Skip to content
2000
Volume 24, Issue 28
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct actions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the approval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clinical trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are affected, and the structural characteristics of several small molecule S1P modulators, with a particular focus on their structure-activity connections.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266288509240422112839
2024-12-01
2025-01-18
Loading full text...

Full text loading...

References

  1. The burden of neurological conditions in the region of the Americas. 2000-2019. Pan american health organization.2021
    [Google Scholar]
  2. MartinJ.B. Molecular basis of the neurodegenerative disorders.N. Engl. J. Med.1999340251970198010.1056/NEJM19990624340250710379022
    [Google Scholar]
  3. HagueS.M. KlaffkeS. BandmannO. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease.J. Neurol. Neurosurg. Psychiatry20057681058106310.1136/jnnp.2004.06018616024878
    [Google Scholar]
  4. HardingB.N. KariyaS. MonaniU.R. ChungW.K. BentonM. YumS.W. TennekoonG. FinkelR.S. Spectrum of neuropathophysiology in spinal muscular atrophy type I.J. Neuropathol. Exp. Neurol.2015741152410.1097/NEN.000000000000014425470343
    [Google Scholar]
  5. KlockgetherT. MariottiC. PaulsonH.L. Spinocerebellar ataxia.Nat. Rev. Dis. Primers2019512410.1038/s41572‑019‑0074‑330975995
    [Google Scholar]
  6. HooverB.R. ReedM.N. SuJ. PenrodR.D. KotilinekL.A. GrantM.K. PitstickR. CarlsonG.A. LanierL.M. YuanL.L. AsheK.H. LiaoD. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration.Neuron20106861067108110.1016/j.neuron.2010.11.03021172610
    [Google Scholar]
  7. MilnerwoodA.J. RaymondL.A. Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease.Trends Neurosci.2010331151352310.1016/j.tins.2010.08.00220850189
    [Google Scholar]
  8. ScottD.A. TabareanI. TangY. CartierA. MasliahE. RoyS. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration.J. Neurosci.201030248083809510.1523/JNEUROSCI.1091‑10.201020554859
    [Google Scholar]
  9. KovacsG.G. Molecular pathology of neurodegenerative diseases: Principles and practice.J. Clin. Pathol.2019721172573510.1136/jclinpath‑2019‑20595231395625
    [Google Scholar]
  10. SpiegelS. MilstienS. The outs and the ins of sphingosine-1-phosphate in immunity.Nat. Rev. Immunol.201111640341510.1038/nri297421546914
    [Google Scholar]
  11. MaceykaM. SpiegelS. Sphingolipid metabolites in inflammatory disease.Nature20145107503586710.1038/nature1347524899305
    [Google Scholar]
  12. PyneS. PyneN.J. Translational aspects of sphingosine 1-phosphate biology.Trends Mol. Med.201117846347210.1016/j.molmed.2011.03.00221514226
    [Google Scholar]
  13. PattingreS. BauvyC. CarpentierS. LevadeT. LevineB. CodognoP. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy.J. Biol. Chem.200928452719272810.1074/jbc.M80592020019029119
    [Google Scholar]
  14. (a SannaM.G. WangS.K. Gonzalez-CabreraP.J. DonA. MarsolaisD. MatheuM.P. WeiS.H. ParkerI. JoE. ChengW.C. CahalanM.D. WongC.H. RosenH. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat. Chem. Biol.20062843444110.1038/nchembio80416829954
    [Google Scholar]
  15. (b ComiG. HartungH.P. BakshiR. WilliamsI.M. WiendlH. Benefit–risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis.Drugs201777161755176810.1007/s40265‑017‑0814‑128905255
    [Google Scholar]
  16. (a MerrillA.H.Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics.Chem. Rev.2011111106387642210.1021/cr200291721942574
    [Google Scholar]
  17. (b LucaciuA. BrunkhorstR. PfeilschifterJ. PfeilschifterW. SubburayaluJ. The S1P–S1PR axis in neurological disorders—insights into current and future therapeutic perspectives.Cells202096151510.3390/cells906151532580348
    [Google Scholar]
  18. LiuN.J. HouL.P. BaoJ.J. WangL.J. ChenX.Y. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives.Plant Commun.20212510021410.1016/j.xplc.2021.10021434746760
    [Google Scholar]
  19. CouttasT.A. RustamY.H. SongH. QiY. TeoJ.D. ChenJ. ReidG.E. DonA.S. A novel function of sphingosine kinase 2 in the metabolism of sphinga-4,14-diene lipids.Metabolites202010623610.3390/metabo1006023632521763
    [Google Scholar]
  20. FananiM.L. MaggioB. The many faces (and phases) of ceramide and sphingomyelin I – single lipids.Biophys. Rev.20179558960010.1007/s12551‑017‑0297‑z28815463
    [Google Scholar]
  21. MenziesF.M. FlemingA. RubinszteinD.C. Compromised autophagy and neurodegenerative diseases.Nat. Rev. Neurosci.201516634535710.1038/nrn396125991442
    [Google Scholar]
  22. CuvillierO. PirianovG. KleuserB. VanekP.G. CosoO.A. GutkindJ.S. SpiegelS. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.Nature1996381658580080310.1038/381800a08657285
    [Google Scholar]
  23. AllendeM.L. SipeL.M. TuymetovaG. Wilson-HenjumK.L. ChenW. ProiaR.L. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis.J. Biol. Chem.201328825183811839110.1074/jbc.M113.47842023637227
    [Google Scholar]
  24. WieczorekI. StrosznajderR.P. Recent insight into the role of sphingosine-1-phosphate lyase in neurodegeneration.Int. J. Mol. Sci.2023247618010.3390/ijms2407618037047151
    [Google Scholar]
  25. GrassiS. MauriL. PrioniS. CabittaL. SonninoS. PrinettiA. GiussaniP. Sphingosine 1-phosphate receptors and metabolic enzymes as druggable targets for brain diseases.Front. Pharmacol.20191080710.3389/fphar.2019.0080731427962
    [Google Scholar]
  26. Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. and Hopkins, A.L. Global mappingof pharmacological space.Nature biotechnology2006247805815
    [Google Scholar]
  27. McGowanE.M. LinY. ChenS. Targeting chronic inflammation of the digestive system in cancer prevention: Modulators of the bioactive sphingolipid sphingosine-1-phosphate pathway.Cancers202214353510.3390/cancers1403053535158806
    [Google Scholar]
  28. CartierA. HlaT. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy.Science20193666463eaar555110.1126/science.aar555131624181
    [Google Scholar]
  29. XiaoJ. Sphingosine-1-phosphate lyase in the developing and injured nervous system: A Dichotomy?Mol. Neurobiol.202360126869688210.1007/s12035‑023‑03524‑337507574
    [Google Scholar]
  30. MendelsonK. EvansT. HlaT. Sphingosine 1-phosphate signalling.Development201414115910.1242/dev.09480524346695
    [Google Scholar]
  31. YuL. HeL. GanB. TiR. XiaoQ. YangX. HuH. ZhuL. WangS. RenR. Structural insights into sphingosine-1-phosphate receptor activation.Proc. Natl. Acad. Sci. USA202211916e211771611910.1073/pnas.211771611935412894
    [Google Scholar]
  32. WangE. HeX. ZengM. The role of S1P and the related signaling pathway in the development of tissue fibrosis.Front. Pharmacol.20199150410.3389/fphar.2018.0150430687087
    [Google Scholar]
  33. PyneN. PyneS. Sphingosine 1-phosphate receptor 1 signaling in mammalian cells.Molecules201722334410.3390/molecules2203034428241498
    [Google Scholar]
  34. CitronM. Vigo-PelfreyC. TeplowD.B. MillerC. SchenkD. JohnstonJ. WinbladB. VenizelosN. LannfeltL. SelkoeD.J. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation.Proc. Natl. Acad. Sci. USA19949125119931199710.1073/pnas.91.25.119937991571
    [Google Scholar]
  35. PyneS. ChapmanJ. SteeleL. PyneN.J. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle.Eur. J. Biochem.1996237381982610.1111/j.1432‑1033.1996.0819p.x8647130
    [Google Scholar]
  36. BakerD. ForteE. PryceG. KangA.S. JamesL.K. GiovannoniG. SchmiererK. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination.Mult. Scler. Relat. Disord.20236910442510.1016/j.msard.2022.10442536470168
    [Google Scholar]
  37. UrbanoM. GuerreroM. RosenH. RobertsE. Modulators of the Sphingosine 1-phosphate receptor 1.Bioorg. Med. Chem. Lett.201323236377638910.1016/j.bmcl.2013.09.05824125884
    [Google Scholar]
  38. LavieuG. ScarlattiF. SalaG. CarpentierS. LevadeT. GhidoniR. BottiJ. CodognoP. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation.J. Biol. Chem.2006281138518852710.1074/jbc.M50618220016415355
    [Google Scholar]
  39. LyapinaE. MarinE. GusachA. OrekhovP. GerasimovA. LugininaA. VakhrameevD. ErgashevaM. KovalevaM. KhusainovG. KhornP. ShevtsovM. KovalevK. BukhdrukerS. OkhrimenkoI. PopovP. HuH. WeierstallU. LiuW. ChoY. GushchinI. RogachevA. BourenkovG. ParkS. ParkG. HyunH.J. ParkJ. GordeliyV. BorshchevskiyV. MishinA. CherezovV. Structural basis for receptor selectivity and inverse agonism in S1P5 receptors.Nat. Commun.2022131473610.1038/s41467‑022‑32447‑135961984
    [Google Scholar]
  40. ChunJ. GiovannoniG. HunterS.F. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: Differential downstream receptor signalling and clinical profile effects.Drugs202181220723110.1007/s40265‑020‑01431‑833289881
    [Google Scholar]
  41. BrinkmannV. BillichA. BaumrukerT. HeiningP. SchmouderR. FrancisG. AradhyeS. BurtinP. Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis.Nat. Rev. Drug Discov.201091188389710.1038/nrd324821031003
    [Google Scholar]
  42. Novartis PharmaK.K. Novartis2020Available from: https://www.novartis.com/news/media-relea ses/novartis-receives-simultaneous-approval-fve-new-products-from-japanese-ministry-health-labour-and-welfare-oferingjapanese-patients-broad-range-novel Accessed 29 August 2023.
  43. WardM.D. JonesD.E. GoldmanM.D. Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis.Expert Opin. Drug Saf.201413798999810.1517/14740338.2014.92082024935480
    [Google Scholar]
  44. SanfordM. Fingolimod: A review of its use in relapsing-remitting multiple sclerosis.Drugs201474121411143310.1007/s40265‑014‑0264‑y25063048
    [Google Scholar]
  45. La MantiaL. TramacereI. FirwanaB. PacchettiI. PalumboR. FilippiniG. Fingolimod for relapsing-remitting multiple sclerosis.Cochrane Database Syst. Rev.201644CD00937127091121
    [Google Scholar]
  46. Australian government, department of health therapeutic goods administration. AusPMDS: Mayzent.2019Available from: https://www.tga.gov.au/apm-summa ry/mayzent Accessed 13th Sept. 2023.
  47. KapposL. Bar-OrA. CreeB.A.C. FoxR.J. GiovannoniG. GoldR. VermerschP. ArnoldD.L. ArnouldS. ScherzT. WolfC. WallströmE. DahlkeF. AchironA. AchtnichtsL. AganK. Akman-DemirG. AllenA.B. AntelJ.P. AntiguedadA.R. AppersonM. ApplebeeA.M. AyusoG.I. BabaM. BajenaruO. BalasaR. BalciB.P. BarnettM. BassA. BeckerV.U. BejinariuM. BerghF.T. BergmannA. BernitsasE. BertheleA. BhanV. BischofF. BjorkR.J. BlevinsG. BoehringerM. BoernerT. BonekR. BowenJ.D. BowlingA. BoykoA.N. BozC. BrackniesV. BrauneS. Brescia MorraV. BrochetB. BrolaW. BrownstoneP.K. BrozmanM. BrunetD. BuragaI. BurnettM. ButtmannM. ButzkuevenH. CahillJ. CalkwoodJ.C. CamuW. CascioneM. CastelnovoG. CentonzeD. CerqueiraJ. ChanA. CimprichovaA. CohanS. ComiG. ConwayJ. CooperJ.A. CorboyJ. CorrealeJ. CostellB. CottrellD.A. CoyleP.K. CranerM. CuiL. CunhaL. CzlonkowskaA. da SilvaA.M. de SaJ. de SezeJ. DebouverieM. DebruyneJ. DecooD. DeferG. DerfussT. DeriN.H. DiheniaB. DioszeghyP. DonathV. DuboisB. DuddyM. DuquetteP. EdanG. EfendiH. EliasS. EmrichP.J. EstruchB.C. EvdoshenkoE.P. FaissJ. FedyaninA.S. FenebergW. FermontJ. FernandezO.F. FerrerF.C. FinkK. FordH. FordC. FranciaA. FreedmanM. FrishbergB. GalganiS. GarmanyG.P. GehringK. GittJ. GobbiC. GoldstickL.P. GonzalezR.A. GrandmaisonF. GrigoriadisN. GrigorovaO. GrimaldiL.M.E. GrossJ. Gross-PajuK. GudesblattM. GuillaumeD. HaasJ. HancinovaV. HancuA. HardimanO. HarmjanzA. HeidenreichF.R. HengstmanG.J.D. HerbertJ. HerringM. HodgkinsonS. HoffmannO.M. HofmannW.E. HoneycuttW.D. HuaL.H. HuangD. HuangY. HuangD.R. HuppertsR. ImreP. JacobsA.K. JakabG. JasinskaE. KaidaK. KalninaJ. KaprelyanA. KarelisG. KarussisD. KatzA. KhabirovF.A. KhatriB. KimuraT. KisterI. KizlaitieneR. KlimovaE. KoehlerJ. KomatineniA. KornhuberA. KovacsK. KovesA. KozubskiW. KrastevG. KruppL.B. KurcaE. LassekC. LaureysG. LeeL. LenschE. LeutmezerF. LiH. LinkerR.A. LinnebankM. LiskovaP. LlaneraC. LuJ. LutterottiA. LyckeJ. MacdonellR. MaciejowskiM. MaeurerM. MagzhanovR.V. MaidaE-M. MalcieneL. Mao-DraayerY. MarfiaG.A. MarkowitzC. MastorodimosV. MatyasK. Meca-LallanaJ. MerinoJ.A.G. MihetiuI.G. MilanovI. MillerA.E. MillersA. MirabellaM. MizunoM. MontalbanX. MontoyaL. MoriM. MuellerS. NakaharaJ. NakatsujiY. NewsomeS. NicholasR. NielsenA.S. NikfekrE. NocentiniU. NoharaC. NomuraK. OdinakM.M. OlssonT. van OostenB.W. Oreja-GuevaraC. OschmannP. OverellJ. PachnerA. PanczelG. PandolfoM. PapeixC. PatruccoL. PelletierJ. PiedrabuenaR. PlessM. PolzerU. PozsegovitsK. RastenyteD. RauerS. ReifschneiderG. ReyR. RizviS.A. RobertsonD. RodriguezJ.M. RogD. RoshanisefatH. RoweV. RozsaC. RubinS. RusekS. SaccàF. SaidaT. SalgadoA.V. SanchezV.E.F. SandersK. SatoriM. SazonovD.V. ScarpiniE.A. SchlegelE. SchluepM. SchmidtS. ScholzE. SchrijverH.M. SchwabM. SchwartzR. ScottJ. SelmajK. ShaferS. SharrackB. ShchukinI.A. ShimizuY. ShotekovP. SieverA. SigelK-O. SillimanS. SimoM. SimuM. SinayV. SiquierA.E. SivaA. SkodaO. SolomonA. StangelM. StefoskiD. SteingoB. StolyarovI.D. StouracP. Strassburger-KrogiasK. StraussE. StuveO. TarnevI. TavernarakisA. TelloC.R. TerziM. TichaV. TicmeanuM. Tiel-WilckK. ToomsooT. TubridyN. TullmanM.J. TumaniH. TurcaniP. TurnerB. UccelliA. UrtazaF.J.O. VachovaM. ValikovicsA. WalterS. Van WijmeerschB. VanopdenboschL. WeberJ.R. WeissS. WeissertR. VermerschP. WestT. WiendlH. WiertlewskiS. WildemannB. WillekensB. VisserL.H. VorobeychikG. XuX. YamamuraT. YangY.N. YelamosS.M. YeungM. ZachariasA. ZelkowitzM. ZettlU. ZhangM. ZhouH. ZiemanU. ZiemssenT. EXPAND Clinical Investigators Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study.Lancet2018391101271263127310.1016/S0140‑6736(18)30475‑629576505
    [Google Scholar]
  48. European Medicines Agency. Mayzent: EPAR—product information.2020Available from: https://www.ema.europa.eu/en/documents/productinformation/mayzent-epar-product-information_en.pdf Accessed 15 September 2020.
  49. RosenD. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature1993364643536210.1038/364362c08332197
    [Google Scholar]
  50. DeJesus-HernandezM. MackenzieI.R. BoeveB.F. BoxerA.L. BakerM. RutherfordN.J. NicholsonA.M. FinchN.A. FlynnH. AdamsonJ. KouriN. WojtasA. SengdyP. HsiungG.Y.R. KarydasA. SeeleyW.W. JosephsK.A. CoppolaG. GeschwindD.H. WszolekZ.K. FeldmanH. KnopmanD.S. PetersenR.C. MillerB.L. DicksonD.W. BoylanK.B. Graff-RadfordN.R. RademakersR. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.Neuron201172224525610.1016/j.neuron.2011.09.01121944778
    [Google Scholar]
  51. Muñoz-SáezE. de Munck GarcíaE. Arahuetes PorteroR.M. VicenteF. Ortiz-LópezF.J. CantizaniJ. MiguelB.G. Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y).Neurosci. Lett.2015593838910.1016/j.neulet.2015.03.01025769802
    [Google Scholar]
  52. PotenzaR.L. De SimoneR. ArmidaM. MazziottiV. PèzzolaA. PopoliP. MinghettiL. Fingolimod: A disease-modifier drug in a mouse model of amyotrophic lateral sclerosis.Neurotherapeutics201613491892710.1007/s13311‑016‑0462‑227456702
    [Google Scholar]
  53. ZhouY. LekicT. FathaliN. OstrowskiR.P. MartinR.D. TangJ. ZhangJ.H. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway.Stroke20104171521152710.1161/STROKEAHA.110.58375720508187
    [Google Scholar]
  54. SchuhmannM.K. KrsticM. KleinschnitzC. FluriF. Fingolimod (FTY720) reduces cortical infarction and neurological deficits during ischemic stroke through potential maintenance of microvascular patency.Curr. Neurovasc. Res.201613427728210.2174/156720261366616082315244627558201
    [Google Scholar]
  55. HasegawaY. SuzukiH. AltayO. RollandW. ZhangJ.H. Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats.Transl. Stroke Res.20134552453210.1007/s12975‑013‑0260‑724187597
    [Google Scholar]
  56. CzechB. PfeilschifterW. Mazaheri-OmraniN. StrobelM.A. KahlesT. Neumann-HaefelinT. RamiA. HuwilerA. PfeilschifterJ. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia.Biochem. Biophys. Res. Commun.2009389225125610.1016/j.bbrc.2009.08.14219720050
    [Google Scholar]
  57. IchijoM. IshibashiS. LiF. YuiD. MikiK. MizusawaH. YokotaT. Sphingosine-1-phosphate receptor-1 selective agonist enhances collateral growth and protects against subsequent stroke.PLoS One2015109e013802910.1371/journal.pone.013802926367258
    [Google Scholar]
  58. JangS. KimD. LeeY. MoonS. OhS. Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety.Neurochem. Res.201136225826710.1007/s11064‑010‑0313‑121076868
    [Google Scholar]
  59. MühleC. ReichelM. GulbinsE. KornhuberJ. Sphingolipids in psychiatric disorders and pain syndromes.Handb. Exp. Pharmacol.201321621643145610.1007/978‑3‑7091‑1511‑4_2223563670
    [Google Scholar]
  60. Kucharska-MazurJ. TarnowskiM. DołęgowskaB. BudkowskaM. PędziwiatrD. JabłońskiM. Pełka-WysieckaJ. KazimierczakA. RatajczakM.Z. SamochowiecJ. Novel evidence for enhanced stem cell trafficking in antipsychotic-naïve subjects during their first psychotic episode.J. Psychiatr. Res.201449182410.1016/j.jpsychires.2013.10.01624246416
    [Google Scholar]
  61. KarbalaeeM. JameieM. AmanollahiM. TaghaviZanjaniF. ParsaeiM. BastiF.A. MokhtariS. MoradiK. ArdakaniM.R.K. AkhondzadehS. Efficacy and safety of adjunctive therapy with fingolimod in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial.Schizophr. Res.2023254929810.1016/j.schres.2023.02.02036805834
    [Google Scholar]
  62. AmirR.E. Van den VeyverI.B. WanM. TranC.Q. FranckeU. ZoghbiH.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.Nat. Genet.199923218518810.1038/1381010508514
    [Google Scholar]
  63. O'SullivanS. DevK.K. Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases.Neuropharmacology2017113Pt B597607
    [Google Scholar]
  64. Asle-RoustaM. KolahdoozZ. OryanS. AhmadianiA. DargahiL. FTY720 (fingolimod) attenuates beta-amyloid peptide (Aβ42)-induced impairment of spatial learning and memory in rats.J. Mol. Neurosci.201350352453210.1007/s12031‑013‑9979‑623435938
    [Google Scholar]
  65. TaniM. ItoM. IgarashiY. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space.Cell. Signal.200719222923710.1016/j.cellsig.2006.07.00116963225
    [Google Scholar]
  66. FilippovV. SongM.A. ZhangK. VintersH.V. TungS. KirschW.M. YangJ. Duerksen-HughesP.J. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases.J. Alzheimers Dis.201229353754710.3233/JAD‑2011‑11120222258513
    [Google Scholar]
  67. HemmatiF. DargahiL. NasoohiS. OmidbakhshR. MohamedZ. ChikZ. NaiduM. AhmadianiA. Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: Comparison with Memantine.Behav. Brain Res.201325241542110.1016/j.bbr.2013.06.01623777795
    [Google Scholar]
  68. Asle-RoustaM. KolahdoozZ. DargahiL. AhmadianiA. NasoohiS. Prominence of central sphingosine-1-phosphate receptor-1 in attenuating aβ-induced injury by fingolimod.J. Mol. Neurosci.201454469870310.1007/s12031‑014‑0423‑325239520
    [Google Scholar]
  69. Di PardoA. AmicoE. FavellatoM. CastrataroR. FucileS. SquitieriF. MaglioneV. FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease.Hum. Mol. Genet.20142392251226510.1093/hmg/ddt61524301680
    [Google Scholar]
  70. MiguezA. García-Díaz BarrigaG. BritoV. StracciaM. GiraltA. GinésS. CanalsJ.M. AlberchJ. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75 NTR up-regulation and astrocyte-mediated inflammation.Hum. Mol. Genet.201524174958497010.1093/hmg/ddv21826063761
    [Google Scholar]
  71. PyszkoJ.A. StrosznajderJ.B. Original article The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease.Folia Neuropathol.20143326026910.5114/fn.2014.4556725310737
    [Google Scholar]
  72. Vidal-MartinezG. Segura-UlateI. YangB. Diaz-PachecoV. BarraganJ.A. De-Leon EsquivelJ. ChaparroS.A. Vargas-MedranoJ. PerezR.G. FTY720-mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases gdnf expression in multiple system atrophy mouse models.Exp. Neurol.202032511312010.1016/j.expneurol.2019.11312031751571
    [Google Scholar]
  73. Vargas-MedranoJ. KrishnamachariS. VillanuevaE. GodfreyW.H. LouH. ChinnasamyR. ArterburnJ.B. PerezR.G. Novel FTY720-based compounds stimulate neurotrophin expression and phosphatase activity in dopaminergic cells.ACS Med. Chem. Lett.20145778278610.1021/ml500128g25050165
    [Google Scholar]
  74. ZhaoP. YangX. YangL. LiM. WoodK. LiuQ. ZhuX. Neuroprotective effects of fingolimod in mouse models of Parkinson’s disease.FASEB J.201731117217910.1096/fj.201600751r27671228
    [Google Scholar]
  75. Vidal-MartínezG. Vargas-MedranoJ. Gil-TommeeC. MedinaD. GarzaN.T. YangB. Segura-UlateI. DominguezS.J. PerezR.G. FTY720/fingolimod reduces synucleinopathy and improves gut motility in A53T mice.J. Biol. Chem.201629139208112082110.1074/jbc.M116.74402927528608
    [Google Scholar]
  76. NovgorodovS.A. RileyC.L. YuJ. BorgK.T. HannunY.A. ProiaR.L. KindyM.S. GudzT.I. Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury.J. Biol. Chem.201428919131421315410.1074/jbc.M113.53031124659784
    [Google Scholar]
  77. ZhangZ. FauserU. SchluesenerH.J. Early attenuation of lesional interleukin‐16 up‐regulation by dexamethasone and FTY720 in experimental traumatic brain injury.Neuropathol. Appl. Neurobiol.200834333033910.1111/j.1365‑2990.2007.00893.x17983426
    [Google Scholar]
  78. MenclS. HennigN. HoppS. SchuhmannM.K. Albert-WeissenbergerC. SirénA.L. KleinschnitzC. FTY720 does not protect from traumatic brain injury in mice despite reducing posttraumatic inflammation.J. Neuroimmunol.20142741-212513110.1016/j.jneuroim.2014.07.01025081505
    [Google Scholar]
  79. ZhangZ. ZhangZ. FauserU. ArteltM. BurnetM. SchluesenerH.J. FTY720 attenuates accumulation of EMAP‐II + and MHC‐II + monocytes in early lesions of rat traumatic brain injury.J. Cell. Mol. Med.200711230731410.1111/j.1582‑4934.2007.00019.x17488479
    [Google Scholar]
  80. ZhangL. DingK. WangH. WuY. XuJ. Traumatic brain injury-induced neuronal apoptosis is reduced through modulation of PI3K and autophagy pathways in mouse by FTY720.Cell. Mol. Neurobiol.201636113114210.1007/s10571‑015‑0227‑126099903
    [Google Scholar]
  81. GaoF. LiuY. LiX. WangY. WeiD. JiangW. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model.Pharmacol. Biochem. Behav.2012103218719610.1016/j.pbb.2012.08.02522960129
    [Google Scholar]
  82. HodgsonD.M. TaylorA.N. ZhangZ. RosenbergA. Lysosphingomyelin prevents behavioral aberrations and hippocampal neuron loss induced by the metabotropic glutamate receptor agonist quisqualate.Prog. Neuropsychopharmacol. Biol. Psychiatry199923587789210.1016/S0278‑5846(99)00047‑010509381
    [Google Scholar]
  83. VanniN. FruscioneF. FerlazzoE. StrianoP. RobbianoA. TraversoM. SanderT. FalaceA. GazzerroE. BramantiP. BielawskiJ. FassioA. MinettiC. GentonP. ZaraF. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy.Ann. Neurol.201476220621210.1002/ana.2417024782409
    [Google Scholar]
  84. MikatiM.A. Abi-HabibR.J. El SabbanM.E. DbaiboG.S. KurdiR.M. KobeissiM. FarhatF. AsaadW. Hippocampal programmed cell death after status epilepticus: Evidence for NMDA-receptor and ceramide-mediated mechanisms.Epilepsia200344328229110.1046/j.1528‑1157.2003.22502.x12614382
    [Google Scholar]
  85. MacLennanA.J. CarneyP.R. ZhuW.J. ChavesA.H. GarciaJ. GrimesJ.R. AndersonK.J. RoperS.N. LeeN. An essential role for the H218/AGR16/Edg‐5/LP B2 sphingosine 1‐phosphate receptor in neuronal excitability.Eur. J. Neurosci.200114220320910.1046/j.0953‑816x.2001.01634.x11553273
    [Google Scholar]
  86. AkahoshiN. IshizakiY. YasudaH. MurashimaY.L. ShinbaT. GotoK. HimiT. ChunJ. IshiiI. Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking sphingosine 1-phosphate receptor 2.Epilepsy Behav.201122465966510.1016/j.yebeh.2011.09.00222019019
    [Google Scholar]
  87. NakamuraT. AsanoM. SekiguchiY. MizunoY. TamakiK. KimuraT. NaraF. KawaseY. ShimozatoT. DoiH. KagariT. TomisatoW. InoueR. NagasakiM. YuitaH. Oguchi-OshimaK. KanekoR. WatanabeN. AbeY. NishiT. Discovery of CS-2100, a potent, orally active and S1P3-sparing S1P1 agonist.Bioorg. Med. Chem. Lett.20122241788179210.1016/j.bmcl.2011.12.01922264485
    [Google Scholar]
  88. GrovesA. KiharaY. ChunJ. Fingolimod: Direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy.J. Neurol. Sci.20133281-291810.1016/j.jns.2013.02.01123518370
    [Google Scholar]
  89. BrinkmannV. FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system.Br. J. Pharmacol.200915851173118210.1111/j.1476‑5381.2009.00451.x19814729
    [Google Scholar]
  90. ConstantinescuV. HaaseR. AkgünK. ZiemssenT. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: A narrative review.Ther. Adv. Neurol. Disord.20221510.1177/1756286422113316336437849
    [Google Scholar]
  91. NishiT. MiyazakiS. TakemotoT. SuzukiK. IioY. NakajimaK. OhnukiT. KawaseY. NaraF. InabaS. IzumiT. YuitaH. OshimaK. DoiH. InoueR. TomisatoW. KagariT. ShimozatoT. Discovery of CS-0777: A potent, selective, and orally active S1P 1 agonist.ACS Med. Chem. Lett.20112536837210.1021/ml100301k24900318
    [Google Scholar]
  92. ParkS.J. YeonS.K. KimY. KimH.J. KimS. KimJ. ChoiJ.W. KimB. LeeE.H. KimR. SeoS.H. LeeJ. KimJ.W. LeeH.Y. HwangH. BahnY.S. CheongE. ParkJ.H. ParkK.D. Discovery of novel sphingosine-1-phosphate-1 receptor agonists for the treatment of multiple sclerosis.J. Med. Chem.20226543539356210.1021/acs.jmedchem.1c0197935077170
    [Google Scholar]
  93. Cruz-OrengoL. DanielsB.P. DorseyD. BasakS.A. Grajales-ReyesJ.G. McCandlessE.E. PiccioL. SchmidtR.E. CrossA.H. CrosbyS.D. KleinR.S. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility.J. Clin. Invest.201412462571258410.1172/JCI7340824812668
    [Google Scholar]
  94. PitmanM.R. LewisA.C. DaviesL.T. MorettiP.A.B. AndersonD. CreekD.J. PowellJ.A. PitsonS.M. The sphingosine 1-phosphate receptor 2/4 antagonist JTE-013 elicits off-target effects on sphingolipid metabolism.Sci. Rep.202212145410.1038/s41598‑021‑04009‑w35013382
    [Google Scholar]
  95. SatsuH. SchaefferM.T. GuerreroM. SaldanaA. EberhartC. HodderP. CayananC. SchürerS. BhhataraiB. RobertsE. RosenH. BrownS.J. A sphingosine 1-phosphate receptor 2 selective allosteric agonist.Bioorg. Med. Chem.201321175373538210.1016/j.bmc.2013.06.01223849205
    [Google Scholar]
  96. JinJ. HuJ. ZhouW. WangX. XiaoQ. XueN. YinD. ChenX. Development of a selective S1P1 receptor agonist, Syl930, as a potential therapeutic agent for autoimmune encephalitis.Biochem. Pharmacol.2014901506110.1016/j.bcp.2014.04.01024780445
    [Google Scholar]
  97. JinJ. XueN. LiuY. FuR. WangM. JiM. LaiF. HuJ. WangX. XiaoQ. ZhangX. YinD. BaiL. ChenX. RaoS. A novel S1P1 modulator IMMH002 ameliorates psoriasis in multiple animal models.Acta Pharm. Sin. B202010227628810.1016/j.apsb.2019.11.00632082973
    [Google Scholar]
  98. ImeriF. Stepanovska TanturovskaB. ZivkovicA. EnzmannG. SchwalmS. PfeilschifterJ. HomannT. KleuserB. EngelhardtB. StarkH. HuwilerA. Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis.Neuropharmacology202118610846410.1016/j.neuropharm.2021.10846433460688
    [Google Scholar]
  99. SubeiA.M. CohenJ.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis.CNS Drugs201529756557510.1007/s40263‑015‑0261‑z26239599
    [Google Scholar]
  100. ParkS.J. KimJ. KimJ. KimY. LeeE.H. KimH.J. KimS. KimB. KimR. ChoiJ.W. ParkJ.H. ParkK.D. Synthesis and evaluation of serinolamide derivatives as sphingosine-1-phosphate-1 (S1P1) receptor agonists.Molecules2022279281810.3390/molecules2709281835566164
    [Google Scholar]
  101. LescopC. MüllerC. MathysB. BirkerM. de KanterR. KohlC. HessP. NaylerO. ReyM. SieberP. SteinerB. WellerT. BolliM.H. Novel S1P 1 receptor agonists – Part 4: Alkylaminomethyl substituted aryl head groups.Eur. J. Med. Chem.201611622223810.1016/j.ejmech.2016.03.048
    [Google Scholar]
  102. LiZ. ChenW. HaleJ.J. LynchC.L. MillsS.G. HajduR. KeohaneC.A. RosenbachM.J. MilliganJ.A. SheiG.J. ChrebetG. ParentS.A. BergstromJ. CardD. ForrestM. QuackenbushE.J. WickhamL.A. VargasH. EvansR.M. RosenH. MandalaS. Discovery of potent 3,5-diphenyl-1,2,4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3.J. Med. Chem.200548206169617310.1021/jm050324416190743
    [Google Scholar]
  103. HaleJ.J. YanL. NewayW.E. HajduR. BergstromJ.D. MilliganJ.A. SheiG.J. ChrebetG.L. ThorntonR.A. CardD. RosenbachM. HughRosen MandalaS. Synthesis, stereochemical determination and biochemical characterization of the enantiomeric phosphate esters of the novel immunosuppressive agent FTY720.Bioorg. Med. Chem.200412184803480710.1016/j.bmc.2004.07.02015336258
    [Google Scholar]
  104. SannaM.G. LiaoJ. JoE. AlfonsoC. AhnM.Y. PetersonM.S. WebbB. LefebvreS. ChunJ. GrayN. RosenH. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate.J. Biol. Chem.200427914138391384810.1074/jbc.M31174320014732717
    [Google Scholar]
  105. TiperI.V. EastJ.E. SubrahmanyamP.B. WebbT.J. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection.Pathog. Dis.2016746ftw06310.1093/femspd/ftw06327354294
    [Google Scholar]
  106. ZhangK. TranC. AlamiM. HamzeA. ProvotO. Synthesis and biological activities of pyrazino[1,2-a]indole and Pyrazino[1,2-a]indol-1-one derivatives.Pharmaceuticals202114877910.3390/ph1408077934451876
    [Google Scholar]
  107. PanS. GrayN.S. GaoW. MiY. FanY. WangX. TuntlandT. CheJ. LefebvreS. ChenY. ChuA. HinterdingK. GardinA. EndP. HeiningP. BrunsC. CookeN.G. Nuesslein-HildesheimB. Discovery of BAF312 (Siponimod), a potent and selective S1P receptor modulator.ACS Med. Chem. Lett.20134333333710.1021/ml300396r24900670
    [Google Scholar]
  108. HobsonA.D. HarrisC.M. van der KamE.L. TurnerS.C. AbibiA. AguirreA.L. BousquetP. KebedeT. KonopackiD.B. GintantG. KimY. LarsonK. MaullJ.W. MooreN.S. ShiD. ShresthaA. TangX. ZhangP. SarrisK.K. Discovery of A-971432, an orally bioavailable selective sphingosine-1-phosphate receptor 5 (S1P 5 ) agonist for the potential treatment of neurodegenerative disorders.J. Med. Chem.201558239154917010.1021/acs.jmedchem.5b0092826509640
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266288509240422112839
Loading
/content/journals/ctmc/10.2174/0115680266288509240422112839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test