Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Iron oxide nanoparticles demonstrate tremendous potential in preserving the ecological balance of the environment since they act as antimicrobial agents and efficient photocatalysts. However, environmental sustainability has challenged the synthesis protocols of nanomaterials.

Methods

This study compares the green synthesis method with the scalable chemical synthesis method. In this work, Iron oxide nanoparticles were fabricated the green chemistry technique utilizing the leaf extract of (M-IONP) and also the chemical co-precipitation method (C-IONP). The synthesized IONPs were analyzed by different characterization methods such as XRD, FTIR, SEM analysis, ZETA potential measurements, and DLS spectroscopy analysis.

Results

The biosynthesized and chemically synthesized IONPs were analyzed for their mechanistic action against different applications like antimicrobial, antioxidant, and degradation of harmful dyes. Interestingly, the biosynthesized IONPs (M-IONP) exhibited more effective antimicrobial efficacy towards Gram-positive and Gram-negative organisms than chemically synthesized IONPs.

Conclusion

The green synthesized M-IONP also showed significant antioxidant propensity similar to that of the standards taken. Additionally, green-synthesized M-IONP exhibited enhanced degradation efficacies against Methylene blue, chromium, and sulphamethoxazole in comparison to chemically synthesized IONP.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266332330240910100638
2024-09-18
2025-05-11
Loading full text...

Full text loading...

References

  1. JeevanandamJ. KiewS.F. Boakye-AnsahS. LauS.Y. BarhoumA. DanquahM.K. RodriguesJ. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts.Nanoscale20221472534257110.1039/D1NR08144F 35133391
    [Google Scholar]
  2. KharissovaO.V. DiasH.V.R. KharisovB.I. PérezB.O. PérezV.M.J. The greener synthesis of nanoparticles.Trends Biotechnol.201331424024810.1016/j.tibtech.2013.01.003 23434153
    [Google Scholar]
  3. NagajyothiP.C. PanduranganM. KimD.H. SreekanthT.V.M. ShimJ. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities.J. Cluster Sci.201728124525710.1007/s10876‑016‑1082‑z
    [Google Scholar]
  4. KarpagavinayagamP. VedhiC. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract.Vacuum201916028629210.1016/j.vacuum.2018.11.043
    [Google Scholar]
  5. MahendranG. VermaS.K. RahmanL.U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review.J. Ethnopharmacol.202127811426610.1016/j.jep.2021.114266 34087400
    [Google Scholar]
  6. SandhyaJ. KalaiselvamS. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassus flabellifer seed coat: Characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis.Mater. Res. Express20207101504510.1088/2053‑1591/ab6642
    [Google Scholar]
  7. ShahwanT. Abu SirriahS. NairatM. BoyacıE. EroğluA.E. ScottT.B. HallamK.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes.Chem. Eng. J.2011172125826610.1016/j.cej.2011.05.103
    [Google Scholar]
  8. Mahlaule-GloryL.M. MapetlaS. MakofaneA. MathipaM.M. Hintsho-MbitaN.C. Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water.Heliyon202289e1053610.1016/j.heliyon.2022.e10536 36105454
    [Google Scholar]
  9. SureshkumarV. Kiruba DanielS.C.G. RuckmaniK. SivakumarM. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal.Appl. Nanosci.20166227728510.1007/s13204‑015‑0429‑3
    [Google Scholar]
  10. MoosavyM.H. de la GuardiaM. MokhtarzadehA. KhatibiS.A. HosseinzadehN. HajipourN. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil.Sci. Rep.2023131723010.1038/s41598‑023‑33632‑y 37142621
    [Google Scholar]
  11. HoagG.E. CollinsJ.B. HolcombJ.L. HoagJ.R. NadagoudaM.N. VarmaR.S. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols.J. Mater. Chem.200919458671867710.1039/b909148c
    [Google Scholar]
  12. RastogiA. SinghP. HarazF.A. BarhoumA. Biological synthesis of nanoparticles: An environmentally benign approach. Fundamentals of NanoparticlesElsevier: Amsterdsm201857160410.1016/B978‑0‑323‑51255‑8.00023‑9
    [Google Scholar]
  13. JainS. MehataM.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property.Sci. Rep.2017711586710.1038/s41598‑017‑15724‑8 29158537
    [Google Scholar]
  14. PalagiriB. ChintapartyR. NagireddyR.R. Imma ReddyV.R. Influence of synthesis conditions on structural, optical and magnetic properties of iron oxide nanoparticles prepared by hydrothermal method.Phase Transit.201790657858910.1080/01411594.2016.1237636
    [Google Scholar]
  15. AhmadS. RiazU. KaushikA. AlamJ. Soft template synthesis of super paramagnetic Fe 3 O 4 nanoparticles a novel technique.J. Inorg. Organomet. Polym. Mater.200919335536010.1007/s10904‑009‑9276‑6
    [Google Scholar]
  16. MadivoliE.S. KareruP.G. MainaE.G. NyabolaA.O. WanakaiS.I. Nyang’auJ.O. Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity.SN Appl. Sci.20191550010.1007/s42452‑019‑0511‑7
    [Google Scholar]
  17. KhanS. BibiG. DilbarS. IqbalA. AhmadM. AliA. UllahZ. JaremkoM. IqbalJ. AliM. HaqI. AliI. RETRACTED: Biosynthesis and characterization of iron oxide nanoparticles from Mentha spicata and screening its combating potential against Phytophthora infestans.Front. Plant Sci.202213100149910.3389/fpls.2022.1001499 36226302
    [Google Scholar]
  18. JainP. SoniA. JainP. BhawsarJ.J.J.C.P.R. Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique.J. Chem. Pharm. Res.20168216
    [Google Scholar]
  19. WongsaP. PhatikulrungsunP. PrathumthongS. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions.Sci. Rep.2022121663110.1038/s41598‑022‑10669‑z 35459897
    [Google Scholar]
  20. HoangD.Q. TranT.V. TranN.Q. NguyenC.K. NguyenT.H. TruongM.D. TranD.L. ThuL.V. NguyenD.H. Functionalization of Fe 3 O 4 nanoparticles with biodegradable chitosan-grafted-mPEG for paclitaxel delivery.Green Processing and Synthesis20165545946610.1515/gps‑2016‑0093
    [Google Scholar]
  21. MalaikozhundanB. KrishnamoorthiR. VinodhiniJ. NambiK.S.N. PalanisamyS. Multifunctional iron oxide nanoparticles using Carica papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes.Inorg. Chem. Commun.202214410984310.1016/j.inoche.2022.109843
    [Google Scholar]
  22. ArokiyarajS. SaravananM. Udaya PrakashN.K. Valan ArasuM. VijayakumarB. VincentS. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: An in vitro study.Mater. Res. Bull.20134893323332710.1016/j.materresbull.2013.05.059
    [Google Scholar]
  23. ParmanikA. BoseA. GhoshB. PaulM. ItooA. BiswasS. ArakhaM. Development of triphala churna extract mediated iron oxide nanoparticles as novel treatment strategy for triple negative breast cancer.J. Drug Deliv. Sci. Technol.20227610373510.1016/j.jddst.2022.103735
    [Google Scholar]
  24. SoaresP.I.P. AlvesA.M.R. PereiraL.C.J. CoutinhoJ.T. FerreiraI.M.M. NovoC.M.M. BorgesJ.P.M.R. Effects of surfactants on the magnetic properties of iron oxide colloids.J. Colloid Interface Sci.2014419465110.1016/j.jcis.2013.12.045 24491328
    [Google Scholar]
  25. NjagiE.C. HuangH. StaffordL. GenuinoH. GalindoH.M. CollinsJ.B. HoagG.E. SuibS.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts.Langmuir201127126427110.1021/la103190n 21133391
    [Google Scholar]
  26. XiaoZ. YuanM. YangB. LiuZ. HuangJ. SunD. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules.Chemosphere201615035736410.1016/j.chemosphere.2016.02.056 26921588
    [Google Scholar]
  27. KouhbananiM.A.J. BeheshtkhooN. TaghizadehS. AmaniA.M. AlimardaniV. One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation.Advances Nat. Sci.: Nanosci. Nanotechnol.201910101500710.1088/2043‑6254/aafe74
    [Google Scholar]
  28. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J 29926865
    [Google Scholar]
  29. LiuY. ShiL. SuL. van der MeiH.C. JutteP.C. RenY. BusscherH.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.Chem. Soc. Rev.201948242844610.1039/C7CS00807D 30601473
    [Google Scholar]
  30. ArakhaM. SaleemM. MallickB.C. JhaS. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle.Sci. Rep.201551957810.1038/srep09578 25873247
    [Google Scholar]
  31. RashidJ. SaleemS. AwanS.U. IqbalA. KumarR. BarakatM.A. ArshadM. ZaheerM. RafiqueM. AwadM. Stabilized fabrication of anatase-TiO 2/FeS 2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue.RSC Advances2018822119351194510.1039/C8RA02077A 35539408
    [Google Scholar]
  32. JiaP. TanH. LiuK. GaoW. Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite.Mater. Res. Bull.2018102455010.1016/j.materresbull.2018.02.018
    [Google Scholar]
  33. KhanI. SaeedK. ZekkerI. ZhangB. HendiA.H. AhmadA. AhmadS. ZadaN. AhmadH. ShahL.A. ShahT. KhanI. Review on methylene blue: Its properties, uses, toxicity and photodegradation.Water202214224210.3390/w14020242
    [Google Scholar]
  34. MahantyS. BakshiM. GhoshS. GaineT. ChatterjeeS. BhattacharyyaS. DasS. DasP. ChaudhuriP. Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study.Environ. Nanotechnol. Monit. Manag.20191210027610.1016/j.enmm.2019.100276
    [Google Scholar]
  35. YeY. JiangZ. XuZ. ZhangX. WangD. LvL. PanB. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.Water Res.201712617217810.1016/j.watres.2017.09.021 28946060
    [Google Scholar]
  36. TuB. ChenH. XueS. DengJ. TaoH. Ultrafast and efficient removal of aqueous Cr(VI) using iron oxide nanoparticles supported on Bermuda grass-based activated carbon.J. Mol. Liq.202133411602610.1016/j.molliq.2021.116026
    [Google Scholar]
  37. LuW. LiJ. ShengY. ZhangX. YouJ. ChenL. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution.J. Colloid Interface Sci.20175051134114610.1016/j.jcis.2017.07.013 28709373
    [Google Scholar]
  38. MakofaneA. MaakeP.J. MathipaM.M. MatiniseN. CummingsF.R. MotaungD.E. Hintsho-MbitaN.C.J.H. Green synthesis of NiFe2O4 nanoparticles for the degradation of Methylene Blue, sulfisoxazole and bacterial strains.Heliyon2022139109348
    [Google Scholar]
  39. BedorD.C.G. GonçalvesT.M. FerreiraM.L.L. de SousaC.E.M. MenezesA.L. OliveiraE.J. de SantanaD.P. Simultaneous determination of sulfamethoxazole and trimethoprim in biological fluids for high-throughput analysis: Comparison of HPLC with ultraviolet and tandem mass spectrometric detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20088631465410.1016/j.jchromb.2007.12.027 18243822
    [Google Scholar]
  40. KusiorA. MichalecK. JelenP. RadeckaM. Shaped Fe2O3 nanoparticles – Synthesis and enhanced photocatalytic degradation towards RhB.Appl. Surf. Sci.201947634235210.1016/j.apsusc.2018.12.113
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266332330240910100638
Loading
/content/journals/ctmc/10.2174/0115680266332330240910100638
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test