- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 24, Issue 17, 2024
Current Topics in Medicinal Chemistry - Volume 24, Issue 17, 2024
Volume 24, Issue 17, 2024
-
-
CircRNA Interference Pathway: A New Target for Intervention in Different Stages of Heart Failure
Authors: Yuli Wang, Qiaoling Chen, Jiaqi Zhang, Yun Deng, Changyu Liu, Shuangcui Wang, Maojuan Guo and Lili SongCardio-cerebrovascular disease has seen a rapid rise in recent years, with Heart Failure (HF) - a terminal stage of various cardiovascular diseases - also on the rise. HF has a complex pathogenesis involving multiple factors, such as inflammation, fibrosis, and oxidative stress. Due to its unique reverse shear mechanism, HF exhibits distinct expression patterns across different diseases. CircRNA has been linked to conditions like cancer, diabetes, and osteoarthritis. This article briefly introduces the mechanisms of circRNA biogenesis and its associated biological functions, focusing on CircSLC8A1-1, CircRNA_000203, and others at the early stage of HF, CircRNA PAN3, CircRNA (ACR), and others during the progression of HF, and CircHIPK3, CircNfix, and others at the end stage of HF. These circRNAs play a participatory role in the exact mechanism. As a research method, circRNA can be utilized to study the pathogenesis of heart failure and serve as a target for drug discovery and development. Therefore, circRNA's ability to mark the disease at different stages has significant guiding implications for HF monitoring, treatment, and prognosis.
-
-
-
Stimuli-sensitive Chitosan-based Nanosystems-immobilized Nucleic Acids for Gene Therapy in Breast Cancer and Hepatocellular Carcinoma
Authors: Seyed Morteza Naghib, Bahar Ahmadi and M. R. MozafariChitosan-based nanoparticles have emerged as a promising tool in the realm of cancer therapy, particularly for gene delivery. With cancer being a prevalent and devastating disease, finding effective treatment options is of utmost importance. These nanoparticles provide a unique solution by encapsulating specific genes and delivering them directly to cancer cells, offering immense potential for targeted therapy. The biocompatibility and biodegradability of chitosan, a naturally derived polymer, make it an ideal candidate for this purpose. The nanoparticles protect the genetic material during transportation and enhance its cellular uptake, ensuring effective delivery to the site of action. Furthermore, the unique properties of chitosan-based nanoparticles allow for the controlled release of genes, maximizing their therapeutic effect while minimizing adverse effects. By advancing the field of gene therapy through the use of chitosan-based nanoparticles, scientists are making significant strides toward more humane and personalized treatments for cancer patients.
-
-
-
Nano-nutraceuticals to Combat Oxidative Stress: Unlocking Newer Paradigms in Adjuvant Therapy
Nutraceuticals are products that provide both nutritional and therapeutic benefits. These compounds can slow the aging process and provide physiological effects shielding individuals from acute and chronic diseases. People's interests have shifted from allopathic to Ayurvedic to nutraceuticals in recent years. These are often common dietary supplements that have drawn customers worldwide because of their high nutritional safety and lack of adverse effects when used for a long time. Although conventional dosage forms, including pills, tablets, and semi-solids, are still available, they nevertheless have poorer bioavailability, less stability, and less effectiveness for targeted delivery of bioactives. The use of effective nanocomplex systems as nano-antioxidants using nanotechnology has become a promising field. Among its many uses, nanotechnology is mostly used to create foods and nutraceuticals that are more bioavailable, less toxic, and more sustainable. Additionally, it has been emphasized how precisely nano-pharmaceuticals for oxidative stress produce the desired effects. These improvements show improved antioxidant delivery to the target region, reduced leakage, and increased targeting precision. The outcomes demonstrated that oxidative stress-related illnesses can be effectively treated by lowering ROS levels with the use of nanonutraceuticals. The major ideas and uses of nano-nutraceuticals for health are outlined in this review, with an emphasis on reducing oxidative stress.
-
-
-
Benzimidazole as a Privileged Scaffold in Drug Design and Discovery
Authors: Ram Kumar, Arockia B. Marianesan and Shilpi PathakBenzimidazole is a privileged drug design and discovery scaffold with various pharmacological activities, including antimicrobial, anticancer, antitubercular, anti-inflammatory, antidiabetic, antihypertensive, antimalarial, and many more. This scaffold can be observed in the structure of numerous FDA-approved drugs and employed in medicinal chemistry to develop novel bioactive compounds through rational drug design. Its broad pharmacological significance is due to physicochemical attributes, including H-bond donor-acceptor efficiency, π-π stacking interactions, and hydrophobic interactions; these characteristics enable benzimidazole derivatives to bind with macromolecules efficiently. This article emphasizes mechanisms, SAR, and docking studies to unveil benzimidazole's various active hybrids accountable for diversified activities. It will assist researchers in strategically designing various novel benzimidazole-endowed hybrids to develop clinically active therapeutic candidates.
-
Volumes & issues
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)