Skip to content
2000
Volume 24, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Neuroinflammation is a process involved in a variety of central nervous system (CNS) diseases and is being increasingly recognized as a key mediator of cognitive impairments. Neuroinflammatory responses including glial activation, increased production of proinflammatory cytokines, and aberrant neuronal signaling, contribute to cognitive dysfunctions. Histamine is a key peripheral inflammatory mediator, but plays an important role in neuroinflammatory processes as well. The unique localization of histamine H receptor (HR) in the CNS along with the modulation of the release of other neurotransmitters its action on heteroreceptors on non-histaminergic neurons have led to the development of several HR ligands for various brain diseases. HR antagonists/inverse agonists have revealed potential to treat diverse neuroinflammatory CNS disorders, including neurodegenerative diseases, attention-deficit hyperactivity syndrome and schizophrenia. In this mini review, we provide a brief overview on the crucial involvement of the histaminergic transmission in the neuroinflammatory processes underlying these cognitive disorders, with a special focus on HR involvement. The anti-neuroinflammatory potential of single-targeted and multi-targeted HR antagonists/inverse agonists for the treatment of these conditions is discussed here.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322294240816051818
2024-12-01
2025-01-18
Loading full text...

Full text loading...

References

  1. KwonH.S. KohS.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes.Transl. Neurodegener.2020914210.1186/s40035‑020‑00221‑233239064
    [Google Scholar]
  2. CarthyE. EllenderT. Histamine, Neuroinflammation and Neurodevelopment: A Review.Front. Neurosci.20211568021410.3389/fnins.2021.68021434335160
    [Google Scholar]
  3. EissaN. SadeqA. SasseA. SadekB. Role of neuroinflammation in autism spectrum disorder and the emergence of brain histaminergic system. Lessons also for BPSD?Front. Pharmacol.20201188610.3389/fphar.2020.0088632612529
    [Google Scholar]
  4. WilsonD.M.III CooksonM.R. Van Den BoschL. ZetterbergH. HoltzmanD.M. DewachterI. Hallmarks of neurodegenerative diseases.Cell2023186469371410.1016/j.cell.2022.12.03236803602
    [Google Scholar]
  5. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  6. RansohoffR.M. How neuroinflammation contributes to neurodegeneration.Science2016353630177778310.1126/science.aag259027540165
    [Google Scholar]
  7. WendimuM.Y. HooksS.B. Microglia phenotypes in aging and neurodegenerative diseases.Cells20221113209110.3390/cells1113209135805174
    [Google Scholar]
  8. WangW-Y. TanM-S. YuJ-T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013626207229
    [Google Scholar]
  9. BrodackiB. StaszewskiJ. ToczyłowskaB. KozłowskaE. DrelaN. ChalimoniukM. StępienA. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism.Neurosci. Lett.2008441215816210.1016/j.neulet.2008.06.04018582534
    [Google Scholar]
  10. ZhuoC. TianH. SongX. JiangD. ChenG. CaiZ. PingJ. ChengL. ZhouC. ChenC. Microglia and cognitive impairment in schizophrenia: Translating scientific progress into novel therapeutic interventions.Schizophrenia2023914210.1038/s41537‑023‑00370‑z37429882
    [Google Scholar]
  11. Peña-AltamiraE. PratiF. MassenzioF. VirgiliM. ContestabileA. BolognesiM.L. MontiB. Changing paradigm to target microglia in neurodegenerative diseases: From anti-inflammatory strategy to active immunomodulation.Expert Opin. Ther. Targets201620562764010.1517/14728222.2016.112123726568363
    [Google Scholar]
  12. ImbimboB.P. SolfrizziV. PanzaF. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment?Front. Aging Neurosci.20102210.3389/fnagi.2010.0001920725517
    [Google Scholar]
  13. FuW.Y. WangX. IpN.Y. Targeting neuroinflammation as a therapeutic strategy for alzheimer’s disease: Mechanisms, drug candidates, and new opportunities.ACS Chem. Neurosci.201910287287910.1021/acschemneuro.8b0040230221933
    [Google Scholar]
  14. CummingsJ. ZhouY. LeeG. ZhongK. FonsecaJ. ChengF. Alzheimer’s disease drug development pipeline: 2023.Alzheimers Dement. (N. Y.)202392e1238510.1002/trc2.1238537251912
    [Google Scholar]
  15. BrancoA.C.C.C. YoshikawaF.S.Y. PietrobonA.J. SatoM.N. Role of Histamine in Modulating the Immune Response and Inflammation.Mediators Inflamm.2018201811010.1155/2018/952407530224900
    [Google Scholar]
  16. PanulaP. NuutinenS. The histaminergic network in the brain: Basic organization and role in disease.Nat. Rev. Neurosci.201314747248710.1038/nrn352623783198
    [Google Scholar]
  17. ProvensiG. CostaA. IzquierdoI. BlandinaP. PassaniM.B. Brain histamine modulates recognition memory: Possible implications in major cognitive disorders.Br. J. Pharmacol.2020177353955610.1111/bph.1447830129226
    [Google Scholar]
  18. YoshikawaT. NakamuraT. YanaiK. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness.Br. J. Pharmacol.2021178475076910.1111/bph.1522032744724
    [Google Scholar]
  19. ZlomuzicaA. DereD. BinderS. De Souza SilvaM.A. HustonJ.P. DereE. Neuronal histamine and cognitive symptoms in Alzheimer’s disease.Neuropharmacology201610613514510.1016/j.neuropharm.2015.05.00726025658
    [Google Scholar]
  20. CorreaM.F. FernandesJ.P.S. QSAR Modeling of Histamine H3R Antagonists/inverse Agonists as Future Drugs for Neurodegenerative Diseases.Curr. Neuropharmacol.201816674975710.2174/1570159X1566617081810064428820054
    [Google Scholar]
  21. LopesF.B. AranhaC.M.S.Q. FernandesJ.P.S. Histamine H 3 receptor and cholinesterases as synergistic targets for cognitive decline: Strategies to the rational design of multitarget ligands.Chem. Biol. Drug Des.202198221222510.1111/cbdd.1386633991182
    [Google Scholar]
  22. Nieto-AlamillaG. Márquez-GómezR. García-GálvezA.M. Morales-FigueroaG.E. Arias-MontañoJ.A. The Histamine H 3 Receptor: Structure, pharmacology, and function.Mol. Pharmacol.201690564967310.1124/mol.116.10475227563055
    [Google Scholar]
  23. EllenbroekB.A. GhiabiB. The other side of the histamine H3 receptor.Trends Neurosci.201437419119910.1016/j.tins.2014.02.00724636456
    [Google Scholar]
  24. ZhengY. FanL. FangZ. LiuZ. ChenJ. ZhangX. WangY. ZhangY. JiangL. ChenZ. HuW. Postsynaptic histamine H3 receptors in ventral basal forebrain cholinergic neurons modulate contextual fear memory.Cell Rep.202342911307310.1016/j.celrep.2023.11307337676764
    [Google Scholar]
  25. SadekB. SaadA. SadeqA. JalalF. StarkH. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases.Behav. Brain Res.201631241543010.1016/j.bbr.2016.06.05127363923
    [Google Scholar]
  26. KuboM. KishiT. MatsunagaS. IwataN. Histamine H3 receptor antagonists for alzheimer’s disease: A systematic review and meta-analysis of randomized placebo-controlled trials.J. Alzheimers Dis.201548366767110.3233/JAD‑15039326402104
    [Google Scholar]
  27. CorreaM.F. FernandesJ.P.S. Targeting the Histamine H4 Receptor: Future Drugs for Inflammatory Diseases.Curr. Org. Chem.201822171663167210.2174/1385272822666180710144636
    [Google Scholar]
  28. SchirmerB. NeumannD. The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut.Int. J. Mol. Sci.20212211611610.3390/ijms2211611634204101
    [Google Scholar]
  29. MehtaP. MisztaP. RzodkiewiczP. MichalakO. KrzeczyńskiP. FilipekS. Enigmatic Histamine Receptor H4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases.Life (Basel)20201045010.3390/life1004005032344736
    [Google Scholar]
  30. FerreiraR. SantosT. GonçalvesJ. BaltazarG. FerreiraL. AgasseF. BernardinoL. Histamine modulates microglia function.J. Neuroinflammation2012919010.1186/1742‑2094‑9‑9022569158
    [Google Scholar]
  31. ZhangW. ZhangX. ZhangY. QuC. ZhouX. ZhangS. Histamine induces microglia activation and the release of proinflammatory mediators in rat brain via H1R or H4R.J. Neuroimmune Pharmacol.202015228029110.1007/s11481‑019‑09887‑631863333
    [Google Scholar]
  32. RochaS.M. SaraivaT. CristóvãoA.C. FerreiraR. SantosT. EstevesM. SaraivaC. JeG. CortesL. ValeroJ. AlvesG. KlibanovA. KimY.S. BernardinoL. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.J. Neuroinflammation201613113710.1186/s12974‑016‑0600‑027260166
    [Google Scholar]
  33. CacabelosR. TorrellasC. Fernández-NovoaL. AlievG. Neuroimmune crosstalk in CNS disorders: The histamine connection.Curr. Pharm. Des.201622781984810.2174/138161282266615120915095426648474
    [Google Scholar]
  34. CacabelosR. TorrellasC. Fernández-NovoaL. López-MuñozF. Histamine and immune biomarkers in CNS disorders.Mediators Inflamm.2016201611010.1155/2016/192460327190492
    [Google Scholar]
  35. JuričD.M. KržanM. Lipnik-StangeljM. Histamine and astrocyte function.Pharmacol. Res.201611177478310.1016/j.phrs.2016.07.03527475882
    [Google Scholar]
  36. XuJ. ZhangX. QianQ. WangY. DongH. LiN. QianY. JinW. Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes.J. Neuroinflammation20181514110.1186/s12974‑018‑1068‑x29433511
    [Google Scholar]
  37. BerlinM. BoyceC.W. de Lera RuizM. Histamine H3 receptor as a drug discovery target.J. Med. Chem.2011541265310.1021/jm100064d21062081
    [Google Scholar]
  38. PengX. YangL. LiuZ. LouS. MeiS. LiM. ChenZ. ZhangH. Structural basis for recognition of antihistamine drug by human histamine receptor.Nat. Commun.2022131610510.1038/s41467‑022‑33880‑y36243875
    [Google Scholar]
  39. LambY.N. Pitolisant: A review in narcolepsy with or without cataplexy.CNS Drugs202034220721810.1007/s40263‑020‑00703‑x31997137
    [Google Scholar]
  40. PullenL.C. PiconeM. TanL. JohnstonC. StarkH. Cognitive improvements in children with prader-willi syndrome following pitolisant treatment—patient reports.J. Pediatr. Pharmacol. Ther.201924216617110.5863/1551‑6776‑24.2.16631019411
    [Google Scholar]
  41. MedhurstA.D. AtkinsA.R. BeresfordI.J. BrackenboroughK. BriggsM.A. CalverA.R. CiliaJ. CluderayJ.E. CrookB. DavisJ.B. DavisR.K. DavisR.P. DawsonL.A. FoleyA.G. GartlonJ. GonzalezM.I. HeslopT. HirstW.D. JenningsC. JonesD.N.C. LacroixL.P. MartynA. OciepkaS. RayA. ReganC.M. RobertsJ.C. SchoggerJ. SouthamE. SteanT.O. TrailB.K. UptonN. WadsworthG. WaldJ.A. WhiteT. WitheringtonJ. WoolleyM.L. WorbyA. WilsonD.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models.J. Pharmacol. Exp. Ther.200732131032104510.1124/jpet.107.12031117327487
    [Google Scholar]
  42. GroveR. HarringtonC. MahlerA. BeresfordI. MaruffP. LowyM. NichollsA. BoardleyR. BergesA. NathanP. HorriganJ. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease.Curr. Alzheimer Res.2014111475810.2174/156720501066613121211014824359500
    [Google Scholar]
  43. WilsonD.M. AppsJ. BaileyN. BamfordM.J. BeresfordI.J. BriggsM.A. CalverA.R. CrookB. DavisR.P. DavisS. DeanD.K. HarrisL. HeightmanT.D. PanchalT. ParrC.A. QuashieN. SteadmanJ.G.A. SchoggerJ. SehmiS.S. SteanT.O. TakleA.K. TrailB.K. WhiteT. WitheringtonJ. WorbyA. MedhurstA.D. The discovery of the benzazepine class of histamine H3 receptor antagonists.Bioorg. Med. Chem. Lett.201323246897690110.1016/j.bmcl.2013.09.08924161834
    [Google Scholar]
  44. WilsonD.M. AppsJ. BaileyN. BamfordM.J. BeresfordI.J. BrackenboroughK. BriggsM.A. BroughS. CalverA.R. CrookB. DavisR.K. DavisR.P. DavisS. DeanD.K. HarrisL. HeslopT. HollandV. JeffreyP. PanchalT.A. ParrC.A. QuashieN. SchoggerJ. SehmiS.S. SteanT.O. SteadmanJ.G.A. TrailB. WaldJ. WorbyA. TakleA.K. WitheringtonJ. MedhurstA.D. Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists.Bioorg. Med. Chem. Lett.201323246890689610.1016/j.bmcl.2013.09.09024269482
    [Google Scholar]
  45. OthmanA.A. HaigG. FlorianH. LockeC. ZhangJ. DuttaS. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT -288, in healthy young adults and elderly volunteers.Br. J. Clin. Pharmacol.20137551299131110.1111/j.1365‑2125.2012.04472.x23016924
    [Google Scholar]
  46. HaigG.M. PritchettY. MeierA. OthmanA.A. HallC. GaultL.M. LenzR.A. A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer’s dementia.J. Alzheimers Dis.201442395997110.3233/JAD‑14029125024314
    [Google Scholar]
  47. HaigG.M. BainE. RobiesonW. OthmanA.A. BakerJ. LenzR.A. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia.Schizophr. Bull.20144061433144210.1093/schbul/sbt24024516190
    [Google Scholar]
  48. KimY.J. GotoY. LeeY.A. Histamine H3 receptor antagonists ameliorate attention deficit/hyperactivity disorder-like behavioral changes caused by neonatal habenula lesion.Behav. Pharmacol.2018291717810.1097/FBP.000000000000034328863002
    [Google Scholar]
  49. FoxG.B. PanJ.B. EsbenshadeT.A. BennaniY.L. BlackL.A. FaghihR. HancockA.A. DeckerM.W. Effects of histamine H3 receptor ligands GT-2331 and ciproxifan in a repeated acquisition avoidance response in the spontaneously hypertensive rat pup.Behav. Brain Res.20021311-215116110.1016/S0166‑4328(01)00379‑511844582
    [Google Scholar]
  50. WeislerR.H. PandinaG.J. DalyE.J. CooperK. Gassmann- MayerC. Randomized clinical study of a histamine H3 receptor antagonist for the treatment of adults with attention-deficit hyperactivity disorder.CNS Drugs201226542143410.2165/11631990‑000000000‑0000022519922
    [Google Scholar]
  51. WangJ. LiuB. XuY. LuanH. WangC. YangM. ZhaoR. SongM. LiuJ. SunL. YouJ. WangW. SunF. YanH. Thioperamide attenuates neuroinflammation and cognitive impairments in Alzheimer’s disease via inhibiting gliosis.Exp. Neurol.202234711387010.1016/j.expneurol.2021.11387034563511
    [Google Scholar]
  52. WangJ. LiuB. SunF. XuY. LuanH. YangM. WangC. ZhangT. ZhouZ. YanH. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation.Int. Immunopharmacol.202211010904510.1016/j.intimp.2022.10904535978505
    [Google Scholar]
  53. IidaT. YoshikawaT. KárpátiA. MatsuzawaT. KitanoH. MogiA. HaradaR. NaganumaF. NakamuraT. YanaiK. JNJ10181457, a histamine H3 receptor inverse agonist, regulates in vivo microglial functions and improves depression-like behaviours in mice.Biochem. Biophys. Res. Commun.2017488353454010.1016/j.bbrc.2017.05.08128526411
    [Google Scholar]
  54. GuillouxJ.P. SamuelsB.A. Mendez-DavidI. HuA. LevinsteinM. FayeC. MekiriM. MocaerE. GardierA.M. HenR. SorsA. DavidD.J. S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice.Sci. Rep.2017714294610.1038/srep4294628218311
    [Google Scholar]
  55. ManiV. JaafarS.M. AzahanN.S.M. RamasamyK. LimS.M. MingL.C. MajeedA.B.A. Ciproxifan improves cholinergic transmission, attenuates neuroinflammation and oxidative stress but does not reduce amyloid level in transgenic mice.Life Sci.2017180233510.1016/j.lfs.2017.05.01328501482
    [Google Scholar]
  56. SheikhS. Safia HaqueE. MirS.S. Neurodegenerative diseases: Multifactorial conformational diseases and their therapeutic interventions.J. Neurodegener. Dis.201320131810.1155/2013/56348126316993
    [Google Scholar]
  57. VohoraD. BhowmikM. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: Relevance to Alzheimer’s disease, ADHD, schizophrenia, and drug abuse.Front. Syst. Neurosci.201267210.3389/fnsys.2012.0007223109919
    [Google Scholar]
  58. CavalliA. BolognesiM.L. MinariniA. RosiniM. TumiattiV. RecanatiniM. MelchiorreC. Multi-target-directed ligands to combat neurodegenerative diseases.J. Med. Chem.200851334737210.1021/jm700936418181565
    [Google Scholar]
  59. RamsayR.R. Popovic-NikolicM.R. NikolicK. UliassiE. BolognesiM.L. A perspective on multi-target drug discovery and design for complex diseases.Clin. Transl. Med.201871e310.1186/s40169‑017‑0181‑229340951
    [Google Scholar]
  60. MattaS.M. Hill-YardinE.L. CrackP.J. The influence of neuroinflammation in Autism Spectrum Disorder.Brain Behav. Immun.201979759010.1016/j.bbi.2019.04.03731029798
    [Google Scholar]
  61. BaronioD. GonchoroskiT. CastroK. ZanattaG. GottfriedC. RiesgoR. Histaminergic system in brain disorders: Lessons from the translational approach and future perspectives.Ann. Gen. Psychiatry20141313410.1186/s12991‑014‑0034‑y25426159
    [Google Scholar]
  62. ŁażewskaD. JończykJ. BajdaM. SzałajN. WięckowskaA. PanekD. MooreC. KuderK. MalawskaB. Kieć-KononowiczK. Cholinesterase inhibitory activity of chlorophenoxy derivatives—Histamine H3 receptor ligands.Bioorg. Med. Chem. Lett.201626164140414510.1016/j.bmcl.2016.04.05427445168
    [Google Scholar]
  63. EissaN. AzimullahS. JayaprakashP. JayarajR.L. ReinerD. OjhaS.K. BeiramR. StarkH. ŁażewskaD. Kieć-KononowiczK. SadekB. The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice.Chem. Biol. Interact.201931210877510.1016/j.cbi.2019.10877531369746
    [Google Scholar]
  64. von CoburgY. KottkeT. WeizelL. LigneauX. StarkH. Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics.Bioorg. Med. Chem. Lett.200919253854210.1016/j.bmcl.2008.09.01219091563
    [Google Scholar]
  65. MaramaiS. GemmaS. BrogiS. CampianiG. ButiniS. StarkH. BrindisiM. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases.Front. Neurosci.20161045110.3389/fnins.2016.0045127761108
    [Google Scholar]
  66. VenkatachalamK. EissaN. AwadM.A. JayaprakashP. ZhongS. StöltingF. StarkH. SadekB. The histamine H3R and dopamine D2R/D3R antagonist ST-713 ameliorates autism- like behavioral features in BTBR T+tf/J mice by multiple actions.Biomed. Pharmacother.202113811151710.1016/j.biopha.2021.11151733773463
    [Google Scholar]
  67. EissaN. AwadM.A. ThomasS.D. VenkatachalamK. JayaprakashP. ZhongS. StarkH. SadekB. Simultaneous antagonism at H3R/D2R/D3R Reduces autism-like self-grooming and aggressive behaviors by mitigating mapk activation in mice.Int. J. Mol. Sci.202224152610.3390/ijms2401052636613969
    [Google Scholar]
  68. BajdaM. ŁażewskaD. GodyńJ. ZarębaP. KuderK. HagenowS. ŁątkaK. StawarskaE. StarkH. Kieć-KononowiczK. MalawskaB. Search for new multi-target compounds against Alzheimer’s disease among histamine H3 receptor ligands.Eur. J. Med. Chem.202018511178510.1016/j.ejmech.2019.11178531669851
    [Google Scholar]
  69. Honkisz-OrzechowskaE. Popiołek-BarczykK. LinartZ. Filipek-GorzałaJ. RudnickaA. SiwekA. WernerT. StarkH. ChwastekJ. StarowiczK. Kieć-KononowiczK. ŁażewskaD. Anti-inflammatory effects of new human histamine H3 receptor ligands with flavonoid structure on BV-2 neuroinflammation.Inflamm. Res.202372218119410.1007/s00011‑022‑01658‑z36370200
    [Google Scholar]
  70. DeviS. KumarV. SinghS.K. DubeyA.K. KimJ.J. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders.Biomedicines2021929910.3390/biomedicines902009933498503
    [Google Scholar]
  71. AdelusiT.I. AkinbolajiG.R. YinX. AyindeK.S. OlaobaO.T. Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones.Eur. J. Pharmacol.202189117369510.1016/j.ejphar.2020.17369533121951
    [Google Scholar]
  72. LiS. YangJ. Pitolisant for treating patients with narcolepsy.Expert Rev. Clin. Pharmacol.2020132798410.1080/17512433.2020.171443531937172
    [Google Scholar]
  73. KeamS.J. Pitolisant: Pediatric first approval.Paediatr. Drugs202325448348810.1007/s40272‑023‑00575‑w37233887
    [Google Scholar]
  74. NirogiR. MudigondaK. BhyrapuneniG. MuddanaN.R. ShindeA. GoyalV.K. PandeyS.K. MohammedA.R. RavulaJ. JettaS. PalacharlaV.R.C. Safety, tolerability, and pharmacokinetics of SUVN-G3031, a novel histamine-3 receptor inverse agonist for the treatment of narcolepsy, in healthy human subjects following single and multiple oral doses.Clin. Drug Investig.202040760361510.1007/s40261‑020‑00920‑832399853
    [Google Scholar]
  75. NathanP.J. BoardleyR. ScottN. BergesA. MaruffP. SivananthanT. UptonN. LowyM.T. NestorP.J. LaiR. The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H₃ receptor antagonist in patients with mild to moderate Alzheimer’s disease: A preliminary investigation.Curr. Alzheimer Res.201310324025110.2174/156720501131003000323521503
    [Google Scholar]
  76. YoshikawaT. NakamuraT. YanaiK. Histamine N-Methyltransferase in the Brain.Int. J. Mol. Sci.201920373710.3390/ijms2003073730744146
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322294240816051818
Loading
/content/journals/ctmc/10.2174/0115680266322294240816051818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test