Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Visible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries. The heterocycles, in general, are of much interest because of their biological activities and application in therapeutics. The Oxygen- and Sulfur-containing heterocyclic compounds have recently attracted attention as these compounds showed promising activities as anti-cancer drugs, antibiotics, antifungal and anti-inflammatory agents among other applications. The synthesis of this class of compounds by efficient and greener routes has become an important target. This review highlights the various procedures for the synthesis of these compounds and their derivatives under visible light-induced reactions. The green aspects and mechanism of each procedure have been discussed.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266313243240624071549
2024-07-03
2025-05-14
Loading full text...

Full text loading...

References

  1. MajumdarK.C. ChattopadhyayS.K. Heterocycles in natural product synthesis.1st edWeinheim, GermanyWiley-VCH201111710.1002/9783527634880
    [Google Scholar]
  2. TaylorR.D. MacCossM. LawsonA.D.G. Rings in Drugs.J. Med. Chem.201457145845585910.1021/jm401762524471928
    [Google Scholar]
  3. YuX.Y. ChenJ.R. XiaoW.J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis.Chem. Rev.2021121150656110.1021/acs.chemrev.0c0003032469528
    [Google Scholar]
  4. ShawM.H. TwiltonJ. MacMillanD.W.C. Photoredox catalysis in organic chemistry.J. Org. Chem.201681166898692610.1021/acs.joc.6b0144927477076
    [Google Scholar]
  5. LiP. TerrettJ.A. ZbiegJ.R. Visible-light photocatalysis as an enabling technology for drug discovery: A paradigm shift for chemical reactivity.ACS Med. Chem. Lett.202011112120213010.1021/acsmedchemlett.0c0043633214820
    [Google Scholar]
  6. YoonT.P. IschayM.A. DuJ. Visible light photocatalysis as a greener approach to photochemical synthesis.Nat. Chem.20102752753210.1038/nchem.68720571569
    [Google Scholar]
  7. MarzoL. PagireS.K. ReiserO. KönigB. Visible‐light photocatalysis: Does it make a difference in organic synthesis?Angew. Chem. Int. Ed.20185732100341007210.1002/anie.20170976629457971
    [Google Scholar]
  8. CannalireR. PellicciaS. SancinetoL. NovellinoE. TronG.C. GiustinianoM. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds.Chem. Soc. Rev.202150276689710.1039/D0CS00493F33350402
    [Google Scholar]
  9. JurisA. BalzaniV. BelserP. von ZelewskyA. Characterization of the excited state properties of some new photosensitizers of the ruthenium (polypyridine) family.Helv. Chim. Acta19816472175218210.1002/hlca.19810640723
    [Google Scholar]
  10. JurisA. BalzaniV. BarigellettiF. CampagnaS. BelserP. von ZelewskyA. Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence.Coord. Chem. Rev.1988848527710.1016/0010‑8545(88)80032‑8
    [Google Scholar]
  11. GustD. MooreT.A. MooreA.L. Molecular mimicry of photosynthetic energy and electron transfer.Acc. Chem. Res.199326419820510.1021/ar00028a010
    [Google Scholar]
  12. DjurišićA.B. HeY. NgA.M.C. Visible-light photocatalysts: Prospects and challenges.APL Mater.20208303090303092610.1063/1.5140497
    [Google Scholar]
  13. ZhangQ. HuangC. ZhangD. ZhangY. WangF. LiuN. WangD. ZhangY.Y. MiL. C−H azidation system induced by visible light from triboelectric nanogenerators based on a cadmium coordination polymer.ACS Materials Letters20235102700271010.1021/acsmaterialslett.3c00645
    [Google Scholar]
  14. LiuS. YangH. ZhangY. WangF. QinQ. WangD. HuangC. ZhangY.Y. Robust cooperative of cadmium sulfide with highly ordered hollow microstructure coordination polymers for regulating the photocatalytic performance.J. Colloid Interface Sci.202466391992910.1016/j.jcis.2024.02.22038447406
    [Google Scholar]
  15. LiangX. LiX. DongQ. GaoT. CaoM. ZhaoK. LichtfouseE. PatrocinioA.O.T. WangC. Photo- and electrochemical processes to convert plastic waste into fuels and high-value chemicals.Chem. Eng. J.202448214882710.1016/j.cej.2024.148827
    [Google Scholar]
  16. HuangC. WangD. ZhangD. ShaoZ. ZhangQ. WangJ. ZhangY. QinN. MiL. Integration of CdS with a fiber-based cadmium coordination polymer for turning on photocatalytic oxidative coupling reactions.Cryst. Growth Des.20222231792180010.1021/acs.cgd.1c01380
    [Google Scholar]
  17. HuangC. LuG. QinN. ShaoZ. ZhangD. SoutisC. ZhangY.Y. MiL. HouH. Enhancement of output performance of triboelectric nanogenerator by switchable stimuli in metal organic frameworks for photocatalysis.ACS Appl. Mater. Interfaces20221414164241643410.1021/acsami.2c0125135377137
    [Google Scholar]
  18. HouH. XuY. YangH. ChenX. YanC. ShiY. ZhuS. Visible light mediated hydrosilylative and hydrophosphorylative cyclizations of enynes and dienes.Org. Lett.20202251748175310.1021/acs.orglett.0c0002432077704
    [Google Scholar]
  19. LuoX. SongJ. ChengL. HuangD. Preparation of some new coumarin dyes.Sci. China, Ser. B.Chem200144532539
    [Google Scholar]
  20. MahidolC. KaweetripobW. PrawatH. RuchirawatS. Mammea coumarins from the flowers of Mammea siamensis.J. Nat. Prod.200265575776010.1021/np010579u12027761
    [Google Scholar]
  21. WuL. WangX. XuW. FarzanehF. XuR. The structure and pharmacological functions of coumarins and their derivatives.Curr. Med. Chem.200916324236426010.2174/09298670978957818719754420
    [Google Scholar]
  22. ZhuJ.J. JiangJ.G. Pharmacological and nutritional effects of natural coumarins and their structure–activity relationships.Mol. Nutr. Food Res.20186214170107310.1002/mnfr.20170107329750855
    [Google Scholar]
  23. HuY.Z. YeZ.P. XiaP.J. SongD. LiX.J. LiuZ.L. LiuF. ChenK. XiangH.Y. YangH. Visible-light-driven, photocatalyst-free cascade to access 3-cyanoalkyl coumarins from ortho-hydroxycinnamic esters.J. Org. Chem.20218654245425310.1021/acs.joc.1c0002433606932
    [Google Scholar]
  24. OhH. RyouB. ParkJ. KimM. ChoiJ.H. ParkC.M. Synthesis of bicyclic N-heterocycles via photoredox cycloaddition of imino-alkynes and imino-alkenes.ACS Catal.20211121136701367910.1021/acscatal.1c03919
    [Google Scholar]
  25. NevagiR.J. DigheS.N. DigheS.N. Biological and medicinal significance of benzofuran.Eur. J. Med. Chem.20159756158110.1016/j.ejmech.2014.10.08526015069
    [Google Scholar]
  26. TanJ.P. YuP. WuJ.H. ChenY. PanJ. JiangC. RenX. ZhangH.S. WangT. Bifunctionalphosphonium salt directed enantioselective formal [4+1] annulation of hydroxyl-substituted para-quinonemethides with alpha-halogenated ketones.Org. Lett.201921187298730210.1021/acs.orglett.9b0256031490078
    [Google Scholar]
  27. SmithD.T. VitakuE. NjardarsonJ.T. Dearomatization approach to 2-trifluoromethylated benzofuran and dihydrobenzofuran products.Org. Lett.201719133508351110.1021/acs.orglett.7b0147928598632
    [Google Scholar]
  28. LiL. LiJ.Z. SunY.B. LuoC.M. QiuH. TangK. LiuH. WeiW.T. Visible-light-catalyzed tandem radical addition/1,5-hydrogen atom transfer/cyclization of 2-alkynylarylethers with sulfonyl chlorides.Org. Lett.202224254704470910.1021/acs.orglett.2c0197735724683
    [Google Scholar]
  29. SunZ.Y. BotrosE. SuA.D. KimY. WangE. BaturayN.Z. KwonC.H. Sulfoxide-containing aromatic nitrogen mustards as hypoxia-directed bioreductive cytotoxins.J. Med. Chem.200043224160416810.1021/jm990495711063612
    [Google Scholar]
  30. HarrakY. CasulaG. BassetJ. RosellG. PlesciaS. RaffaD. CusimanoM.G. PouplanaR. PujolM.D. Synthesis, anti inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(aryloyl)phenyl methyl sulfones.J. Med. Chem.201053186560657110.1021/jm100398z20804197
    [Google Scholar]
  31. EmmettE.J. WillisM.C. The development and application of sulfur dioxide surrogates in synthetic organic chemistry.Asian J. Org. Chem.20154760261110.1002/ajoc.201500103
    [Google Scholar]
  32. UlmanA. WillandC.S. KohlerW. RobelloD.R. WilliamsD.J. HandleyL. New sulfonyl-containing materials for nonlinear optics: semiempirical calculations, synthesis, and properties.J. Am. Chem. Soc.1990112207083709010.1021/ja00176a001
    [Google Scholar]
  33. ChengQ. ZhangF. ChenX. HanY. YanC. ShiY. HouH. ZhuS. Visible-light-mediated three-component radical iodosulfonylative cyclization of enynes.Org. Lett.202224132515251910.1021/acs.orglett.2c0065535352951
    [Google Scholar]
  34. ShenQ. ZhengX. LiL. ZhongT. YinC. YuC. Photoinduced three-component difluoroamidosulfonylation/ bicyclization: A route to dihydrobenzofuran derivatives.Org. Lett.202224132556256110.1021/acs.orglett.2c0076135348346
    [Google Scholar]
  35. MatsumotoK. KatsukiT. Catalytic Asymmetric Synthesis.3rd ed OjimaI. New YorkWiley-VCH2010
    [Google Scholar]
  36. WongO.A. ShiY. Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts.Chem. Rev.200810893958398710.1021/cr068367v18590339
    [Google Scholar]
  37. XiaQ.H. GeH.Q. YeC.P. LiuZ.M. SuK.X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation.Chem. Rev.200510551603166210.1021/cr040645815884785
    [Google Scholar]
  38. MiyashitaK. ImanishiT. Syntheses of natural products having an epoxyquinone structure.Chem. Rev.2005105124515453610.1021/cr040613k16351052
    [Google Scholar]
  39. Marco-ContellesJ. MolinaM.T. AnjumS. Naturally occurring cyclohexane epoxides: Sources, biological activities, and synthesis.Chem. Rev.200410462857290010.1021/cr980013j15186183
    [Google Scholar]
  40. ChandS. SharmaA.K. PandeyA.K. SinghK.N. Visible-light photoredox-catalyzed synthesis of trans-oxiranesviadecarboxylative stereospecific epoxidation of trans-cinnamic acids by aryldiazonium salts.Org. Lett.202224356423642710.1021/acs.orglett.2c0250936030413
    [Google Scholar]
  41. SeitzM. ReiserO. Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds.Curr. Opin. Chem. Biol.20059328529210.1016/j.cbpa.2005.03.00515939330
    [Google Scholar]
  42. KitsonR.R.A. MillemaggiA. TaylorR.J.K. The renaissance of α-methylene-γ-butyrolactones: New synthetic approaches.Angew. Chem. Int. Ed.200948509426945110.1002/anie.20090310819938025
    [Google Scholar]
  43. BandichhorR. NosseB. ReiserO. Paraconic acids : The natural products from lichen symbiont.Top. Curr. Chem.2005243437210.1007/b96881
    [Google Scholar]
  44. LorenteA. Lamariano-MerketegiJ. AlbericioF. ÁlvarezM. Tetrahydrofuran-containing macrolides: A fascinating gift from the deep sea.Chem. Rev.201311374567461010.1021/cr300477823506053
    [Google Scholar]
  45. ChoiH. ChoiJ. LeeK. Nickel carbene-mediated one-carbon homologative γ-butyrolactonization.Org. Lett.202224509238924210.1021/acs.orglett.2c0380036480446
    [Google Scholar]
  46. GoelA. KumarA. RaghuvanshiA. Synthesis, stereochemistry, structural classification, and chemical reactivity of natural pterocarpans.Chem. Rev.201311331614164010.1021/cr300219y23214501
    [Google Scholar]
  47. PilkingtonL.I. BarkerD. Synthesis and biology of 1,4-benzodioxane lignan natural products.Nat. Prod. Rep.201532101369138810.1039/C5NP00048C26150088
    [Google Scholar]
  48. PackerJ.E. SlaterT.F. WillsonR.L. Direct observation of a free radical interaction between vitamin E and vitamin C.Nature1979278570673773810.1038/278737a0431730
    [Google Scholar]
  49. KashiwadaY. YamazakiK. IkeshiroY. YamagishiT. FujiokaT. MihashiK. MizukiK. CosentinoL.M. FowkeK. Morris-NatschkeS.L. LeeK.H. Isolation of rhododaurichromanic acid B and the anti-HIV principles rhododaurichromanic acid A and rhododaurichromenic acid from Rhododendron dauricum.Tetrahedron20015781559156310.1016/S0040‑4020(00)01144‑3
    [Google Scholar]
  50. ZhangH. YangN. LiJ. WangP. LiS. XieL. LiaoS. Radical fluorosulfonylarylation of alkenes: accessing FSO2-functionalized chromanes via formal endo and exo cyclization.Org. Lett.202224448170817510.1021/acs.orglett.2c0322436315024
    [Google Scholar]
  51. YadavP. PratapR. Ji RamV. Natural and synthetic spirobutenolides and spirobutyrolactones.Asian J. Org. Chem.20209101377140910.1002/ajoc.202000259
    [Google Scholar]
  52. AllisonA.J. ButcherD.N. ConnollyJ.D. OvertonK.H. PaniculidesA. Paniculides A, B, and C, bisabolenoid lactones from tissue cultures of Andrographis paniculata.Chem. Commun.19685231493149310.1039/c19680001493
    [Google Scholar]
  53. ZhangL. ShaoY.L. HuaL. LiY. HussainS.H. ArfanM. GaoK. Guaianolides and elemanolides from Vernonia anthelmintica.Phytochem. Lett.20147141810.1016/j.phytol.2013.09.009
    [Google Scholar]
  54. LiM.B. IngeA.K. PosevinsD. GustafsonK.P.J. QiuY. BäckvallJ.E. Chemodivergent and diastereoselective synthesis of γ-lactones and γ-lactams: A heterogeneous palladium catalyzed oxidative tandem process.J. Am. Chem. Soc.201814044146041460810.1021/jacs.8b0956230358399
    [Google Scholar]
  55. MandalS. ThirupathiB. Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis.Org. Biomol. Chem.202018285287531410.1039/D0OB00954G32633316
    [Google Scholar]
  56. ApostolinaL.P. BosveliA. ProfyllidouA. MontagnonT. TsopanakisV. KaloumenouM. KalaitzakisD. VassilikogiannakisG. Vassilikogiannakis. G. Multiphotocatalyst cascades: from furans to fused butyrolactones and substituted cyclopentanones.Org. Lett.202224488786879010.1021/acs.orglett.2c0351336417313
    [Google Scholar]
  57. HansonJ.R. Diterpenoids of terrestrial origin.Nat. Prod. Rep.201330101346135610.1039/c3np70046a23942594
    [Google Scholar]
  58. XiaoJ. WuH. LiangJ.R. WuP. GuoC. WangY.W. WangZ.Y. PengY. Photocatalytic tandem radical cyclization enables expeditious total synthesis of epoxyhinokiol analogues for anticancer activity evaluation.Org. Lett.202426173481348610.1021/acs.orglett.3c0381138240748
    [Google Scholar]
  59. ZengH. LiY. WuR. LiuD. ZhangY. XuS. Carbohydrate−DNA conjugation enabled by glycosyl radicals generated from glycosylsulfinates.Org. Lett.202326142686269010.1021/acs.orglett.3c0083337125782
    [Google Scholar]
  60. Seley-RadtkeK.L. YatesM.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold.Antiviral Res.2018154668610.1016/j.antiviral.2018.04.00429649496
    [Google Scholar]
  61. SheltonJ. LuX. HollenbaughJ.A. ChoJ.H. AmblardF. SchinaziR.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs.Chem. Rev.201611623143791445510.1021/acs.chemrev.6b0020927960273
    [Google Scholar]
  62. WangR. XuH. BanerjeeA. CuiZ. MaY. WhittinghamW.G. YangP. LiA. Mild approach to nucleoside analogues via photoredox/cu-catalyzed decarboxylative C−N bond formation. total synthesis of oxetanocin A.Org. Lett.202326142691269610.1021/acs.orglett.3c0091438011311
    [Google Scholar]
  63. DengY. HuZ. XueJ. YinJ. ZhuT. LiuS. Visible-light-promoted α-C(sp3)−H amination of ethers with azoles and amides.Org. Lett.202426493393810.1021/acs.orglett.3c0429138241172
    [Google Scholar]
  64. LongF. JiangK. SongW. LuoW. YinB. Photoinduced Pd-catalyzed dearomative 2,5-difunctionalizition of furans via cascade C−C/C−O bond formation.Org. Lett.20242651083108710.1021/acs.orglett.3c0434538277672
    [Google Scholar]
  65. FengM. TangB. LiangS.H. JiangX. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry.Curr. Top. Med. Chem.201616111200121610.2174/156802661566615091511174126369815
    [Google Scholar]
  66. Barce FerroC.T. dos SantosB.F. da SilvaC.D.G. BrandG. da SilvaB.A.L. de Campos DominguesN.L. Review of the syntheses and activities of some sulfur-containing drugs.Curr. Org. Synth.202017319221010.2174/157017941766620021211341232091342
    [Google Scholar]
  67. ScottK.A. NjardarsonJ.T. Analysis of US FDA-approved drugs containing sulfur atoms.Top. Curr. Chem.20183761510.1007/s41061‑018‑0184‑529356979
    [Google Scholar]
  68. LiangS. HofmanK. FriedrichM. KellerJ. ManolikakesG. Recent progress and emerging technologies towards a sustainable synthesis of sulfones.ChemSusChem202114224878490210.1002/cssc.20210163534476903
    [Google Scholar]
  69. LiuK.J. DengJ.H. YangJ. GongS.F. LinY.W. HeJ.Y. CaoZ. HeW.M. Selective oxidation of (hetero)sulfides with molecular oxygen under clean conditions.Green Chem.202022243343810.1039/C9GC03713F
    [Google Scholar]
  70. LiY. RizviS.A.A. HuD. SunD. GaoA. ZhouY. LiJ. JiangX. Selective late-stage oxygenation of sulfides with ground-state oxygen by uranyl photocatalysis.Angew. Chem. Int. Ed.20195838134991350610.1002/anie.20190608031301096
    [Google Scholar]
  71. BaoP. WangL. LiuQ. YangD. WangH. ZhaoX. YueH. WeiW. Direct coupling of haloquinolines and sulfonyl chlorides leading to sulfonylated quinolines in water.Tetrahedron Lett.201960321421810.1016/j.tetlet.2018.12.016
    [Google Scholar]
  72. WangL. ZhangM. ZhangY. LiuQ. ZhaoX. LiJ.S. LuoZ. WeiW. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans.Chin. Chem. Lett.2020311677010.1016/j.cclet.2019.05.041
    [Google Scholar]
  73. LiG. YanQ. GanZ. LiQ. DouX. YangD. Photocatalyst free visible-light-promoted c(sp2)–s coupling: A strategy for the preparation of S-Aryl dithiocarbamates.Org. Lett.201921197938794210.1021/acs.orglett.9b0292131553199
    [Google Scholar]
  74. DongD.Q. LiL.X. LiG.H. DengQ. WangZ.L. LongS. Visible-light-induced deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acids for the synthesis of 2-sulfonylquinoline via radical reactions.Chin. J. Catal.201940101494149810.1016/S1872‑2067(19)63420‑0
    [Google Scholar]
  75. ZhuC. CaiY. JiangH. Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center.Org. Chem. Front.20218195574558910.1039/D1QO00663K
    [Google Scholar]
  76. JiangY.Q. LiJ. FengZ.W. XuG.Q. ShiX. DingQ.J. LiW. MaC.H. YuB. Ethylene glycol: A green solvent for visible light-promoted aerobic transition metal-free cascade sulfonation/cyclization reaction.Adv. Synth. Catal.2020362132609261410.1002/adsc.202000233
    [Google Scholar]
  77. DongH. ChenC. ZhaoJ. JiY. YangW. Photoinduced photocatalyst-free cascade cyclization of alkynes with sodium sulfinates for the synthesis of benzothiophenes and thioflavones.Molecules202328114436444810.3390/molecules2811443637298913
    [Google Scholar]
  78. LiuX.C. ChenX.L. LiuY. SunK. PengY.Y. QuL.B. YuB. Visible-light-induced metal-free synthesis of 2-phosphorylated thioflavones in water.ChemSusChem202013229830310.1002/cssc.20190281731713317
    [Google Scholar]
  79. GongX. WangM. YeS. WuJ. Synthesis of 3-(Methylsulfonyl)benzo[ b ]thiophenes from Methyl(2-alkynylphenyl)sulfanes and Sodium Metabisulfite via a radical relay strategy.Org. Lett.20192141156116010.1021/acs.orglett.9b0010030698982
    [Google Scholar]
  80. LapuhM.I. CormierG. CherguiS. AitkenD.J. BoddaertT. Preparation of thietane derivatives through domino photochemical Norrish Type II/thia-Paternò−Büchi Reactions.Org. Lett.202224458375838010.1021/acs.orglett.2c0342836346939
    [Google Scholar]
  81. LiZ. KhaliqM. ZhouZ. PostC.B. KuhnR.J. CushmanM. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins.J. Med. Chem.200851154660467110.1021/jm800412d18610998
    [Google Scholar]
  82. CuiS.F. AddlaD. ZhouC.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, sars, and preliminary antibacterial mechanism.J. Med. Chem.201659104488451010.1021/acs.jmedchem.5b0167827115717
    [Google Scholar]
  83. StachulskiA.V. TaujanskasJ. PateS.L. RajoliR.K.R. AljayyoussiG. PenningtonS.H. WardS.A. HongW.D. BiaginiG.A. OwenA. NixonG.L. LeungS.C. O’NeillP.M. Therapeutic potential of nitazoxanide: An appropriate choice for repurposing versus SARS-CoV-2?ACS Infect. Dis.2021761317133110.1021/acsinfecdis.0c0047833352056
    [Google Scholar]
  84. GanieM.A. BhatM.S. RizviM.A. RaheemS. ShahB.A. Photoredox-promoted selective synthesis of C-5 thiolated 2-aminothiazoles from terminal alkynes.Org. Lett.202224427757776210.1021/acs.orglett.2c0306436240126
    [Google Scholar]
  85. LiH. XiongZ. ShengS. ChenJ. Chemodivergent synthesis of benzothiadiazin-3-one 1-oxides and benzisothiazol-3-ones via visible light-promoted intramolecular N−S bond formation.J. Org. Chem.20238824169491695910.1021/acs.joc.3c0177538040659
    [Google Scholar]
  86. PaliP. ShuklaG. SahaP. SinghM.S. Photo-oxidative ruthenium(ii)-catalyzed formal [3+2] heterocyclization of thioamides to thiadiazoles.Org. Lett.202123103809381310.1021/acs.orglett.1c0076633956460
    [Google Scholar]
  87. TuckerJ.W. ZhangY. JamisonT.F. StephensonC.R.J. Visible-light photoredox catalysis in flow.Angew. Chem. Int. Ed.201251174144414710.1002/anie.20120096122431004
    [Google Scholar]
  88. CambiéD. BottecchiaC. StraathofN.J.W. HesselV. NoëlT. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment.Chem. Rev.201611617102761034110.1021/acs.chemrev.5b0070726935706
    [Google Scholar]
  89. GrimmI. HauerS.T. SchulteT. WycichG. CollinsK.D. LovisK. CandishL. Upscaling photoredox cross coupling reactions in batch using immersion well reactors.Org. Process Res. Dev.20202461185119310.1021/acs.oprd.0c00070
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266313243240624071549
Loading
/content/journals/ctmc/10.2174/0115680266313243240624071549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test