D. RossC.E. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries.Circulation199693122178218710.1161/01.CIR.93.12.2178 8925587
    [Google Scholar]
  100. TangJ. WangH. HuangX. Arterial Sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration.Cell Stem Cell20202618196.e410.1016/j.stem.2019.11.010 31883835
    [Google Scholar]
  101. SartoreS. ChiavegatoA. FagginE. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: From innocent bystander to active participant.Circ. Res.200189121111112110.1161/hh2401.100844 11739275
    [Google Scholar]
  102. ChenJ. WeiJ-Q. HongM-N. Mitogen-activated protein kinases mediate adventitial fibroblast activation and neointima formation via GATA4/Cyclin D1 axis.Cardiovasc. Drugs Ther.202438352753810.1007/s10557‑023‑07428‑1 36652042
    [Google Scholar]
  103. TieuB.C. LeeC. SunH. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice.J. Clin. Invest.2009119123637365110.1172/JCI38308 19920349
    [Google Scholar]
  104. TieuB.C. JuX. LeeC. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling.J. Vasc. Res.201148326127210.1159/000320358 21099231
    [Google Scholar]
  105. CsányiG. TaylorW.R. PaganoP.J. NOX and inflammation in the vascular adventitia.Free Radic. Biol. Med.20094791254126610.1016/j.freeradbiomed.2009.07.022 19628034
    [Google Scholar]
  106. HauraniM. PaganoP. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: Bellwether for vascular disease?Cardiovasc. Res.200775467968910.1016/j.cardiores.2007.06.016 17689510
    [Google Scholar]
  107. XuF. LiuY. ShiL. NADPH oxidase p47phox siRNA attenuates adventitial fibroblasts proliferation and migration in apoE(-/-) mouse.J. Transl. Med.20151313810.1186/s12967‑015‑0407‑2 25628043
    [Google Scholar]
  108. ChenY. ChenY. JiangX. Vascular adventitial fibroblasts-derived FGF10 promotes vascular smooth muscle cells proliferation and migration in vitro and the neointima formation in vivo.J. Inflamm. Res.2021142207222310.2147/JIR.S305204 34079328
    [Google Scholar]
  109. YuB. ChenQ. Le BrasA. ZhangL. XuQ. Vascular stem/progenitor cell migration and differentiation in atherosclerosis.Antioxid. Redox Signal.201829221923510.1089/ars.2017.7171 28537424
    [Google Scholar]
  110. KramannR. GoettschC. WongboonsinJ. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease.Cell Stem Cell201619562864210.1016/j.stem.2016.08.001 27618218
    [Google Scholar]
  111. Toledo-FloresD. WilliamsonA. SchwarzN. Vasculogenic properties of adventitial Sca-1+CD45+ progenitor cells in mice: A potential source of vasa vasorum in atherosclerosis.Sci. Rep.201991728610.1038/s41598‑019‑43765‑8 31086203
    [Google Scholar]
  112. Razeghian-JahromiI. ElyaspourZ. ZibaeenezhadM.J. HassanipourS. Prevalence of microorganisms in atherosclerotic plaques of coronary arteries: A systematic review and meta-analysis.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/8678967 36506809
    [Google Scholar]
  113. CurranS.A. HollanI. ErridgeC. Bacteria in the adventitia of cardiovascular disease patients with and without rheumatoid arthritis.PLoS One201495e9862710.1371/journal.pone.0098627 24874661
    [Google Scholar]
  114. VinkA. PasterkampG. PoppenM. The adventitia of atherosclerotic coronary arteries frequently contains Chlamydia pneumoniae.Atherosclerosis2001157111712210.1016/S0021‑9150(00)00715‑2 11427210
    [Google Scholar]
  115. VinkA. PoppenM. SchoneveldA.H. Distribution of Chlamydia pneumoniae in the human arterial system and its relation to the local amount of atherosclerosis within the individual.Circulation2001103121613161710.1161/01.CIR.103.12.1613 11273986
    [Google Scholar]
  116. WickG. JakicB. BuszkoM. WickM.C. GrundtmanC. The role of heat shock proteins in atherosclerosis.Nat. Rev. Cardiol.201411951652910.1038/nrcardio.2014.91 25027488
    [Google Scholar]
  117. VelskoI.M. ChukkapalliS.S. Rivera-KwehM.F. Periodontal pathogens invade gingiva and aortic adventitia and elicit inflammasome activation in αvβ6 integrin-deficient mice.Infect. Immun.201583124582459310.1128/IAI.01077‑15 26371120
    [Google Scholar]
  118. PavlovV.A. ChavanS.S. TraceyK.J. Molecular and functional neuroscience in immunity.Annu. Rev. Immunol.201836178381210.1146/annurev‑immunol‑042617‑053158 29677475
    [Google Scholar]
  119. ChiuI.M. von HehnC.A. WoolfC.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology.Nat. Neurosci.20121581063106710.1038/nn.3144 22837035
    [Google Scholar]
  120. LarrivéeB. FreitasC. SuchtingS. BrunetI. EichmannA. Guidance of vascular development: Lessons from the nervous system.Circ. Res.2009104442844110.1161/CIRCRESAHA.108.188144 19246687
    [Google Scholar]
  121. CarmelietP. Tessier-LavigneM. Common mechanisms of nerve and blood vessel wiring.Nature2005436704819320010.1038/nature03875 16015319
    [Google Scholar]
  122. TamS.J. WattsR.J. Connecting vascular and nervous system development: Angiogenesis and the blood-brain barrier.Annu. Rev. Neurosci.201033137940810.1146/annurev‑neuro‑060909‑152829 20367445
    [Google Scholar]
  123. SunT. LiY. FörsteraB. Tissue clearing approaches in atherosclerosis.Methods Mol. Biol.2022241974776310.1007/978‑1‑0716‑1924‑7_45 35237999
    [Google Scholar]
  124. ArmingolE. BaghdassarianH.M. LewisN.E. The diversification of methods for studying cell–cell interactions and communication.Nat. Rev. Genet.202425638140010.1038/s41576‑023‑00685‑8 38238518
    [Google Scholar]
  125. HallidayA. MansfieldA. MarroJ. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial.Lancet200436394201491150210.1016/S0140‑6736(04)16146‑1 15135594
    [Google Scholar]
  126. ArasuR. ArasuA. MullerJ. Carotid artery stenosis: An approach to its diagnosis and management.Aust. J. Gen. Pract.2021501182182510.31128/AJGP‑10‑20‑5664 34713283
    [Google Scholar]
  127. HildebrandtH.A. GosslM. MannheimD. Differential distribution of vasa vasorum in different vascular beds in humans.Atherosclerosis20081991475410.1016/j.atherosclerosis.2007.09.015 17959180
    [Google Scholar]
  128. GösslM. VersariD. HildebrandtH.A. Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis.JACC Cardiovasc. Imaging201031324010.1016/j.jcmg.2009.10.009 20129528
    [Google Scholar]
  129. LangheinrichA.C. MichniewiczA. BohleR.M. RitmanE.L. Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE−/−/LDL−/− double knockout mice.Atherosclerosis20071911738110.1016/j.atherosclerosis.2006.05.021 16806224
    [Google Scholar]
  130. SanoM. SasakiT. BabaS. Differences in vasa vasorum distribution in human aortic aneurysms and atheromas.Angiology202273654655610.1177/00033197211063655 35067086
    [Google Scholar]
  131. ItoH. WakatsukiT. YamaguchiK. Atherosclerotic coronary plaque is associated with adventitial vasa vasorum and local inflammation in adjacent epicardial adipose tissue in fresh cadavers.Circ. J.202084576977510.1253/circj.CJ‑19‑0914 32281556
    [Google Scholar]
  132. SchmidtC. FischerT. RückertR.I. Identification of neovascularization by contrast–enhanced ultrasound to detect unstable carotid stenosis.PLoS One2017124e017533110.1371/journal.pone.0175331 28388659
    [Google Scholar]
  133. LiC. HeW. GuoD. Quantification of carotid plaque neovascularization using contrast-enhanced ultrasound with histopathologic validation.Ultrasound Med. Biol.20144081827183310.1016/j.ultrasmedbio.2014.02.010 24798387
    [Google Scholar]
  134. StaubD. PartoviS. SchinkelA.F.L. Correlation of carotid artery atherosclerotic lesion echogenicity and severity at standard US with intraplaque neovascularization detected at contrast-enhanced US.Radiology2011258261862610.1148/radiol.10101008 20971776
    [Google Scholar]
  135. HuangP.T. ChenC.C. AronowW.S. Assessment of neovascularization within carotid plaques in patients with ischemic stroke.World J. Cardiol.201024899710.4330/wjc.v2.i4.89 21160703
    [Google Scholar]
  136. ZamaniM. SkagenK. ScottH. LindbergB. RussellD. SkjellandM. Carotid plaque neovascularization detected with superb microvascular imaging ultrasound without using contrast media.Stroke201950113121312710.1161/STROKEAHA.119.025496 31510899
    [Google Scholar]
  137. ZhuY.C. JiangX.Z. BaiQ.K. Evaluating the efficacy of atorvastatin on patients with carotid plaque by an innovative ultrasonography.J. Stroke Cerebrovasc. Dis.201928383083710.1016/j.jstrokecerebrovasdis.2018.11.027 30563776
    [Google Scholar]
  138. YangD.B. ZhouJ. FengL. XuR. WangY.C. Value of superb micro-vascular imaging in predicting ischemic stroke in patients with carotid atherosclerotic plaques.World J. Clin. Cases20197783984810.12998/wjcc.v7.i7.839 31024955
    [Google Scholar]
  139. HoshinoM. ShimizuT. OguraH. Intraplaque microvascular flow signal in superb microvascular imaging and magnetic resonance imaging carotid plaque imaging in patients with atheromatous carotid artery stenosis.J. Stroke Cerebrovasc. Dis.201827123529353410.1016/j.jstrokecerebrovasdis.2018.08.017 30197167
    [Google Scholar]
  140. CattaneoM. SunJ. StaubD. Imaging of carotid plaque neovascularization by contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging.Cerebrovasc. Dis.2019483-614014810.1159/000504042 31661690
    [Google Scholar]
  141. NishimiyaK. SudaA. FukuiK. Prognostic links between OCT-delineated coronary morphologies and coronary functional abnormalities in patients with INOCA.JACC Cardiovasc. Interv.202114660661810.1016/j.jcin.2020.12.025 33736768
    [Google Scholar]
  142. Bairey MerzC.N. PepineC.J. WalshM.N. Ischemia and No Obstructive Coronary Artery Disease (INOCA).Circulation2017135111075109210.1161/CIRCULATIONAHA.116.024534 28289007
    [Google Scholar]
  143. KampschulteM. GunkelI. StiegerP. Thalidomide influences atherogenesis in aortas of ApoE−/−/LDLR−/− double knockout mice: A nano-CT study.Int. J. Cardiovasc. Imaging201430479580210.1007/s10554‑014‑0380‑5 24487918
    [Google Scholar]
  144. GösslM. HerrmannJ. TangH. Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia.Basic Res. Cardiol.2009104669570610.1007/s00395‑009‑0036‑0 19458984
    [Google Scholar]
  145. XuX. MaoW. ChaiY. Angiogenesis inhibitor, endostar, prevents vasa vasorum neovascularization in a swine atherosclerosis model.J. Atheroscler. Thromb.201522101100111210.5551/jat.26906 26016418
    [Google Scholar]
  146. MollmarkJ.I. ParkA.J.H. KimJ. Fibroblast growth factor-2 is required for vasa vasorum plexus stability in hypercholesterolemic mice.Arterioscler. Thromb. Vasc. Biol.201232112644265110.1161/ATVBAHA.112.252544 22982464
    [Google Scholar]
  147. MollmarkJ. RaviS. SunB. Antiangiogenic activity of rPAI-1(23) promotes vasa vasorum regression in hypercholesterolemic mice through a plasmin-dependent mechanism.Circ. Res.2011108121419142810.1161/CIRCRESAHA.111.246249 21546607
    [Google Scholar]
  148. Mulligan-KehoeM.J. Anti-angiogenic activity of rPAI-123 and vasa vasorum regression.Trends Cardiovasc. Med.201323411412010.1016/j.tcm.2012.09.009 23313168
    [Google Scholar]
  149. MoultonK.S. HellerE. KonerdingM.A. FlynnE. PalinskiW. FolkmanJ. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice.Circulation199999131726173210.1161/01.CIR.99.13.1726 10190883
    [Google Scholar]
  150. YaoJ. YangZ. HuangL. Low‐intensity focused ultrasound‐responsive ferrite‐encapsulated nanoparticles for atherosclerotic plaque neovascularization theranostics.Adv. Sci. (Weinh.)2021819210085010.1002/advs.202100850 34382370
    [Google Scholar]
  151. FerraraN. AdamisA.P. Ten years of anti-vascular endothelial growth factor therapy.Nat. Rev. Drug Discov.201615638540310.1038/nrd.2015.17 26775688
    [Google Scholar]
  152. AnnexB.H. CookeJ.P. New directions in therapeutic angiogenesis and arteriogenesis in peripheral arterial disease.Circ. Res.2021128121944195710.1161/CIRCRESAHA.121.318266 34110899
    [Google Scholar]
  153. DabravolskiS.A. MarkinA.M. AndreevaE.R. EreminI.I. OrekhovA.N. MelnichenkoA.A. Molecular mechanisms underlying pathological and therapeutic roles of pericytes in atherosclerosis.Int. J. Mol. Sci.202223191166310.3390/ijms231911663 36232962
    [Google Scholar]
  154. LiM. QiZ. ZhangJ. ZhuK. WangY. Effect and mechanism of Si-Miao-Yong-An on vasa vasorum remodeling in ApoE−/− mice with atherosclerosis vulnerable plague.Front. Pharmacol.20211263461110.3389/fphar.2021.634611 33935723
    [Google Scholar]
  155. BaganhaF. de JongR.C.M. PetersE.A. Atorvastatin pleiotropically decreases intraplaque angiogenesis and intraplaque haemorrhage by inhibiting ANGPT2 release and VE-Cadherin internalization.Angiogenesis202124356758110.1007/s10456‑021‑09767‑9 33550461
    [Google Scholar]
  156. YangY. PeiK. ZhangQ. Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes.Biochim. Biophys. Acta Mol. Cell Biol. Lipids202018651015877910.1016/j.bbalip.2020.158779 32739616
    [Google Scholar]
  157. WuC.R. YangQ.Y. ChenQ.W. Ghrelin attenuate cerebral microvascular leakage by regulating inflammation and apoptosis potentially via a p38 MAPK-JNK dependent pathway.Biochem. Biophys. Res. Commun.2021552374310.1016/j.bbrc.2021.03.032 33740663
    [Google Scholar]
  158. AplinA.C. NicosiaR.F. Tissue oxygenation stabilizes neovessels and mitigates hemorrhages in human atherosclerosis-induced angiogenesis.Angiogenesis2023261637610.1007/s10456‑022‑09851‑8 35947328
    [Google Scholar]
  159. de VriesM.R. ParmaL. PetersH.A.B. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels.J. Intern. Med.20192851597410.1111/joim.12821 30102798
    [Google Scholar]
  160. BaganhaF. SluiterT.J. de JongR.C.M. Phosphorylcholine monoclonal antibody therapy decreases intraplaque angiogenesis and intraplaque hemorrhage in murine vein grafts.Int. J. Mol. Sci.202223211366210.3390/ijms232113662 36362449
    [Google Scholar]
  161. MilasanA. SmaaniA. MartelC. Early rescue of lymphatic function limits atherosclerosis progression in Ldlr mice.Atherosclerosis201928310611910.1016/j.atherosclerosis.2019.01.031 30851674
    [Google Scholar]
  162. MilasanA. DallaireF. MayerG. MartelC. Effects of LDL receptor modulation on lymphatic function.Sci. Rep.2016612786210.1038/srep27862 27279328
    [Google Scholar]
  163. KraftJ.D. BlomgranR. LundgaardI. Quiding-JärbrinkM. BrombergJ.S. BörgesonE. Specialized pro-resolving mediators and the lymphatic system.Int. J. Mol. Sci.2021225275010.3390/ijms22052750 33803130
    [Google Scholar]
  164. SinglaB. AithbathulaR.V. PervaizN. CD47 activation by thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20234371234125010.1161/ATVBAHA.122.318904 37259865
    [Google Scholar]
  165. MylonakiI. AllémannÉ. SaucyF. HaefligerJ.A. DelieF. JordanO. Perivascular medical devices and drug delivery systems: Making the right choices.Biomaterials2017128566810.1016/j.biomaterials.2017.02.028 28288349
    [Google Scholar]
  166. BarcenaA.J.R. PerezJ.V.D. LiuO. Localized perivascular therapeutic approaches to inhibit venous neointimal hyperplasia in arteriovenous fistula access for hemodialysis use.Biomolecules20221210136710.3390/biom12101367 36291576
    [Google Scholar]
  167. ZhaoC. ZuckermanS.T. CaiC. Periadventitial delivery of simvastatin‐loaded microparticles attenuate venous neointimal hyperplasia associated with arteriovenous fistula.J. Am. Heart Assoc.2020924e01841810.1161/JAHA.120.018418 33283594
    [Google Scholar]
  168. ApplewhiteB. GuptaA. WeiY. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats.Front. Cardiovasc. Med.202310112410610.3389/fcvm.2023.1124106 36926045
    [Google Scholar]
  169. ShirasuT. YodsanitN. XieX. An adventitial painting modality of local drug delivery to abate intimal hyperplasia.Biomaterials202127512096810.1016/j.biomaterials.2021.120968 34153787
    [Google Scholar]
  170. YangF. XueJ. WangG. DiaoQ. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases.Front. Pharmacol.20221399940410.3389/fphar.2022.999404 36172197
    [Google Scholar]
  171. ChaudharyM.A. GuoL.W. ShiX. Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery.J. Control. Release201623317418010.1016/j.jconrel.2016.05.002 27179635
    [Google Scholar]
  172. ZhaoZ. ShenW. ZhuH. Zoledronate inhibits fibroblasts’ proliferation and activation via targeting TGF-β signaling pathway.Drug Des. Devel. Ther.2018123021303110.2147/DDDT.S168897 30271117
    [Google Scholar]
  173. WeiK. NguyenH.N. BrennerM.B. Fibroblast pathology in inflammatory diseases.J. Clin. Invest.202113120e14953810.1172/JCI149538 34651581
    [Google Scholar]
  174. BiffiG. TuvesonD.A. Diversity and biology of cancer-associated fibroblasts.Physiol. Rev.2021101114717610.1152/physrev.00048.2019 32466724
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611306375241211084246
Loading
/content/journals/cvp/10.2174/0115701611306375241211084246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test