Skip to content
2000
Volume 24, Issue 23
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders.

This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives.

To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance.

Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266309968240621072550
2024-09-01
2025-05-17
Loading full text...

Full text loading...

References

  1. HanzlA. WinterG.E. Targeted protein degradation: Current and future challenges.Curr. Opin. Chem. Biol.202056354110.1016/j.cbpa.2019.11.012 31901786
    [Google Scholar]
  2. CaineE.A. MahanS.D. JohnsonR.L. NiemanA.N. LamN. WarrenC.R. RichingK.M. UrhM. DanielsD.L. Targeted protein degradation phenotypic studies using HaloTag CRISPR/] Cas9 endogenous tagging coupled with HaloPROTAC3.Curr. Protocols Pharmacol.2020911e8110.1002/cpph.81 33332748
    [Google Scholar]
  3. PROTACdb Server.Available from:http://cadd.zju.edu.cn/protacdb/ [accessed on 9 November2023].
    [Google Scholar]
  4. BékésM. LangleyD.R. CrewsC.M. PROTAC targeted protein degraders: The past is prologue.Nat. Rev. Drug Discov.202221318120010.1038/s41573‑021‑00371‑6 35042991
    [Google Scholar]
  5. BholeR.P. KuteP.R. ChikhaleR.V. BondeC.G. PantA. GuravS.S. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy.Bioorg. Chem.202313910672010.1016/j.bioorg.2023.106720 37480814
    [Google Scholar]
  6. GopalP. DickT. Targeted protein degradation in antibacterial drug discovery?Prog. Biophys. Mol. Biol.2020152101410.1016/j.pbiomolbio.2019.11.005 31738980
    [Google Scholar]
  7. SakamotoK.M.K.K. KumagaiA. MercurioF. CrewsC.M. DeshaiesR.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.Proc Natl Acad Sci USA200198158554855910.1073/pnas.141230798
    [Google Scholar]
  8. SamarasingheK.T.G. CrewsC.M. Targeted protein degradation: A promise for undruggable proteins.Cell Chem. Biol.202128793495110.1016/j.chembiol.2021.04.011 34004187
    [Google Scholar]
  9. LiuZ. HuM. YangY. DuC. ZhouH. LiuC. ChenY. FanL. MaH. GongY. XieY. An overview of PROTACs: A promising drug discovery paradigm.Molecular Biomedicine2022314610.1186/s43556‑022‑00112‑0 36536188
    [Google Scholar]
  10. MullardA. First targeted protein degrader hits the clinic.Nat. Rev. Drug Discov.2022
    [Google Scholar]
  11. SnyderL.B. NeklesaT.K. ChenX. DongH. FerraroC. GordonD.A. MacalusoJ. PizzanoJ. WangJ. WillardR.R. VitaleN. PeckR. MooreM.D. CrewsC.M. HoustonJ. CrewA.P. TaylorI. Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer.Cancer Res.20218113_Supplement4310.1158/1538‑7445.AM2021‑43
    [Google Scholar]
  12. FlanaganJ. QianY. GoughS. AndreoliM. BookbinderM. CadelinaG. ARV‐471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer.Arv201810003
    [Google Scholar]
  13. SnyderL.B. FlanaganJ.J. QianY. GoughS.M. AndreoliM. BookbinderM. CadelinaG. BradleyJ. RousseauE. ChandlerJ. WillardR. PizzanoJ. CrewsC.M. CrewA.P. HoustonJ. MooreM.D. PeckR. TaylorI. Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer.Cancer Res.20218113_Supplement4410.1158/1538‑7445.AM2021‑44
    [Google Scholar]
  14. PedrucciF. PappalardoC. MarzaroG. FerriN. FerlinA. De ToniL. Proteolysis targeting chimeric molecules: Tuning molecular strategies for a clinically sound listening.Int. J. Mol. Sci.20222312663010.3390/ijms23126630 35743070
    [Google Scholar]
  15. SunX. GaoH. YangY. HeM. WuY. SongY. TongY. RaoY. PROTACs: Great opportunities for academia and industry.Signal Transduct. Target. Ther.2019416410.1038/s41392‑019‑0101‑6 31885879
    [Google Scholar]
  16. QinA. JinH. SongY. GaoY. ChenY.F. ZhouL. WangS. LuX. The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells.Cell Death Dis.202011980510.1038/s41419‑020‑03015‑6 32978368
    [Google Scholar]
  17. OhokaN. MoritaY. NagaiK. ShimokawaK. UjikawaO. FujimoriI. ItoM. HayaseY. OkuhiraK. ShibataN. HattoriT. SameshimaT. SanoO. KoyamaR. ImaedaY. NaraH. ChoN. NaitoM. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation.J. Biol. Chem.2018293186776679010.1074/jbc.RA117.001091 29545311
    [Google Scholar]
  18. SunR. GeL. CaoY. WuW. WuY. ZhuH. LiJ. YuD. Corrigendum to MiR-429 regulates blood-spinal cord barrier permeability by targeting Krüppel-like factor 6.Biochem. Biophys. Res. Commun.2020527384510.1016/j.bbrc.2020.04.110 32439166
    [Google Scholar]
  19. ZhaoQ. RenC. LiuL. ChenJ. ShaoY. SunN. SunR. KongY. DingX. ZhangX. XuY. YangB. YinQ. YangX. JiangB. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase.J. Med. Chem.201962209281929810.1021/acs.jmedchem.9b01264 31539241
    [Google Scholar]
  20. MaD. ZouY. ChuY. LiuZ. LiuG. ChuJ. LiM. WangJ. SunS. ChangZ. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer.Theranostics20201083708372110.7150/thno.41677 32206117
    [Google Scholar]
  21. KimCS LiJ-H BarcoB ParkHB GatsiosA Damania, A Cellular stress upregulates indole signaling metabolites in Escherichia coli.Cell Chem. Biol.202027669870710.1016/j.chembiol.2020.03.003
    [Google Scholar]
  22. BuhimschiA.D. ArmstrongH.A. ToureM. Jaime-FigueroaS. ChenT.L. LehmanA.M. WoyachJ.A. JohnsonA.J. ByrdJ.C. CrewsC.M. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation.Biochemistry201857263564357510.1021/acs.biochem.8b00391 29851337
    [Google Scholar]
  23. SalamiJ. AlabiS. WillardR.R. VitaleN.J. WangJ. DongH. JinM. McDonnellD.P. CrewA.P. NeklesaT.K. CrewsC.M. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance.Commun. Biol.20181110010.1038/s42003‑018‑0105‑8 30271980
    [Google Scholar]
  24. ZhangH. ZhaoH.Y. XiX.X. LiuY.J. XinM. MaoS. ZhangJ.J. LuA.X. ZhangS.Q. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC).Eur. J. Med. Chem.202018911206110.1016/j.ejmech.2020.112061 31951960
    [Google Scholar]
  25. HeL. ChenC. GaoG. XuK. MaZ. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma.Aging20201254547455710.18632/aging.102910 32163373
    [Google Scholar]
  26. ZhaoB. BurgessK. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer.Chem. Commun.201955182704270710.1039/C9CC00163H 30758029
    [Google Scholar]
  27. BurslemG.M. SmithB.E. LaiA.C. Jaime-FigueroaS. McQuaidD.C. BondesonD.P. The advantages of targeted protein degradation over inhibition: an RTK case study.Cell Chem. Biol.2018251677710.1016/j.chembiol.2017.09.009
    [Google Scholar]
  28. ZoppiV. HughesS.J. ManiaciC. TestaA. GmaschitzT. WieshoferC. KoeglM. RichingK.M. DanielsD.L. SpallarossaA. CiulliA. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel–Lindau (VHL) based dual degrader probe of BRD9 and BRD7.J. Med. Chem.201962269972610.1021/acs.jmedchem.8b01413 30540463
    [Google Scholar]
  29. HonigbergL.A. SmithA.M. SirisawadM. VernerE. LouryD. ChangB. LiS. PanZ. ThammD.H. MillerR.A. BuggyJ.J. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy.Proc. Natl. Acad. Sci. USA201010729130751308010.1073/pnas.1004594107 20615965
    [Google Scholar]
  30. TroupR.I. FallanC. BaudM.G.J. Current strategies for the design of PROTAC linkers: A critical review.Exploration of Targeted Anti-tumor Therapy20201527331210.37349/etat.2020.00018 36046485
    [Google Scholar]
  31. BemisT.A. La ClairJ.J. BurkartM.D. Unraveling the role of linker design in proteolysis targeting chimeras.Miniperspective. J. Med. Chem.202164128042805210.1021/acs.jmedchem.1c00482 34106704
    [Google Scholar]
  32. BorsariC. TraderD.J. TaitA. CostiM.P. Designing chimeric molecules for drug discovery by leveraging chemical biology.J. Med. Chem.20206351908192810.1021/acs.jmedchem.9b01456 32023055
    [Google Scholar]
  33. CyrusK. WehenkelM. ChoiE.Y. HanH.J. LeeH. SwansonH. KimK.B. Impact of linker length on the activity of PROTACs.Mol. Biosyst.20117235936410.1039/C0MB00074D 20922213
    [Google Scholar]
  34. Martín-AcostaP. XiaoX. PROTACs to address the challenges facing small molecule inhibitors.Eur. J. Med. Chem.202121011299310.1016/j.ejmech.2020.112993 33189436
    [Google Scholar]
  35. TanakaM. RobertsJ.M. SeoH.S. SouzaA. PaulkJ. ScottT.G. DeAngeloS.L. Dhe-PaganonS. BradnerJ.E. Design and characterization of bivalent BET inhibitors.Nat. Chem. Biol.201612121089109610.1038/nchembio.2209 27775715
    [Google Scholar]
  36. DouglassE.F.Jr MillerC.J. SparerG. ShapiroH. SpiegelD.A. A comprehensive mathematical model for three-body binding equilibria.J. Am. Chem. Soc.2013135166092609910.1021/ja311795d 23544844
    [Google Scholar]
  37. ZhangY. LohC. ChenJ. MainolfiN. Targeted protein degradation mechanisms.Drug Discov. Today. Technol.201931536010.1016/j.ddtec.2019.01.001 31200860
    [Google Scholar]
  38. YangK. SongY. XieH. WuH. WuY.T. LeistenE.D. TangW. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders.Bioorg. Med. Chem. Lett.201828142493249710.1016/j.bmcl.2018.05.057 29871848
    [Google Scholar]
  39. SunY. ZhaoX. DingN. GaoH. WuY. YangY. ZhaoM. HwangJ. SongY. LiuW. RaoY. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies.Cell Res.201828777978110.1038/s41422‑018‑0055‑1 29875397
    [Google Scholar]
  40. ChenH. ChenF. LiuN. WangX. GouS. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin–proteasome pathway.Bioorg. Chem.20188153654410.1016/j.bioorg.2018.09.005 30245235
    [Google Scholar]
  41. LebraudH. WrightD.J. JohnsonC.N. HeightmanT.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras.ACS Cent. Sci.201621292793410.1021/acscentsci.6b00280 28058282
    [Google Scholar]
  42. XiaL.W. BaM.Y. LiuW. ChengW. HuC.P. ZhaoQ. YaoY.F. SunM.R. DuanY.T. Triazol: A privileged scaffold for proteolysis targeting chimeras.Future Med. Chem.201911222919297310.4155/fmc‑2019‑0159 31702389
    [Google Scholar]
  43. BianJ. RenJ. LiY. WangJ. XuX. FengY. TangH. WangY. LiZ. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity.Bioorg. Chem.20188137338110.1016/j.bioorg.2018.08.028 30196207
    [Google Scholar]
  44. ZagidullinA. MilyukovV. RizvanovA. BulatovE. Novel approaches for the rational design of PROTAC linkers.Explor. Target. Antitumor Ther.20201538110.37349/etat.2020.00023
    [Google Scholar]
  45. HanX. SunY. PROTACs: A novel strategy for cancer drug discovery and development.MedComm202343e29010.1002/mco2.290 37261210
    [Google Scholar]
  46. BuckleyD.L. Van MolleI. GareissP.C. TaeH.S. MichelJ. NoblinD.J. JorgensenW.L. CiulliA. CrewsC.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction.J. Am. Chem. Soc.2012134104465446810.1021/ja209924v 22369643
    [Google Scholar]
  47. ItoT. AndoH. SuzukiT. OguraT. HottaK. ImamuraY. Identification of a primary target of thalidomide teratogenicity.Science2010327597113451350
    [Google Scholar]
  48. LevineA.J. P53, the cellular gatekeeper for growth and division.Cell1997883323331
    [Google Scholar]
  49. SchneeklothA.R. PucheaultM. TaeH.S. CrewsC.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics.Bioorg. Med. Chem. Lett.200818225904590810.1016/j.bmcl.2008.07.114 18752944
    [Google Scholar]
  50. FangY. LiaoG. YuB. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: Advances and perspectives.Acta Pharm. Sin. B20201071253127810.1016/j.apsb.2020.01.003 32874827
    [Google Scholar]
  51. FuldaS. VucicD. Targeting IAP proteins for therapeutic intervention in cancer.Nat. Rev. Drug Discov.201211210912410.1038/nrd3627 22293567
    [Google Scholar]
  52. ShibataN. NagaiK. MoritaY. UjikawaO. OhokaN. HattoriT. KoyamaR. SanoO. ImaedaY. NaraH. ChoN. NaitoM. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands.J. Med. Chem.201861254357510.1021/acs.jmedchem.7b00168 28594553
    [Google Scholar]
  53. GaoH. SunX. RaoY. PROTAC technology: Opportunities and challenges.ACS Med. Chem. Lett.202011323724010.1021/acsmedchemlett.9b00597 32184950
    [Google Scholar]
  54. LiangJ. WuY. LanK. DongC. WuS. LiS. ZhouH.B. Antiviral PROTACs: Opportunity borne with challenge.Cell Insight20232310009210.1016/j.cellin.2023.100092 37398636
    [Google Scholar]
  55. AlexopoulouA. VasilievaL. KarayiannisP. New approaches to the treatment of chronic hepatitis B.J. Clin. Med.2020910318710.3390/jcm9103187 33019573
    [Google Scholar]
  56. LeeH.M. BaniniB.A. Updates on chronic HBV: Current challenges and future goals.Curr. Treat. Options Gastroenterol.201917227129110.1007/s11938‑019‑00236‑3 31077059
    [Google Scholar]
  57. MontroseK. KrissansenG.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus.Biochem. Biophys. Res. Commun.2014453473574010.1016/j.bbrc.2014.10.006 25305486
    [Google Scholar]
  58. Rodriguez-GonzalezA. CyrusK. SalciusM. KimK. CrewsC.M. DeshaiesR.J. SakamotoK.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer.Oncogene200827577201721110.1038/onc.2008.320 18794799
    [Google Scholar]
  59. ChenJ. WangJ. ZhangJ. LyH. Advances in development and application of influenza vaccines.Front. Immunol.20211271199710.3389/fimmu.2021.711997 34326849
    [Google Scholar]
  60. MaY. Frutos-BeltránE. KangD. PannecouqueC. De ClercqE. Menéndez-AriasL. LiuX. ZhanP. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses.Chem. Soc. Rev.20215074514454010.1039/D0CS01084G 33595031
    [Google Scholar]
  61. HussainA.I. CordeiroM. SevillaE. LiuJ. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: In vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.Vaccine201028223848385510.1016/j.vaccine.2010.03.005 20307595
    [Google Scholar]
  62. MuellerS. ColemanJ.R. PapamichailD. WardC.B. NimnualA. FutcherB. SkienaS. WimmerE. Live attenuated influenza virus vaccines by computer-aided rational design.Nat. Biotechnol.201028772372610.1038/nbt.1636 20543832
    [Google Scholar]
  63. LiZ. BaiH. XiX. TianW. ZhangJ.Z.H. ZhouD. SiL. PROTAC vaccine: A new way to live attenuated vaccines.Clin. Transl. Med.20221210e108110.1002/ctm2.1081 36281705
    [Google Scholar]
  64. SiL. ShenQ. LiJ. ChenL. ShenJ. XiaoX. BaiH. FengT. YeA.Y. LiL. ZhangC. LiZ. WangP. OhC.Y. NuraniA. NiuS. ZhangC. WeiX. YuanW. LiaoH. HuangX. WangN. TianW. TianH. LiL. LiuX. PlebaniR. Generation of a live attenuated influenza A vaccine by proteolysis targeting.Nat. Biotechnol.20224091370137710.1038/s41587‑022‑01381‑4 35788567
    [Google Scholar]
  65. RoizmanB. Fields Virology.Lincoln, United KingdomLippincott Williams & Wilkins19962
    [Google Scholar]
  66. BrittW.J. PrichardM.N. New therapies for human cytomegalovirus infections.Antiviral Res.201815915317410.1016/j.antiviral.2018.09.003 30227153
    [Google Scholar]
  67. SonntagE. HahnF. BertzbachL.D. SeylerL. WangenC. MüllerR. TannigP. GrauB. BaumannM. ZentE. ZischinskyG. EickhoffJ. KauferB.B. BäuerleT. TsogoevaS.B. MarschallM. In vivo proof-of-concept for two experimental antiviral drugs, both directed to cellular targets, using a murine cytomegalovirus model.Antiviral Res.2019161636910.1016/j.antiviral.2018.11.008 30452929
    [Google Scholar]
  68. SonntagE. MilbradtJ. SvrlanskaA. StrojanH. HägeS. KrautA. HesseA.M. AminB. SonnewaldU. CoutéY. MarschallM. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.J. Gen. Virol.201798102569258110.1099/jgv.0.000931 28949903
    [Google Scholar]
  69. HuttererC. HamiltonS. SteingruberM. ZeitträgerI. BahsiH. ThumaN. NaingZ. ÖrfiZ. ÖrfiL. SocherE. StichtH. RawlinsonW. ChouS. HauptV.J. MarschallM. The chemical class of quinazoline compounds provides a core structure for the design of anticytomegaloviral kinase inhibitors.Antiviral Res.201613413014310.1016/j.antiviral.2016.08.005 27515131
    [Google Scholar]
  70. HahnF. HamiltonS.T. WangenC. WildM. KicuntodJ. BrücknerN. FollettJ.E.L. HerrmannL. KheimarA. KauferB.B. RawlinsonW.D. TsogoevaS.B. MarschallM. Development of a PROTAC-based targeting strategy provides a mechanistically unique mode of anti-cytomegalovirus activity.Int. J. Mol. Sci.202122231285810.3390/ijms222312858 34884662
    [Google Scholar]
  71. ÖrgütüD.S. WHO coronavirus (COVID-19) dashboard.Available from: https://covid19 2021
  72. BatalhaP.N. ForeziL.S.M. LimaC.G.S. PauliF.P. BoechatF.C.S. de SouzaM.C.B.V. CunhaA.C. FerreiraV.F. da SilvaF.C. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches.Bioorg. Chem.202110610448810.1016/j.bioorg.2020.104488 33261844
    [Google Scholar]
  73. ChakrabortyR. BhattacharjeG. BaralJ. MannaB. MullickJ. MathapatiB.S. AbrahamP.J.M. HasijaY. GhoshA. DasA.K. In-silico screening and in-vitro assay show the antiviral effect of Indomethacin against SARS-CoV-2.Comput. Biol. Med.202214710578810.1016/j.compbiomed.2022.105788 35809412
    [Google Scholar]
  74. AmiciC. CaroA.D. CiucciA. ChiappaL. CastillettiC. MartellaV. DecaroN. BuonavogliaC. CapobianchiM.R. SantoroM.G. Indomethacin has a potent antiviral activity against SARS coronavirus.Antivir. Ther.20061181021103010.1177/135965350601100803 17302372
    [Google Scholar]
  75. DesantisJ. MercorelliB. CelegatoM. CrociF. BazzaccoA. BaroniM. SiragusaL. CrucianiG. LoregianA. GoracciL. Indomethacin-based PROTACs as pan-coronavirus antiviral agents.Eur. J. Med. Chem.202122611381410.1016/j.ejmech.2021.113814 34534839
    [Google Scholar]
  76. TrentiniD.B. SuskiewiczM.J. HeuckA. KurzbauerR. DeszczL. MechtlerK. ClausenT. Arginine phosphorylation marks proteins for degradation by a Clp protease.Nature20165397627485310.1038/nature20122 27749819
    [Google Scholar]
  77. DeJesusM.A. GerrickE.R. XuW. ParkS.W. LongJ.E. BoutteC.C. RubinE.J. SchnappingerD. EhrtS. FortuneS.M. SassettiC.M. IoergerT.R. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis.MBio201781e02133e1610.1128/mBio.02133‑16 28096490
    [Google Scholar]
  78. VenkatesanJ. MuruganD. RangasamyL. A perspective on newly emerging proteolysis-targeting strategies in antimicrobial drug discovery.Antibiotics20221112171710.3390/antibiotics11121717 36551374
    [Google Scholar]
  79. MorrealeF.E. KleineS. LeodolterJ. JunkerS. HoiD.M. OvchinnikovS. BacPROTACs mediate targeted protein degradation in bacteria.Cell2022185132338235310.1016/j.cell.2022.05.009
    [Google Scholar]
  80. VasudevanD. RaoS.P.S. NobleC.G. Structural basis of mycobacterial inhibition by cyclomarin A.J. Biol. Chem.201328843308833089110.1074/jbc.M113.493767 24022489
    [Google Scholar]
  81. FilippakopoulosP. QiJ. PicaudS. ShenY. SmithW.B. FedorovO. MorseE.M. KeatesT. HickmanT.T. FelletarI. PhilpottM. MunroS. McKeownM.R. WangY. ChristieA.L. WestN. CameronM.J. SchwartzB. HeightmanT.D. La ThangueN. FrenchC.A. WiestO. KungA.L. KnappS. BradnerJ.E. Selective inhibition of BET bromodomains.Nature201046873271067107310.1038/nature09504 20871596
    [Google Scholar]
  82. KargboR.B. PROTAC compounds targeting α-synuclein protein for treating neurogenerative disorders: Alzheimer’s and Parkinson’s diseases.ACS Publications202010861087
    [Google Scholar]
  83. TomoshigeS. IshikawaM. PROTACs and other chemical protein degradation technologies for the treatment of neurodegenerative disorders.Angew. Chem. Int. Ed.20216073346335410.1002/anie.202004746 32410219
    [Google Scholar]
  84. LuM. LiuT. JiaoQ. JiJ. TaoM. LiuY. YouQ. JiangZ. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway.Eur. J. Med. Chem.201814625125910.1016/j.ejmech.2018.01.063 29407955
    [Google Scholar]
  85. SilvaM.C. FergusonF.M. CaiQ. DonovanK.A. NandiG. PatnaikD. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models.eLife20198e45457
    [Google Scholar]
  86. Richard-EaglinA. SmallheerB.A. Immunosuppressive/auto-] immune disorders.Nurs. Clin. North Am.201853331933410.1016/j.cnur.2018.04.002 30099999
    [Google Scholar]
  87. WangL. WangF.S. GershwinM.E. Human autoimmune diseases: A comprehensive update.J. Intern. Med.2015278436939510.1111/joim.12395 26212387
    [Google Scholar]
  88. WangZ. WescheH. StevensT. WalkerN. YehW.C. IRAK-4 inhibitors for inflammation.Curr. Top. Med. Chem.20099872473710.2174/156802609789044407 19689377
    [Google Scholar]
  89. NunesJ. McGonagleG.A. EdenJ. KiritharanG. TouzetM. LewellX. EmeryJ. EidamH. HarlingJ.D. AndersonN.A. Targeting IRAK4 for degradation with PROTACs.ACS Med. Chem. Lett.20191071081108510.1021/acsmedchemlett.9b00219 31312412
    [Google Scholar]
  90. BassiZ.I. FillmoreM.C. MiahA.H. ChapmanT.D. MallerC. RobertsE.J. DavisL.C. LewisD.E. GalweyN.W. WaddingtonK.E. ParraviciniV. Macmillan-JonesA.L. GongoraC. HumphreysP.G. ChurcherI. PrinjhaR.K. ToughD.F. Modulating PCAF/GCN5 immune cell function through a PROTAC approach.ACS Chem. Biol.201813102862286710.1021/acschembio.8b00705 30200762
    [Google Scholar]
  91. HaydenM.R. Overview and new insights into the metabolic syndrome: risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease.Medicina202359356110.3390/medicina59030561 36984562
    [Google Scholar]
  92. RomeoS. SanyalA. ValentiL. Leveraging human genetics to identify potential new treatments for fatty liver disease.Cell Metab.2020311354510.1016/j.cmet.2019.12.002 31914377
    [Google Scholar]
  93. WangY. KoryN. BasuRay, S.; Cohen, J.C.; Hobbs, H.H. PNPLA3, CGI‐58, and inhibition of hepatic triglyceride hydrolysis in mice.Hepatology20196962427244110.1002/hep.30583 30802989
    [Google Scholar]
  94. CherubiniA. CasiratiE. TomasiM. ValentiL. PNPLA3 as a therapeutic target for fatty liver disease: The evidence to date.Expert Opin. Ther. Targets202125121033104310.1080/14728222.2021.2018418 34904923
    [Google Scholar]
  95. Unalp-AridaA. RuhlC.E. Patatin‐like phospholipase domain‐containing protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in the US population.Hepatology202071382083410.1002/hep.31032 31705824
    [Google Scholar]
  96. PingitoreP. RomeoS. The role of PNPLA3 in health and disease.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20191864690090610.1016/j.bbalip.2018.06.018 29935383
    [Google Scholar]
  97. BasuRayS.; Wang, Y.; Smagris, E.; Cohen, J.C.; Hobbs, H.H. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis.Proc. Natl. Acad. Sci. USA2019116199521952610.1073/pnas.1901974116 31019090
    [Google Scholar]
  98. ChengJ. LiY. WangX. DongG. ShengC. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer.J. Med. Chem.202063147892790510.1021/acs.jmedchem.0c00929 32603594
    [Google Scholar]
  99. WinzkerM. FrieseA. KochU. JanningP. ZieglerS. WaldmannH. Development of a pdeδ‐targeting PROTACs that impair lipid metabolism.Angew. Chem. Int. Ed.202059145595560110.1002/anie.201913904 31829492
    [Google Scholar]
  100. ShaoW. EspenshadeP.J. Expanding roles for SREBP in metabolism.Cell Metab.201216441441910.1016/j.cmet.2012.09.002 23000402
    [Google Scholar]
  101. TangJ.J. LiJ.G. QiW. QiuW.W. LiP.S. LiB.L. SongB.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques.Cell Metab.2011131445610.1016/j.cmet.2010.12.004 21195348
    [Google Scholar]
  102. ZhaoY. QianY. SunZ. ShenX. CaiY. LiL. WangZ. Role of PI3K in the progression and regression of atherosclerosis.Front. Pharmacol.20211263237810.3389/fphar.2021.632378 33767629
    [Google Scholar]
  103. YanJ. WangC. JinY. MengQ. LiuQ. LiuZ. LiuK. SunH. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway.Pharmacol. Res.201813046648010.1016/j.phrs.2017.12.026 29284152
    [Google Scholar]
  104. LiW. GaoC. ZhaoL. YuanZ. ChenY. JiangY. Phthalimide conjugations for the degradation of oncogenic PI3K.Eur. J. Med. Chem.201815123724710.1016/j.ejmech.2018.03.066 29625382
    [Google Scholar]
  105. WangH. LiC. LiuX. MaM. Design, synthesis and activity study of a novel PI3K degradation by hijacking VHL E3 ubiquitin ligase.Bioorg. Med. Chem.20226111670710.1016/j.bmc.2022.116707 35344835
    [Google Scholar]
  106. LiM.X. YangY. ZhaoQ. WuY. SongL. YangH. HeM. GaoH. SongB.L. LuoJ. RaoY. Degradation versus inhibition: Development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase.J. Med. Chem.20206394908492810.1021/acs.jmedchem.0c00339 32321253
    [Google Scholar]
  107. MoreauK. CoenM. ZhangA.X. PachlF. CastaldiM.P. DahlG. BoydH. ScottC. NewhamP. Proteolysis‐targeting chimeras in drug development: A safety perspective.Br. J. Pharmacol.202017781709171810.1111/bph.15014 32022252
    [Google Scholar]
  108. TrapotsiM.A. MervinL.H. AfzalA.M. SturmN. EngkvistO. BarrettI.P. BenderA. Comparison of chemical structure and cell morphology information for multitask bioactivity predictions.J. Chem. Inf. Model.20216131444145610.1021/acs.jcim.0c00864 33661004
    [Google Scholar]
  109. TrapotsiM.A. MouchetE. WilliamsG. MonteverdeT. JuhaniK. TurkkiR. MiljkovićF. MartinssonA. MervinL. PrydeK.R. MüllersE. BarrettI. EngkvistO. BenderA. MoreauK. Cell morphological profiling enables high-throughput screening for PROteolysis TArgeting Chimera (PROTAC) phenotypic signature.ACS Chem. Biol.20221771733174410.1021/acschembio.2c00076 35793809
    [Google Scholar]
  110. ZengM. XiongY. SafaeeN. NowakR.P. DonovanK.A. YuanC.J. Exploring targeted degradation strategy for oncogenic KRASG12C.Cell Chem. Biol.20202711931
    [Google Scholar]
  111. FoleyC.A. PotjewydF. LambK.N. JamesL.I. FryeS.V. Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay.ACS Chem. Biol.202015129029510.1021/acschembio.9b00972 31846298
    [Google Scholar]
  112. LiJ. LiuJ. PROTAC: A novel technology for drug development.ChemistrySelect2020542132321324710.1002/slct.202003162
    [Google Scholar]
  113. NowakR.P. DeAngeloS.L. BuckleyD. HeZ. DonovanK.A. AnJ. SafaeeN. JedrychowskiM.P. PonthierC.M. IshoeyM. ZhangT. ManciasJ.D. GrayN.S. BradnerJ.E. FischerE.S. Plasticity in binding confers selectivity in ligand-induced protein degradation.Nat. Chem. Biol.201814770671410.1038/s41589‑018‑0055‑y 29892083
    [Google Scholar]
  114. FarnabyW. KoeglM. RoyM.J. WhitworthC. DiersE. TrainorN. ZollmanD. SteurerS. Karolyi-OezguerJ. RiedmuellerC. GmaschitzT. WachterJ. DankC. GalantM. SharpsB. RumpelK. TraxlerE. GerstbergerT. SchnitzerR. PetermannO. GrebP. WeinstablH. BaderG. ZoephelA. Weiss-PuxbaumA. Ehrenhöfer-WölferK. WöhrleS. BoehmeltG. RinnenthalJ. ArnhofH. WiechensN. WuM.Y. Owen-HughesT. EttmayerP. PearsonM. McConnellD.B. CiulliA. Publisher correction: BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design.Nat. Chem. Biol.201915884610.1038/s41589‑019‑0329‑z 31267096
    [Google Scholar]
  115. ZorbaA. NguyenC. XuY. StarrJ. BorzilleriK. SmithJ. ZhuH. FarleyK.A. DingW. SchiemerJ. FengX. ChangJ.S. UccelloD.P. YoungJ.A. Garcia-IrrizaryC.N. CzabaniukL. SchuffB. OliverR. MontgomeryJ. HaywardM.M. CoeJ. ChenJ. NiosiM. LuthraS. ShahJ.C. El-KattanA. QiuX. WestG.M. NoeM.C. ShanmugasundaramV. GilbertA.M. BrownM.F. CalabreseM.F. Delineating the role of cooperativity in the design of potent PROTACs for BTK.Proc. Natl. Acad. Sci. USA201811531E7285E729210.1073/pnas.1803662115 30012605
    [Google Scholar]
  116. DanielsD.L. RichingK.M. UrhM. Monitoring and deciphering protein degradation pathways inside cells.Drug Discov. Today. Technol.201931616810.1016/j.ddtec.2018.12.001 31200861
    [Google Scholar]
  117. MachleidtT. WoodroofeC.C. SchwinnM.K. MéndezJ. RobersM.B. ZimmermanK. OttoP. DanielsD.L. KirklandT.A. WoodK.V. NanoBRET-A novel BRET platform for the analysis of protein–protein interactions.ACS Chem. Biol.20151081797180410.1021/acschembio.5b00143 26006698
    [Google Scholar]
  118. WangY. JiangX. FengF. LiuW. SunH. Degradation of proteins by PROTACs and other strategies.Acta Pharm. Sin. B202010220723810.1016/j.apsb.2019.08.001 32082969
    [Google Scholar]
  119. BondM.J. Crews, CM Proteolysis targeting chimeras (PROTACs) come of age: Entering the third decade of targeted protein degradation RSC.Chem. Biol.202123725742
    [Google Scholar]
  120. BondesonD.P. SmithB.E. BurslemG.M. BuhimschiA.D. HinesJ. Jaime-Figueroa, S Lessons in PROTAC design from selective degradation with a promiscuous warhead.Cell Chem. Biol.2018251788710.1016/j.chembiol.2017.09.010
    [Google Scholar]
  121. MooreA.R. RosenbergS.C. McCormickF. MalekS. RAS-targeted therapies: Is the undruggable drugged?Nat. Rev. Drug Discov.202019853355210.1038/s41573‑020‑0068‑6 32528145
    [Google Scholar]
  122. BondM.J. ChuL. NalawanshaD.A. LiK. CrewsC.M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs.ACS Cent. Sci.2020681367137510.1021/acscentsci.0c00411 32875077
    [Google Scholar]
  123. NeklesaT.K. WinklerJ.D. CrewsC.M. Targeted protein degradation by PROTACs.Pharmacol. Ther.201717413814410.1016/j.pharmthera.2017.02.027 28223226
    [Google Scholar]
  124. ZhangX. CrowleyV.M. WucherpfennigT.G. DixM.M. CravattB.F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16.Nat. Chem. Biol.201915773774610.1038/s41589‑019‑0279‑5 31209349
    [Google Scholar]
  125. CrewA.P. RainaK. DongH. QianY. WangJ. VigilD. SerebrenikY.V. HammanB.D. MorganA. FerraroC. SiuK. NeklesaT.K. WinklerJ.D. ColemanK.G. CrewsC.M. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1.J. Med. Chem.201861258359810.1021/acs.jmedchem.7b00635 28692295
    [Google Scholar]
  126. BurslemG.M. SchultzA.R. BondesonD.P. EideC.A. Savage StevensS.L. DrukerB.J. CrewsC.M. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation.Cancer Res.201979184744475310.1158/0008‑5472.CAN‑19‑1236 31311809
    [Google Scholar]
  127. SunX. WangJ. YaoX. ZhengW. MaoY. LanT. WangL. SunY. ZhangX. ZhaoQ. ZhaoJ. XiaoR.P. ZhangX. JiG. RaoY. A chemical approach for global protein knockdown from mice to non-human primates.Cell Discov.2019511010.1038/s41421‑018‑0079‑1 30729032
    [Google Scholar]
  128. BurslemG.M. CrewsC.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.Cell2020181110211410.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  129. JacobsenL.B. CalvinS.A. LobenhoferE.K. Transcriptional effects of transfection: The potential for misinterpretation of gene expression data generated from transiently transfected cells.Biotechniques200947161762410.2144/000113132 19594446
    [Google Scholar]
  130. BruhnM.A. PearsonR.B. HannanR.D. SheppardK.E. Second AKT: The rise of SGK in cancer signalling.Growth Factors201028639440810.3109/08977194.2010.518616 20919962
    [Google Scholar]
  131. TovellH. TestaA. ZhouH. ShpiroN. CrafterC. CiulliA. AlessiD.R. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader.ACS Chem. Biol.20191492024203410.1021/acschembio.9b00505 31461270
    [Google Scholar]
  132. CantrillC. ChaturvediP. RynnC. Petrig SchafflandJ. WalterI. WittwerM.B. Fundamental aspects of DMPK optimization of targeted protein degraders.Drug Discov. Today202025696998210.1016/j.drudis.2020.03.012 32298797
    [Google Scholar]
  133. HanX. WangC. QinC. XiangW. Fernandez-SalasE. YangC.Y. WangM. ZhaoL. XuT. ChinnaswamyK. DelpropostoJ. StuckeyJ. WangS. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer.J. Med. Chem.201962294196410.1021/acs.jmedchem.8b01631 30629437
    [Google Scholar]
  134. CrommP.M. SamarasingheK.T.G. HinesJ. CrewsC.M. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation.J. Am. Chem. Soc.201814049170191702610.1021/jacs.8b08008 30444612
    [Google Scholar]
  135. LiuX. ZhangX. LvD. YuanY. ZhengG. ZhouD. Assays and technologies for developing proteolysis targeting chimera degraders.Future Med. Chem.202012121155117910.4155/fmc‑2020‑0073 32431173
    [Google Scholar]
  136. ZhangL. Riley-GillisB. VijayP. ShenY. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes.Mol. Cancer Ther.20191871302131110.1158/1535‑7163.MCT‑18‑1129 31064868
    [Google Scholar]
  137. BarankiewiczJ. Salomon-PerzyńskiA. Misiewicz-KrzemińskaI. Lech-MarańdaE. CRL4CRBN E3 ligase complex as a therapeutic target in multiple myeloma.Cancers20221418449210.3390/cancers14184492 36139651
    [Google Scholar]
  138. SchapiraM. CalabreseM.F. BullockA.N. CrewsC.M. Targeted protein degradation: Expanding the toolbox.Nat. Rev. Drug Discov.2019181294996310.1038/s41573‑019‑0047‑y 31666732
    [Google Scholar]
  139. SmithB.E. WangS.L. Jaime-FigueroaS. HarbinA. WangJ. HammanB.D. CrewsC.M. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase.Nat. Commun.201910113110.1038/s41467‑018‑08027‑7 30631068
    [Google Scholar]
  140. ShahR.R. RedmondJ.M. MihutA. MenonM. EvansJ.P. MurphyJ.A. BartholomewM.A. CoeD.M. Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs.Bioorg. Med. Chem.202028511532610.1016/j.bmc.2020.115326 32001089
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266309968240621072550
Loading
/content/journals/ctmc/10.2174/0115680266309968240621072550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test