Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including and . However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this mini-review aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322401241021073138
2024-10-31
2025-05-13
Loading full text...

Full text loading...

References

  1. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  2. MuriE. NietoM. SindelarR. WilliamsonJ. Hydroxamic acids as pharmacological agents.Curr. Med. Chem.20029171631165310.2174/092986702336940212171558
    [Google Scholar]
  3. RutherfordJ.C. The emerging role of urease as a general microbial virulence factor.PLoS Pathog.2014105e100406210.1371/journal.ppat.100406224831297
    [Google Scholar]
  4. HameedA. Al-RashidaM. UroosM. QaziS.U. NazS. IshtiaqM. KhanK.M. A patent update on therapeutic applications of urease inhibitors (2012–2018).Expert Opin. Ther. Pat.201929318118910.1080/13543776.2019.158461230776929
    [Google Scholar]
  5. WynendaeleE. FurmanC. WielgomasB. LarssonP. HakE. BlockT. Van CalenberghS. WillandN. MarkuszewskiM. OdellL.R. PoelarendsG.J. De SpiegeleerB. Sustainability in drug discovery.Med. Drug Discov.20211210010710.1016/j.medidd.2021.100107
    [Google Scholar]
  6. PolshettiwarV. VarmaR.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery.Chem. Soc. Rev.20083781546155710.1039/b716534j18648680
    [Google Scholar]
  7. SyedZ. SonuK. DongreA. SharmaG. SoganiM. A review on hydroxamic acids: Widespectrum chemotherapeutic agents.Int J Bio Biomed Eng202014758810.46300/91011.2020.14.12
    [Google Scholar]
  8. CitarellaA. MoiD. PinziL. BonanniD. RastelliG. Hydroxamic acid derivatives: From synthetic strategies to medicinal chemistry applications.ACS Omega2021634218432184910.1021/acsomega.1c0362834497879
    [Google Scholar]
  9. NeganovaM.E. KlochkovS.G. AleksandrovaY.R. AlievG. The hydroxamic acids as potential anticancer and neuroprotective agents.Curr. Med. Chem.202128398139816210.2174/092986732866620121812315433342403
    [Google Scholar]
  10. KarS. SandersonH. RoyK. BenfenatiE. LeszczynskiJ. Green chemistry in the synthesis of pharmaceuticals.Chem. Rev.202212233637371010.1021/acs.chemrev.1c0063134910451
    [Google Scholar]
  11. SheldonR.A. Fundamentals of green chemistry: Efficiency in reaction design.Chem. Soc. Rev.20124141437145110.1039/C1CS15219J22033698
    [Google Scholar]
  12. KharissovaO.V. KharisovB.I. Oliva GonzálezC.M. MéndezY.P. LópezI. Greener synthesis of chemical compounds and materials.R. Soc. Open Sci.201961119137810.1098/rsos.19137831827868
    [Google Scholar]
  13. TaubnerT. MarounekM. SynytsyaA. Preparation and characterization of hydrophobic and hydrophilic amidated derivatives of carboxymethyl chitosan and carboxymethyl β-glucan.Int. J. Biol. Macromol.20201631433144310.1016/j.ijbiomac.2020.07.25732738322
    [Google Scholar]
  14. GiacominiE. NebbiosoA. CiottaA. IanniC. FalchiF. RobertiM. TolomeoM. GrimaudoS. CristinaA.D. PipitoneR.M. AltucciL. RecanatiniM. Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity.ACS Med. Chem. Lett.20145997397810.1021/ml500095925221651
    [Google Scholar]
  15. GéraldyM. MorgenM. SehrP. SteimbachR.R. MoiD. RidingerJ. OehmeI. WittO. MalzM. NogueiraM.S. KochO. GunkelN. MillerA.K. Selective inhibition of histone deacetylase 10: Hydrogen bonding to the gatekeeper residue is implicated.J. Med. Chem.20196294426444310.1021/acs.jmedchem.8b0193630964290
    [Google Scholar]
  16. IbrahimT.S. MoustafaA.H. AlmalkiA.J. AllamR.M. AlthagafiA. MdS. MohamedM.F.A. Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: Design, synthesis, molecular docking studies and ADMET prediction.J. Enzyme Inhib. Med. Chem.20213611067107810.1080/14756366.2021.192920134027787
    [Google Scholar]
  17. AlamM.A. Methods for hydroxamic acid synthesis.Curr. Org. Chem.201923997899310.2174/138527282366619042414282132565717
    [Google Scholar]
  18. HoC.Y. StrobelE. RalbovskyJ. GalemmoR.A.Jr Improved solution- and solid-phase preparation of hydroxamic acids from esters.J. Org. Chem.200570124873487510.1021/jo050036f15932334
    [Google Scholar]
  19. ShinjiC. MaedaS. ImaiK. YoshidaM. HashimotoY. MiyachiH. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.Bioorg. Med. Chem.200614227625765110.1016/j.bmc.2006.07.00816877001
    [Google Scholar]
  20. MatlinS.A. SammesP.G. UptonR.M. The oxidation of trimethylsilylated amides to hydroxamic acids.J. Chem. Soc., Perkin Trans. 119792481248710.1039/p19790002481
    [Google Scholar]
  21. YaleH.L. The hydroxamic acids.Chem. Rev.194333320925610.1021/cr60106a002
    [Google Scholar]
  22. PorchedduA. GiacomelliG. Synthesis of oximes and hydroxamic acids.The Chemistry of Hydroxylamines, Oximes and Hydroxamic acids. RappoportZ. LiebmanJ.F. ChichesterJohn Wiley & Sons, Ltd.200816323110.1002/9780470741962.ch6
    [Google Scholar]
  23. AngeliA. Nitrohydroxylamine.Gazz. Chim. Ital.18962621725
    [Google Scholar]
  24. DettoriG. GaspaS. PorchedduA. De LucaL. One-pot synthesis of hydroxamic acids from aldehydes and hydroxylamine.Adv. Synth. Catal.201435611-122709271310.1002/adsc.201400188
    [Google Scholar]
  25. RiminiE. About a new reaction of the alhdehydes.Gazz. Chim. Ital.1901318493
    [Google Scholar]
  26. GiacomelliG. PorchedduA. SalarisM. Simple one-flask method for the preparation of hydroxamic acids.Org. Lett.20035152715271710.1021/ol034903j12868897
    [Google Scholar]
  27. MountaneaO.G. MantzouraniC. KokotouM.G. KokotosC.G. KokotosG. Sunlight‐ or UVA‐light‐mediated synthesis of hydroxamic acids from carboxylic acids.Eur. J. Org. Chem.20232613e20230004610.1002/ejoc.202300046
    [Google Scholar]
  28. PapadopoulosG.N. KokotosC.G. Photoorganocatalytic one‐pot synthesis of hydroxamic acids from aldehydes.Chemistry201622206964696710.1002/chem.20160033327038037
    [Google Scholar]
  29. NikitasN.F. ApostolopoulouM.K. SkoliaE. TsoukakiA. KokotosC.G. Photochemical activation of aromatic aldehydes: Synthesis of amides, hydroxamic acids and esters.Chemistry202127297915792210.1002/chem.20210065533772903
    [Google Scholar]
  30. GangradeD. SdL. AlM. Overview on microwave synthesis – Important tool for green Chemistry.Int J Res Pharm Sci2015523742
    [Google Scholar]
  31. MordiniA. MassaroA. ReginatoG. RussoF. TaddeiM. Microwave-assisted transformation of esters into hydroxamic acids.Synthesis20072007203201320410.1055/s‑2007‑990803
    [Google Scholar]
  32. MikraC. MelissariZ. KokotouM.G. GritzapisP. FylaktakidouK.C. Microwave-assisted synthesis of hydroxamic acid incorporated quinazolin-4[3H]-one derivatives.Sustain. Chem. Pharm.20222910077210.1016/j.scp.2022.100772
    [Google Scholar]
  33. KurzT. PeinM.K. MarekL. BehrendtC.T. SpanierL. KunaK. BrücherK. Microwave-assisted conversion of 4-nitrophenyl esters into 0-protected hydroxamic acids.Eur. J. Org. Chem.20092009182939294210.1002/ejoc.200900201
    [Google Scholar]
  34. BhatiaR.K. BhatiaS.K. MehtaP.K. BhallaT.C. Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674.J. Ind. Microbiol. Biotechnol.2013401212710.1007/s10295‑012‑1206‑x23065258
    [Google Scholar]
  35. VejvodaV. MartínkováL. VeseláA.B. KaplanO. Lutz-WahlS. FischerL. UhnákováB. Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase–amidase cascade reaction.J. Mol. Catal., B Enzym.2011711-2515510.1016/j.molcatb.2011.03.008
    [Google Scholar]
  36. AgarwalS. GuptaM. ChoudhuryB. Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2.J. Ind. Microbiol. Biotechnol.201340993794610.1007/s10295‑013‑1299‑x23794117
    [Google Scholar]
  37. DaddM.R. ClaridgeT.D.W. PettmanA.J. KnowlesC.J. Biotransformation of benzonitrile to benzohydroxamic acid by Rhodococcus rhodochrous in the presence of hydroxylamine.Biotechnol. Lett.200123322122510.1023/A:1005657206039
    [Google Scholar]
  38. FournandD. VaysseL. DubreucqE. ArnaudA. GalzyP. Monohydroxamic acid biosynthesis.J. Mol. Catal., B Enzym.199851-420721110.1016/S1381‑1177(98)00036‑8
    [Google Scholar]
  39. FournandD. BigeyF. RatomaheninaR. ArnaudA. GalzyP. Biocatalyst improvement for the production of short-chain hydroxamic acids.Enzyme Microb. Technol.199720642443110.1016/S0141‑0229(96)00170‑6
    [Google Scholar]
  40. VaysseL. DubreucqE. PiratJ.L. GalzyP. Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyltransferase from Candida parapsilosis.J. Biotechnol.1997531414610.1016/S0168‑1656(96)01660‑49165758
    [Google Scholar]
  41. ServatF. MontetD. PinaM. GalzyP. ArnaudA. LedonH. MarcouL. GrailleJ. Synthesis of fatty hydroxamic acids catalyzed by the lipase of Mucor miehei.J. Am. Oil Chem. Soc.1990671064664910.1007/BF02540415
    [Google Scholar]
  42. JahangirianH. HaronM.J. SilongS. YusofN.A. Enzymatic synthesis of phenyl fatty hydroxamic acids from canola and palm oils.J. Oleo Sci.201160628128610.5650/jos.60.28121606615
    [Google Scholar]
  43. JahangirianH. HaronM.J. YusofN.A. SilongS. KassimA. Rafiee-MoghaddamR. PeydaM. GharayebiY. Enzymatic synthesis of fatty hydroxamic acid derivatives based on palm kernel oil.Molecules20111686634664410.3390/molecules1608663425134767
    [Google Scholar]
  44. KobashiK. HaseJ. UeharaK. Specific inhibition of urease by hydroxamic acids.Biochim. Biophys. Acta196265238038310.1016/0006‑3002(62)91067‑314033904
    [Google Scholar]
  45. KobashiK. HaseJ. KomaiT. Evidence for the formation of an inactive urease-hydroxamic acid complex.Biochem. Biophys. Res. Commun.1966231343810.1016/0006‑291X(66)90265‑85928891
    [Google Scholar]
  46. HaseJ. KobashiK. Inhibition of Proteus vulgaris urease by hydroxamic acids.J. Biochem.19676232932995586497
    [Google Scholar]
  47. FishbeinW.N. CarboneP.P. Urease catalysis.J. Biol. Chem.196524062407241410.1016/S0021‑9258(18)97338‑214304845
    [Google Scholar]
  48. DixonN.E. HindsJ.A. FihellyA.K. GazzolaC. WinzorD.J. BlakeleyR.L. ZernerB. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors.Can. J. Biochem.198058121323133410.1139/o80‑1807248834
    [Google Scholar]
  49. DixonN.E. GazzolaC. WattersJ.J. BlakeleyR.L. ZernerB. Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. Equivalent weight for urease.J. Am. Chem. Soc.197597144130413110.1021/ja00847a0441159215
    [Google Scholar]
  50. BlakeleyR.L. HindsJ.A. KunzeH.E. WebbE.C. ZernerB. Jack bean urease (EC 3.5.1.5). Demonstration of a carbamoyl-transfer reaction and inhibition by hydroxamic acids.Biochemistry1969851991200010.1021/bi00833a0325785219
    [Google Scholar]
  51. ToddM.J. HausingerR.P. Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site.J. Biol. Chem.198926427158351584210.1016/S0021‑9258(18)71553‑62674118
    [Google Scholar]
  52. MobleyH.L. HausingerR.P. Microbial ureases: Significance, regulation, and molecular characterization.Microbiol. Rev.19895318510810.1128/mr.53.1.85‑108.19892651866
    [Google Scholar]
  53. KobashiK. KumakiK. HaseJ. Effect of acyl residues of hydroxamic acids on urease inhibition.Biochimica et Biophysica Acta (BBA) - Enzymol1971227242944110.1016/0005‑2744(71)90074‑X5550827
    [Google Scholar]
  54. KumakiK. TomiokaS. KobashiK. HaseJ. Structure-activity correlations between hydroxamic acids and their inhibitory powers on urease activity. I. A quantitative approach to the effect of hydrophobic character of acyl residue.Chem. Pharm. Bull. (Tokyo)19722081599160610.1248/cpb.20.15994639301
    [Google Scholar]
  55. StemmlerA.J. KampfJ.W. KirkM.L. PecoraroV.L. A model for the inhibition of urease by hydroxamates.J. Am. Chem. Soc.1995117236368636910.1021/ja00128a031
    [Google Scholar]
  56. ArnoldM. BrownD.A. DeegO. ErringtonW. HaaseW. HerlihyK. KempT.J. NimirH. WernerR. Hydroxamate-bridged dinuclear nickel complexes as models for urease inhibition.Inorg. Chem.199837122920292510.1021/ic9711628
    [Google Scholar]
  57. BeniniS. RypniewskiW.R. WilsonK.S. MilettiS. CiurliS. ManganiS. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution.J. Biol. Inorg. Chem.20005111011810.1007/s00775005001410766443
    [Google Scholar]
  58. HaN.C. OhS.T. SungJ.Y. ChaK.A. LeeM.H. OhB.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease.Nat. Struct. Biol.20018650550910.1038/8856311373617
    [Google Scholar]
  59. PearsonM.A. MichelL.O. HausingerR.P. KarplusP.A. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease.Biochemistry199736268164817210.1021/bi970514j9201965
    [Google Scholar]
  60. SuenagaS. TakanoY. SaitoT. Unraveling binding mechanism and stability of urease inhibitors: A QM/MM MD study.Molecules2023286269710.3390/molecules2806269736985670
    [Google Scholar]
  61. AmtulZ. Atta-ur-RahmanB.S.P. SiddiquiR. ChoudharyM. Chemistry and mechanism of urease inhibition.Curr. Med. Chem.20029141323134810.2174/092986702336985312132990
    [Google Scholar]
  62. VianaL.P.S. NavesG.M. MedeirosI.G. GuimarãesA.S. SousaE.S. SantosJ.C.C. FreireN.M.L. de AquinoT.M. ModoloL.V. de FátimaÂ. da SilvaC.M. Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors.Bioorg. Chem.202414610724710.1016/j.bioorg.2024.10724738493635
    [Google Scholar]
  63. FishbeinW.N. Urease inhibitors for hepatic coma: Inhibition of 14C-urea hydrolysis in mice by alkyl hydroxamates.Biochem. Med.19671211112810.1016/0006‑2944(67)90001‑4
    [Google Scholar]
  64. MartelliA. BuliP. SpataforaS. Clinical experience with low dosage of propionohydroxamic acid (PHA) in infected renal stones.Urology198628537337510.1016/0090‑4295(86)90064‑63787895
    [Google Scholar]
  65. GriffithD.P. GibsonJ.R. ClintonC.W. MusherD.M. Acetohydroxamic acid: Clinical studies of a urease inhibitor in patients with staghorn renal calculi.J. Urol.1978119191510.1016/S0022‑5347(17)57366‑823442
    [Google Scholar]
  66. FishbeinW.N. CarboneP.P. HochsteinH.D. Acetohydroxamate: Bacterial urease inhibitor with therapeutic potential in hyperammonaemic states.Nature19652085005464810.1038/208046a05886683
    [Google Scholar]
  67. MobleyH. L. T. HuL.T. FoxallP. A. Helicobacter pylori urease: Properties and role in pathogenesis.Scand. J. Gastroenterol.199126394610.3109/00365529109098223
    [Google Scholar]
  68. TsudaM. KaritaM. MorshedM.G. OkitaK. NakazawaT. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach.Infect. Immun.19946283586358910.1128/iai.62.8.3586‑3589.19948039935
    [Google Scholar]
  69. AndrutisK.A. FoxJ.G. SchauerD.B. MariniR.P. MurphyJ.C. YanL. SolnickJ.V. Inability of an isogenic urease-negative mutant stain of Helicobacter mustelae to colonize the ferret stomach.Infect. Immun.19956393722372510.1128/iai.63.9.3722‑3725.19957642314
    [Google Scholar]
  70. EatonK.A. BrooksC.L. MorganD.R. KrakowkaS. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets.Infect. Immun.19915972470247510.1128/iai.59.7.2470‑2475.19912050411
    [Google Scholar]
  71. FerreroR.L. LeeA. The importance of urease in acid protection for the gastric-colonising bacteria Helicobacter pylori and Helicobacter felis sp. nov.Microb. Ecol. Health Dis.19914312113410.3109/08910609109140133
    [Google Scholar]
  72. ArmbrusterC.E. MobleyH.L.T. PearsonM.M. Pathogenesis of Proteus mirabilis infection.Ecosal Plus20188110.1128/ecosalplus.esp‑0009‑201729424333
    [Google Scholar]
  73. SchafferJ.N. PearsonM.M. Proteus mirabilis and urinary tract infections.Urinary Tract Infections. MulveyMatthew A. KlumppDavid J. StapletonAnn E. Washington, DC, USAASM Press201638343310.1128/9781555817404.ch17
    [Google Scholar]
  74. GriffithD.P. MusherD.M. Acetohydroxamic acid.Urology19755329930210.1016/0090‑4295(75)90142‑91118989
    [Google Scholar]
  75. MarwickC. New drugs selectively inhibit kidney stone formation.JAMA1983250332132210.1001/jama.1983.033400300030016854890
    [Google Scholar]
  76. WilliamsJ.J. RodmanJ.S. PetersonC.M. A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis.N. Engl. J. Med.19843111276076410.1056/NEJM1984092031112036472365
    [Google Scholar]
  77. BailieN.C. OsborneC.A. LeiningerJ.R. FletcherT.F. JohnstonS.D. OgburnP.N. GriffithD.P. Teratogenic effect of acetohydroxamic acid in clinically normal beagles.Am. J. Vet. Res.19864712260426113800119
    [Google Scholar]
  78. ChaubeS. MurphyM.L. The effects of hydroxyurea and related compounds on the rat fetus.Cancer Res.1966267144814575911587
    [Google Scholar]
  79. PhilipsF.S. SternbergS.S. SchwartzH.S. CroninA.P. SodergrenJ.E. VidalP.M. Hydroxyurea. I. Acute cell death in proliferating tissues in rats.Cancer Res.196727161756020366
    [Google Scholar]
  80. MunakataK. TanakaS. ToyoshimaS. Therapy for urolithiasis with hydroxamic acids. I. Synthesis of new N-(aroyl)glycinohydroxamic acid derivatives and related compounds.Chem. Pharm. Bull. (Tokyo)19802872045205110.1248/cpb.28.2045
    [Google Scholar]
  81. KobashiK. MunakataK. TakebeS. HaseJ. Therapy for urolithiasis by hydroxamic acids. II. Urease inhibitory potency and urinary excretion rate of hippurohydroxamic acid derivatives.J. Pharmacobiodyn.19803944445010.1248/bpb1978.3.4447007613
    [Google Scholar]
  82. MunakataK. MochidaH. KondoS. SuzukiY. Mutagenicity of N-acylglycinohydroxamic acids and related compounds.J. Pharmacobiodyn.198031155756110.1248/bpb1978.3.5576787189
    [Google Scholar]
  83. MunakataK. KobashiK. TakebeS. HaseJ. Therapy for urolithiasis by hydroxamic acids. III. Urease inhibitory potency and urinary excretion rate of N-acylglycinohydroxamic acids.J. Pharmacobiodyn.19803945145610.1248/bpb1978.3.4517007614
    [Google Scholar]
  84. KobashiK. TakebeS. TerashimaN. HaseJ. Inhibition of urease activity by hydroxamic acid derivatives of amino acids.J. Biochem.197577483784310.1093/oxfordjournals.jbchem.a130791238968
    [Google Scholar]
  85. OdakeS. NakahashiK. MorikawaT. TakebeS. KobashiK. Inhibition of urease activity by dipeptidyl hydroxamic acids.Chem. Pharm. Bull. (Tokyo)199240102764276810.1248/cpb.40.27641464106
    [Google Scholar]
  86. AbdullahM.A.A. Abuo-RahmaG.E.D.A.A. AbdelhafezE.S.M.N. HassanH.A. Abd El-BakyR.M. Design, synthesis, molecular docking, anti- Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.Bioorg. Chem.20177011110.1016/j.bioorg.2016.11.00227908539
    [Google Scholar]
  87. MontecuccoC. RappuoliR. Living dangerously: How Helicobacter pylori survives in the human stomach.Nat. Rev. Mol. Cell Biol.20012645746610.1038/3507308411389469
    [Google Scholar]
  88. CoverT.L. BlaserM.J. Helicobacter pylori in health and disease.Gastroenterology200913661863187310.1053/j.gastro.2009.01.07319457415
    [Google Scholar]
  89. OdakeS. MorikawaT. TsuchiyaM. ImamuraL. KobashiK. Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives.Biol. Pharm. Bull.199417101329133210.1248/bpb.17.13297874052
    [Google Scholar]
  90. MuriE.M.F. MishraH. AveryM.A. WilliamsonJ.S. Design and synthesis of heterocyclic hydroxamic acid derivatives as inhibitors of Helicobacter pylori urease.Synth. Commun.200333121977199510.1081/SCC‑120021024
    [Google Scholar]
  91. MuriE. MishraH. SteinS. WilliamsonJ. Molecular modeling, synthesis and biological evaluation of heterocyclic hydroxamic acids designed as Helicobacter pylori urease inhibitors.Lett. Drug Des. Discov.200411303410.2174/1570180043485680
    [Google Scholar]
  92. XiaoZ.P. PengZ.Y. DongJ.J. DengR.C. WangX.D. OuyangH. YangP. HeJ. WangY.F. ZhuM. PengX.C. PengW.X. ZhuH.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors.Eur. J. Med. Chem.20136821222110.1016/j.ejmech.2013.07.04723974021
    [Google Scholar]
  93. NiW.W. LiuQ. RenS.Z. LiW.Y. YiL.L. JingH. ShengL.X. WanQ. ZhongP.F. FangH.L. OuyangH. XiaoZ.P. ZhuH.L. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections.Bioorg. Med. Chem.201826144145415210.1016/j.bmc.2018.07.00329983280
    [Google Scholar]
  94. ShiW.K. DengR.C. WangP.F. YueQ.Q. LiuQ. DingK.L. YangM.H. ZhangH.Y. GongS.H. DengM. LiuW.R. FengQ.J. XiaoZ.P. ZhuH.L. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation.Bioorg. Med. Chem.201624194519452710.1016/j.bmc.2016.07.05227492194
    [Google Scholar]
  95. LiuQ. ShiW.K. RenS.Z. NiW.W. LiW.Y. ChenH.M. LiuP. YuanJ. HeX.S. LiuJ.J. CaoP. YangP.Z. XiaoZ.P. ZhuH.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection.Eur. J. Med. Chem.201815612613610.1016/j.ejmech.2018.06.06530006158
    [Google Scholar]
  96. MamidalaR. BhimathatiS.R.S. VemaA. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors.Bioorg. Chem.202111410501010.1016/j.bioorg.2021.10501034102519
    [Google Scholar]
  97. SongW.Q. LiuM.L. YuanL.C. LiS.Y. WangY.N. XiaoZ.P. ZhuH.L. Synthesis, evaluation and mechanism exploration of 2-(N-(3-nitrophenyl)-N-phenylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors.Bioorg. Med. Chem. Lett.20227812904310.1016/j.bmcl.2022.12904336332883
    [Google Scholar]
  98. LiS.Y. ZhangY. WangY.N. YuanL.C. KongC.C. XiaoZ.P. ZhuH.L. Identification of (N-aryl-N-arylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration.Bioorg. Chem.202313010627510.1016/j.bioorg.2022.10627536410113
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322401241021073138
Loading
/content/journals/ctmc/10.2174/0115680266322401241021073138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test