Skip to content
2000
Volume 24, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322676240724114536
2024-09-01
2025-06-26
Loading full text...

Full text loading...

References

  1. LooC.S.N. LamN.S.K. YuD. SuX. LuF. Artemisinin and its derivatives in treating protozoan infections beyond malaria.Pharmacol. Res.201711719221710.1016/j.phrs.2016.11.01227867026
    [Google Scholar]
  2. DasS. Artemisia annua (Qinghao): A pharmacological review.Int. J. Pharm. Sci. Res.201231245734577
    [Google Scholar]
  3. SlezakovaS. Ruda-KucerovaJ. Anticancer activity of artemisinin and its derivatives.Anticancer Res.201737115995600329061778
    [Google Scholar]
  4. KianiB.H. KayaniW.K. KhayamA.U. DilshadE. IsmailH. MirzaB. Artemisinin and its derivatives: A promising cancer therapy.Mol. Biol. Rep.20204786321633610.1007/s11033‑020‑05669‑z32710388
    [Google Scholar]
  5. WuY TangW ZuoJ Development of artemisinin drugs in the treatment of autoimmune diseases.Science Bulletin2016611097510.1007/s11434‑015‑0975‑9
    [Google Scholar]
  6. XingJ. BaiK.H. LiuT. WangR.L. ZhangL.F. ZhangS.Q. The multiple-dosing pharmacokinetics of artemether, artesunate, and their metabolite dihydroartemisinin in rats.Xenobiotica201141325225810.3109/00498254.2010.54225721175296
    [Google Scholar]
  7. JiangZ. WangZ. ChenL. ZhangC. LiaoF. WangY. WangY. LuoP. LuoM. ShiC. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells.Am. J. Cancer Res.202111369171133791148
    [Google Scholar]
  8. ZhuS. YuQ. HuoC. LiY. HeL. RanB. ChenJ. LiY. LiuW. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy.Curr. Med. Chem.202128232934510.2174/1875533XMTAzlNzkj131965935
    [Google Scholar]
  9. HuangT.E. DengY.N. HsuJ.L. LeuW.J. MarchesiE. CapobiancoM.L. MarchettiP. NavacchiaM.L. GuhJ.H. PerroneD. HsuL.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells.Front. Pharmacol.20201159906710.3389/fphar.2020.59906733343369
    [Google Scholar]
  10. ZakiH. BelhassanA. BenlyasM. LakhlifiT. BouachrineM. New dehydroabietic acid (DHA) derivatives with anticancer activity against HepG2 cancer cell lines as a potential drug targeting EGFR kinase domain. CoMFA study and virtual ligand-based screening.J. Biomol. Struct. Dyn.20213982993300310.1080/07391102.2020.175945232319344
    [Google Scholar]
  11. O’NeillP.M. BartonV.E. WardS.A. The molecular mechanism of action of artemisinin--the debate continues.Molecules20101531705172110.3390/molecules1503170520336009
    [Google Scholar]
  12. YangJ. HeY. LiY. ZhangX. WongY.K. ShenS. ZhongT. ZhangJ. LiuQ. WangJ. Advances in the research on the targets of anti-malaria actions of artemisinin.Pharmacol. Ther.202021610769710.1016/j.pharmthera.2020.10769733035577
    [Google Scholar]
  13. DerryP.J. VoA.T.T. GnanansekaranA. MitraJ. LiopoA.V. HegdeM.L. TsaiA.L. TourJ.M. KentT.A. The chemical basis of intracerebral hemorrhage and cell toxicity with contributions from eryptosis and ferroptosis.Front. Cell. Neurosci.20201460304310.3389/fncel.2020.60304333363457
    [Google Scholar]
  14. XuC. ZhangH. MuL. YangX. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials.Front. Pharmacol.20201152988110.3389/fphar.2020.52988133117153
    [Google Scholar]
  15. ZhangC.J. WangJ. ZhangJ. LeeY.M. FengG. LimT.K. ShenH.M. LinQ. LiuB. Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer activity.Angew. Chem. Int. Ed.20165544137701377410.1002/anie.20160730327709833
    [Google Scholar]
  16. CaiX. HuF. FengG. KwokR.T.K. LiuB. TangB.Z. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission.Isr. J. Chem.201858886087310.1002/ijch.201800031
    [Google Scholar]
  17. GuoS. YaoX. JiangQ. WangK. ZhangY. PengH. TangJ. YangW. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced Chemodynamic therapy.Front. Pharmacol.20201122610.3389/fphar.2020.0022632210814
    [Google Scholar]
  18. de LangeC. CoertzenD. SmitF.J. WentzelJ.F. WongH.N. BirkholtzL.M. HaynesR.K. N’DaD.D. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids.Bioorg. Med. Chem. Lett.201828193161316310.1016/j.bmcl.2018.08.03730174153
    [Google Scholar]
  19. WatsonD.J. LaingL. GibhardL. Towards new transmission-blocking combination therapies - 10-amino-artemisinins & 11-aza-artemisinin.Antimicrob. Agents Chemother.202165e00990e2110.1128/AAC.00990‑2134097488
    [Google Scholar]
  20. ÇapcıA. HerrmannL. Sampath KumarH.M. FröhlichT. TsogoevaS.B. Artemisinin-derived dimers from a chemical perspective.Med. Res. Rev.20214162927297010.1002/med.2181434114227
    [Google Scholar]
  21. FröhlichT. Çapcı KaragözA. ReiterC. TsogoevaS.B. Artemisinin-derived dimers: potent antimalarial and anticancer agents.J. Med. Chem.201659167360738810.1021/acs.jmedchem.5b0138027010926
    [Google Scholar]
  22. GuptaA. GuptaG.S. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine.J. Nanopart. Res.2022241122810.1007/s11051‑022‑05594‑136373057
    [Google Scholar]
  23. SharmaK. Skin permeation of Candesartan Cilexetil from transdermal patch containing Aloe Vera gel as penetration enhancer.Asian J. Pharm.2016102121130
    [Google Scholar]
  24. WuY. ParapiniS. WilliamsI.D. MisianoP. WongH.N. TaramelliD. BasilicoN. HaynesR.K. Facile Preparation of N-glycosylated 10-piperazinyl artemisinin derivatives and evaluation of their antimalarial and cytotoxic activities.Molecules2018237171310.3390/molecules2307171330011856
    [Google Scholar]
  25. WongH.N. Padín-IrizarryV. van der WattM.E. ReaderJ. LiebenbergW. WiesnerL. SmithP. EribezK. WinzelerE.A. KyleD.E. BirkholtzL.M. CoertzenD. HaynesR.K. Optimal 10-aminoartemisinins with potent transmission-blocking capabilities for new artemisinin combination therapies–activities against blood stage P. falciparum Including Pf KI3 C580Y mutants and liver stage P. berghei parasites.Front Chem.2020790110.3389/fchem.2019.0090131998692
    [Google Scholar]
  26. ChanW.C. Wai ChanD.H. LeeK.W. TinW.S. WongH.N. HaynesR.K. Evaluation and optimization of synthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosylation methodologies on a lipophilic peroxide.Tetrahedron201874385156517110.1016/j.tet.2018.04.027
    [Google Scholar]
  27. YuY. YuJ. ZouX. XuW. ZhangJ. BianH. DongX. ShenZ. Studies on the stereoselective synthesis and immunosuppressive activity of dihydroartemisinin-O-glycoside derivatives.Bioorg. Med. Chem. Lett.2020301612733810.1016/j.bmcl.2020.12733832631539
    [Google Scholar]
  28. XieL. ZhaiX. LiuC. LiP. LiY. GuoG. GongP. Anti-tumor activity of new artemisinin-chalcone hybrids.Arch. Pharm.20113441063964710.1002/ardp.20100039121984014
    [Google Scholar]
  29. JanaS. IramS. ThomasJ. LiekensS. DehaenW. Synthesis and anticancer activity of novel aza-artemisinin derivatives.Bioorg. Med. Chem.201725143671367610.1016/j.bmc.2017.04.04128529044
    [Google Scholar]
  30. LiS. LiG. YangX. MengQ. YuanS. HeY. SunD. Design, synthesis and biological evaluation of artemisinin derivatives containing fluorine atoms as anticancer agents.Bioorg. Med. Chem. Lett.201828132275227810.1016/j.bmcl.2018.05.03529789258
    [Google Scholar]
  31. YuJ.Y. LiX.Q. WeiM.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives.Eur. J. Med. Chem.2019169212810.1016/j.ejmech.2019.02.07130852384
    [Google Scholar]
  32. LinL. LuW. DaiT. ChenH. WangT. YangL. YangX. LiuY. SunD. Novel artemisinin derivatives with potent anticancer activities and the anti-colorectal cancer effect by the mitochondria-mediated pathway.Bioorg. Chem.202110610449610.1016/j.bioorg.2020.10449633288320
    [Google Scholar]
  33. WeiM.X. YuJ.Y. LiuX.X. LiX.Q. ZhangM.W. YangP.W. YangJ.H. Synthesis of artemisinin-piperazine-furan ether hybrids and evaluation of in vitro cytotoxic activity.Eur. J. Med. Chem.202121511329510.1016/j.ejmech.2021.11329533636536
    [Google Scholar]
  34. WierPJ Use of toxicokinetics in developmental and reproductive toxicology.Developmental and Reproductive ToxicologyCRC Press2016532555
    [Google Scholar]
  35. RomanelliM.N. ManettiD. BraconiL. DeiS. GabelliniA. TeodoriE. The piperazine scaffold for novel drug discovery efforts: the evidence to date.Expert Opin. Drug Discov.202217996998410.1080/17460441.2022.210353535848922
    [Google Scholar]
  36. ZengZ. ChenD. ChenL. HeB. LiY. A comprehensive overview of Artemisinin and its derivatives as anticancer agents.Eur. J. Med. Chem.202324711500010.1016/j.ejmech.2022.11500036538859
    [Google Scholar]
  37. HaynesR. From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements.Curr. Top. Med. Chem.20066550953710.2174/15680260677674312916719805
    [Google Scholar]
  38. SaeedM.E.M. BreuerE. HegazyM.F. EfferthT. Retrospective study of small pet tumors treated with Artemisia annua and iron.Int. J. Oncol.202056112313831789393
    [Google Scholar]
  39. CardosoP.C.S. RochaC.A.M. MotaT.C. BahiaM.O. CorreaR.M.S. GomesL.M. AlcântaraD.D.F.A. AraújoT.M.T. MoraesL.S. BurbanoR. in vitro assessment of cytotoxic, genotoxic and mutagenic effects of antimalarial drugs artemisinin and artemether in human lymphocytes.Drug Chem. Toxicol.201942660861410.1080/01480545.2018.145520729681192
    [Google Scholar]
  40. HaynesR.K. ChanW.C. LungC.M. UhlemannA.C. EcksteinU. TaramelliD. ParapiniS. MontiD. KrishnaS. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates.ChemMedChem20072101480149710.1002/cmdc.20070010817768732
    [Google Scholar]
  41. SunC. CaoY. ZhuP. ZhouB. A mitochondria-targeting artemisinin derivative with sharply increased antitumor but depressed anti-yeast and anti-malaria activities.Sci. Rep.2017714566510.1038/srep4566528368011
    [Google Scholar]
  42. LiD. ZhangJ. ZhaoX. Mechanisms and molecular targets of artemisinin in cancer treatment.Cancer Invest.202139867568410.1080/07357907.2021.195419034241563
    [Google Scholar]
  43. ZhangQ. YiH. YaoH. LuL. HeG. WuM. ZhengC. LiY. ChenS. LiL. YuH. LiG. TaoX. FuS. DengX. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis.J. Cancer202112134075408510.7150/jca.5705434093811
    [Google Scholar]
  44. WongH.N. LewiesA. HaighM. ViljoenJ.M. WentzelJ.F. HaynesR.K. du PlessisL.H. Anti-melanoma activities of artemisone and prenylated amino-artemisinins in combination with known anticancer drugs.Front. Pharmacol.20201155889410.3389/fphar.2020.55889433117161
    [Google Scholar]
  45. HaynesR.K. CheuK.W. ChanH.W. WongH.N. LiK.Y. TangM.M.K. ChenM.J. GuoZ.F. GuoZ.H. SinniahK. WitteA.B. CoghiP. MontiD. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action.ChemMedChem20127122204222610.1002/cmdc.20120038323112085
    [Google Scholar]
  46. HaynesR.K. CheuK.W. TangM.M.K. ChenM.J. GuoZ.F. GuoZ.H. CoghiP. MontiD. Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified.ChemMedChem20116227929110.1002/cmdc.20100050821275052
    [Google Scholar]
  47. EgwuC.O. PérioP. AugereauJ.M. TsamesidisI. Benoit-VicalF. ReybierK. Resistance to artemisinin in falciparum malaria parasites: A redox-mediated phenomenon.Free Radic. Biol. Med.202217931732710.1016/j.freeradbiomed.2021.08.01634416340
    [Google Scholar]
  48. MancusoR.I. FoglioM.A. Olalla SaadS.T. Artemisinin-type drugs for the treatment of hematological malignancies.Cancer Chemother. Pharmacol.202187112210.1007/s00280‑020‑04170‑533141328
    [Google Scholar]
  49. SunQ. WangJ. LiY. ZhuangJ. ZhangQ. SunX. SunD. Synthesis and evaluation of cytotoxic activities of artemisinin derivatives.Chem. Biol. Drug Des.20179051019102810.1111/cbdd.1301628489280
    [Google Scholar]
  50. GuanX. GuanY. Artemisinin induces selective and potent anticancer effects in drug resistant breast cancer cells by inducing cellular apoptosis and autophagy and G2/M cell cycle arrest.J. BUON20202531330133632862573
    [Google Scholar]
  51. XieY. HouW. SongX. YuY. HuangJ. SunX. KangR. TangD. Ferroptosis: process and function.Cell Death Differ.201623336937910.1038/cdd.2015.15826794443
    [Google Scholar]
  52. LinR. ZhangZ. ChenL. ZhouY. ZouP. FengC. WangL. LiangG. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.Cancer Lett.2016381116517510.1016/j.canlet.2016.07.03327477901
    [Google Scholar]
  53. WongY.K. XuC. KaleshK.A. HeY. LinQ. WongW.S.F. ShenH.M. WangJ. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action.Med. Res. Rev.20173761492151710.1002/med.2144628643446
    [Google Scholar]
  54. KrishnaS. BustamanteL. HaynesR.K. StainesH.M. Artemisinins: their growing importance in medicine.Trends Pharmacol. Sci.2008291052052710.1016/j.tips.2008.07.00418752857
    [Google Scholar]
  55. LiQ WeinaP HickmaM. The use of artemisinin compounds as angiogenesis inhibitors to treat cancer.intechopen201310.5772/54109
    [Google Scholar]
  56. ScutoM. OntarioM.L. SalinaroA.T. CaligiuriI. RampullaF. ZimboneV. ModafferiS. RizzolioF. CanzonieriV. CalabreseE.J. CalabreseV. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology.Free Radic. Biol. Med.2022179597510.1016/j.freeradbiomed.2021.12.26734929315
    [Google Scholar]
  57. MaZ. WoonC.Y.N. LiuC.G. ChengJ.T. YouM. SethiG. WongA.L.A. HoP.C.L. ZhangD. OngP. WangL. GohB.C. Repurposing artemisinin and its derivatives as anticancer drugs: A chance or challenge?Front. Pharmacol.20211282885610.3389/fphar.2021.82885635035355
    [Google Scholar]
  58. PosadinoA.M. GiordoR. PintusG. MohammedS.A. Orhani.e. FokouP.V.T. SharopovF. AdetunjiC.O. Gulsunoglu-KonuskanZ. YdyrysA. ArmstrongL. SytarO. MartorellM. RazisA.F.A. ModuB. CalinaD. HabtemariamS. Sharifi-RadJ. ChoW.C. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases.Biomed. Pharmacother.202316311486610.1016/j.biopha.2023.11486637182516
    [Google Scholar]
  59. ZhangZ. YuS.Q. MiaoL.Y. HuangX.Y. ZhangX.P. ZhuY.P. XiaX.H. LiD.Q. Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: A randomized controlled trial.J. Chin. Integr. Med.20086213413810.3736/jcim2008020618241646
    [Google Scholar]
  60. JansenF.H. AdoubiI. J CK.C. DE CnodderT. JansenN. TschulakowA. EfferthT. First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers.Anticancer Res.201131124417442222199309
    [Google Scholar]
  61. AmejaC.N. OgbeP.D. IbubeleyeV.T. GeorgewillU.O. Evaluation of the efficacy of artemether/lumefantrine/doxycycline combination against plasmodium berghei in mice.EAS J. Parasitol. Infect. Dis.202354264210.36349/easjpid.2023.v05i04.001
    [Google Scholar]
  62. DeekenJ.F. WangH. HartleyM. CheemaA.K. SmagloB. HwangJ.J. HeA.R. WeinerL.M. MarshallJ.L. GiacconeG. LiuS. LuechtJ. SpiegelJ.Y. PishvaianM.J. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies.Cancer Chemother. Pharmacol.201881358759610.1007/s00280‑018‑3533‑829392450
    [Google Scholar]
  63. TrimbleC.L. LevinsonK. MaldonadoL. DonovanM.J. ClarkK.T. FuJ. ShayM.E. SauterM.E. SandersS.A. FrantzP.S. PlesaM. A first-in-human proof-of-concept trial of intravaginal artesunate to treat cervical intraepithelial neoplasia 2/3 (CIN2/3).Gynecol. Oncol.2020157118819410.1016/j.ygyno.2019.12.03532005582
    [Google Scholar]
  64. WatsonJ.A. PetoT.J. WhiteN.J. Rectal artesunate suppositories for the pre-referral treatment of suspected severe malaria.PLoS Med.20232011e100431210.1371/journal.pmed.100431237943884
    [Google Scholar]
  65. von HagensC. Walter-SackI. GoeckenjanM. Storch-HagenlocherB. SertelS. ElsässerM. RemppisB.A. MunzingerJ. EdlerL. EfferthT. SchneeweissA. StrowitzkiT. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2).Phytomedicine20195414014810.1016/j.phymed.2018.09.17830668363
    [Google Scholar]
  66. KrishnaS. GanapathiS. SterI.C. SaeedM.E.M. CowanM. FinlaysonC. KovacsevicsH. JansenH. KremsnerP.G. EfferthT. KumarD. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer.EBioMedicine201521829010.1016/j.ebiom.2014.11.01026137537
    [Google Scholar]
  67. LourençoT. ValeN. Pharmacological efficacy of repurposing drugs in the treatment of prostate cancer.Int. J. Mol. Sci.2023244415410.3390/ijms2404415436835564
    [Google Scholar]
  68. RuwizhiN. MasekoR.B. AderibigbeB.A. Recent advances in the therapeutic efficacy of artesunate.Pharmaceutics202214350410.3390/pharmaceutics1403050435335880
    [Google Scholar]
  69. JiangM. WuY. QiL. LiL. SongD. GanJ. LiY. LingX. SongC. Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma.Chem. Biol. Interact.202135010970410.1016/j.cbi.2021.10970434655567
    [Google Scholar]
  70. YuR. JinL. LiF. FujimotoM. WeiQ. LinZ. RenX. JinQ. LiH. MengF. JinG. Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner.J. Dermatol. Sci.202099319320210.1016/j.jdermsci.2020.08.00132859456
    [Google Scholar]
  71. MaQ. LiaoH. XuL. LiQ. ZouJ. SunR. XiaoD. LiuC. PuW. ChengJ. ZhouX. HuangG. YaoL. ZhongX. GuoX. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin.Chin. Med.20201513710.1186/s13020‑020‑00318‑w32351616
    [Google Scholar]
  72. KumarM.S. YadavT.T. KhairR.R. PetersG.J. YergeriM.C. Combination therapies of artemisinin and its derivatives as a viable approach for future cancer treatment.Curr. Pharm. Des.201925313323333810.2174/138161282566619090215595731475891
    [Google Scholar]
  73. HuttererC. NiemannI. MilbradtJ. FröhlichT. ReiterC. KadiogluO. BahsiH. ZeitträgerI. WagnerS. EinsiedelJ. GmeinerP. VogelN. WandingerS. GodlK. StammingerT. EfferthT. TsogoevaS.B. MarschallM. The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65.Antiviral Res.201512410110910.1016/j.antiviral.2015.10.00326546752
    [Google Scholar]
  74. ChengR. LiC. LiC. WeiL. LiL. ZhangY. YaoY. GuX. CaiW. YangZ. MaJ. YangX. GaoG. The artemisinin derivative artesunate inhibits corneal neovascularization by inducing ROS-dependent apoptosis in vascular endothelial cells.Invest. Ophthalmol. Vis. Sci.20135453400340910.1167/iovs.12‑1106823611999
    [Google Scholar]
  75. EfferthT. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib.Phytomedicine201737586110.1016/j.phymed.2017.11.00329174651
    [Google Scholar]
  76. MazumderK. AktarA. RoyP. BiswasB. HossainM.E. SarkarK.K. BacharS.C. AhmedF. Monjur-Al-HossainA.S.M. FukaseK. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship.Molecules2022279303610.3390/molecules2709303635566385
    [Google Scholar]
  77. ZechJ. SalaymehN. HuntN.H. MäderK. GolenserJ. Efficient treatment of experimental cerebral malaria by an artemisone-SMEDDS system: impact of application route and dosing frequency.Antimicrob. Agents Chemother.2021654e02106-2010.1128/AAC.02106‑2033558284
    [Google Scholar]
  78. PatelO.P.S. BeteckR.M. LegoabeL.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research.Eur. J. Med. Chem.202121311319310.1016/j.ejmech.2021.11319333508479
    [Google Scholar]
  79. DuarteD. CardosoA. ValeN. Synergistic growth inhibition of HT-29 colon and MCF-7 breast cancer cells with simultaneous and sequential combinations of antineoplastics and cns drugs.Int. J. Mol. Sci.20212214740810.3390/ijms2214740834299028
    [Google Scholar]
  80. DwivediA. MazumderA. du PlessisL. du PreezJ.L. HaynesR.K. du PlessisJ. in vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells.Nanomedicine20151182041205010.1016/j.nano.2015.07.01026282380
    [Google Scholar]
  81. Konstat-KorzennyE. Ascencio-AragónJ. Niezen-LugoS. Vázquez-LópezR. Artemisinin and its synthetic derivatives as a possible therapy for cancer.Med. Sci.2018611910.3390/medsci601001929495461
    [Google Scholar]
  82. WuZ. GaoC. WuY. ZhuQ. Yan Chen Xin Liu Chuen Liu Inhibitive effect of artemether on tumor growth and angiogenesis in the rat C6 orthotopic brain gliomas model.Integr. Cancer Ther.200981889210.1177/153473540833071419174507
    [Google Scholar]
  83. Pirali-HamedaniZ. AbbasiA. HassanZ.M. Synthesis of artemether-loaded albumin nanoparticles and measurement of their anti-cancer effects.Biomedicines20221011271310.3390/biomedicines1011271336359230
    [Google Scholar]
  84. AweekaF.T. GermanP.I. Clinical pharmacology of artemisinin-based combination therapies.Clin. Pharmacokinet.20084729110210.2165/00003088‑200847020‑0000218193915
    [Google Scholar]
  85. Moreira SouzaA.C. Grabe-GuimarãesA. CruzJ.S. Santos-MirandaA. FarahC. Teixeira OliveiraL. LucasA. AimondF. SicardP. MosqueiraV.C.F. RichardS. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation.Br. J. Pharmacol.2020177194448446310.1111/bph.1518632608017
    [Google Scholar]
  86. Azimi MohamadabadiM. HassanZ.M. Zavaran HosseiniA. GholamzadM. NooriS. MahdaviM. MaroofH. Arteether exerts antitumor activity and reduces CD4+CD25+FOXP3+ T-reg cells in vivo.Iran. J. Immunol.201310313914924076591
    [Google Scholar]
  87. JabbarzadeganM. RajayiH. Mofazzal JahromiM.A. YeganehH. YousefiM. Muhammad HassanZ. MajidiJ. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model.Artif. Cells Nanomed. Biotechnol.201745480881610.1080/21691401.2016.117813127263545
    [Google Scholar]
  88. KongJ. YangY. WangW. ChengK. ZhuP. Artemisinic acid: A promising molecule potentially suitable for the semi-synthesis of artemisinin.RSC Advances20133217622764110.1039/c3ra40525g
    [Google Scholar]
  89. ZhuX.X. YangL. LiY.J. ZhangD. ChenY. KosteckáP. KmoníèkováE. ZídekZ. Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis.Pharmacol. Rep.201365241042010.1016/S1734‑1140(13)71016‑823744425
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322676240724114536
Loading
/content/journals/ctmc/10.2174/0115680266322676240724114536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test