Skip to content
2000
Volume 24, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

After the discovery of cis-platin, the first metal-based anticancer drugs, budotitane, and titanocene dichloride entered clinical trials. These two classes of complexes were effective against those cell lines that are resistant to cis-platin and other platinum-based drugs. However, the main limitation of these complexes is their low hydrolytic stability. After these two classes, a third generation titanium based complex, diaminebis(phenolato)bis(alkoxo) titanium(IV), was invented, which showed more hydrolytic stability and high cytotoxicity than budotitane and titanocene dichloride. The Hydrolytic stability of complexes plays an important role in cytotoxicity. Earlier research showed that hydrolytically less stable complexes decompose rapidly into non-bioavailable moiety and become inactive. The mechanism of Ti(IV) complexes of diaminebis(phenolato)bis(alkoxo) is under investigation and is presumed to involve Endoplasmic Reticulum (ER) stress, which leads to apoptosis. The proposed mechanism involves the removal of ligands from the titanium complex and the binding of the Ti center to transferrin protein and its release inside the cell. Also, the structure of the ligand plays a key role in the cytotoxicity of complexes; as the bulkiness of the ligand increased, the cytotoxic nature of complexes decreased.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266317770240718080512
2024-10-01
2025-01-22
Loading full text...

Full text loading...

References

  1. RantanenV. GrénmanS. KulmalaJ. GrénmanR. Comparative evaluation of cisplatin and carboplatin sensitivity in endometrial adenocarcinoma cell lines.Br. J. Cancer199469348248610.1038/bjc.1994.878123477
    [Google Scholar]
  2. ReedijkJ. Why does Cisplatin reach Guanine-n7 with competing s-donor ligands available in the cell?Chem. Rev.19999992499251010.1021/cr980422f11749488
    [Google Scholar]
  3. WongE. GiandomenicoC.M. Current status of platinum-based antitumor drugs.Chem. Rev.19999992451246610.1021/cr980420v11749486
    [Google Scholar]
  4. HoJ. Potential and cytotoxicity of cis-platinum complex with anti-tumor activity in combination therapy.Recent Patents Anticancer Drug Discov.20061112913410.2174/15748920677524648518221032
    [Google Scholar]
  5. KostovaI. Platinum complexes as anticancer agents.Recent Patents Anticancer Drug Discov.20061112210.2174/15748920677524645818221023
    [Google Scholar]
  6. JakupecM.A.; Galanski, M.S.; Keppler, B.K. Tumour-inhibiting platinum complexes-state of the art and future perspectives.Rev Physiol Biochem Pharmacol.2003146154
    [Google Scholar]
  7. TinocoA.D. ThomasH.R. IncarvitoC.D. SaghatelianA. ValentineA.M. Cytotoxicity of a Ti(IV) compound is independent of serum proteins.Proc. Natl. Acad. Sci. USA2012109135016502110.1073/pnas.111930310922411801
    [Google Scholar]
  8. TinocoA.D. ValentineA.M. Ti(IV) binds to human serum transferrin more tightly than does Fe(III).J. Am. Chem. Soc.200512732112181121910.1021/ja052768v16089431
    [Google Scholar]
  9. KeerH.N. KozlowskiJ.M. TsaiY.C. LeeC. McEwanR.N. GrayhackJ.T. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo .J. Urol.1990143238138510.1016/S0022‑5347(17)39970‑61688956
    [Google Scholar]
  10. GuoM. SunH. McArdleH.J. GamblingL. SadlerP.J. Ti(IV) uptake and release by human serum transferrin and recognition of Ti(IV)-transferrin by cancer cells: Understanding the mechanism of action of the anticancer drug titanocene dichloride.Biochemistry20003933100231003310.1021/bi000798z10955990
    [Google Scholar]
  11. PeriD. MekerS. MannaC.M. TshuvaE.Y. Different ortho and para electronic effects on hydrolysis and cytotoxicity of diamino bis(phenolato) “salan” Ti(IV) complexes.Inorg. Chem.20115031030103810.1021/ic101693v21214265
    [Google Scholar]
  12. MannaC.M. ArmonyG. TshuvaE.Y. New insights on the active species and mechanism of cytotoxicity of salan-Ti(IV) complexes: A stereochemical study.Inorg. Chem.20115020102841029110.1021/ic201340m21923127
    [Google Scholar]
  13. MannaC.M. TshuvaE.Y. Markedly different cytotoxicity of the two enantiomers of C 2 -symmetrical Ti(iv) phenolato complexes; mechanistic implications.Dalton Trans.20103951182118410.1039/B920786B20104339
    [Google Scholar]
  14. KellerH.J. KepplerB. SchmählD. Antitumor activity of cis-dihalogenobis(1-phenyl-1,3-butanedionato)titanium (IV) compounds. A new class of antineoplastic agents.J. Cancer Res. Clin. Oncol.1983105110911010.1007/BF003918426682104
    [Google Scholar]
  15. SchillingT. KepplerK.B. HeimM.E. NiebchG. DietzfelbingerH. RastetterJ. HanauskeA.R. Clinical phase I and pharmacokinetic trial of the new titanium complex budotitane.Invest. New Drugs199513432733210.1007/BF008731398824351
    [Google Scholar]
  16. TshuvaE.Y. PeriD. Modern cytotoxic titanium(IV) complexes; Insights on the enigmatic involvement of hydrolysis.Coord. Chem. Rev.200925315-162098211510.1016/j.ccr.2008.11.015
    [Google Scholar]
  17. MeléndezE. Titanium complexes in cancer treatment.Crit. Rev. Oncol. Hematol.200242330931510.1016/S1040‑8428(01)00224‑412050022
    [Google Scholar]
  18. ChristodoulouC.V. EliopoulosA.G. YoungL.S. HodgkinsL. FerryD.R. KerrD.J. Anti-proliferative activity and mechanism of action of titanocene dichloride.Br. J. Cancer199877122088209710.1038/bjc.1998.3529649119
    [Google Scholar]
  19. LümmenG. SperlingH. LuboldtH. OttoT. RübbenH. PhaseI.I. Phase II trial of titanocene dichloride in advanced renal-cell carcinoma.Cancer Chemother. Pharmacol.199842541541710.1007/s0028000508389771957
    [Google Scholar]
  20. KorfelA. ScheulenM.E. SchmollH.J. GründelO. HarstrickA. KnocheM. FelsL.M. SkorzecM. BachF. BaumgartJ. SassG. SeeberS. ThielE. BerdelW.E. PhaseI. Phase I clinical and pharmacokinetic study of titanocene dichloride in adults with advanced solid tumors.Clin. Cancer Res.1998411270127089829732
    [Google Scholar]
  21. KrögerN. KleebergU.R. MrossK. EdlerL. HossfeldD.K. PhaseI.I. Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer.Oncol. Res. Treat.2000231606210.1159/000027075
    [Google Scholar]
  22. CiniM. BradshawT.D. WoodwardS. Using titanium complexes to defeat cancer: The view from the shoulders of titans.Chem. Soc. Rev.20174641040105110.1039/C6CS00860G28124046
    [Google Scholar]
  23. Koepf-MaierP. KoepfH. Non-platinum group metal antitumor agents. History, current status, and perspectives.Chem. Rev.19878751137115210.1021/cr00081a012
    [Google Scholar]
  24. CarusoF. RossiM. TanskiJ. SartoriR. SariegoR. MoyaS. DiezS. NavarreteE. CingolaniA. MarchettiF. PettinariC. Synthesis, structure, and antitumor activity of a novel tetranuclear titanium complex.J. Med. Chem.200043203665367010.1021/jm990539b11020280
    [Google Scholar]
  25. CarusoF. RossiM. PettinariC. Anticancer titanium agents.Expert Opin. Ther. Pat.200111696997910.1517/13543776.11.6.969
    [Google Scholar]
  26. CarusoF. RossiM. OpazoC. PettinariC. Structural features of antitumor titanium agents and related compounds.Bioinorg. Chem. Appl.200533-431732910.1155/BCA.2005.31718365107
    [Google Scholar]
  27. KelterG. SweeneyN.J. StrohfeldtK. FiebigH.H. TackeM. in-vitro anti-tumor activity studies of bridged and unbridged benzyl-substituted titanocenes.Anticancer Drugs200516101091109810.1097/00001813‑200511000‑0000816222151
    [Google Scholar]
  28. ToneyJ.H. MarksT.J. Hydrolysis chemistry of the metallocene dichlorides M(.eta.5-C5H5)2Cl2, M = titanium, vanadium, or zirconium. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents.J. Am. Chem. Soc.1985107494795310.1021/ja00290a033
    [Google Scholar]
  29. SunH. LiH. WeirR.A. SadlerP.J. The first specific TiIV-protein complex: Potential relevance to anticancer activity of titanocenes.Angew. Chem. Int. Ed.199837111577157910.1002/(SICI)1521‑3773(19980619)37:11<1577::AID‑ANIE1577>3.0.CO;2‑M29710917
    [Google Scholar]
  30. TinocoA.D. IncarvitoC.D. ValentineA.M. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti(IV) by human serum transferrin.J. Am. Chem. Soc.2007129113444345410.1021/ja068149j17315875
    [Google Scholar]
  31. GaoL.M. HernándezR. MattaJ. MeléndezE. Synthesis, Ti(IV) intake by apotransferrin and cytotoxic properties of functionalized titanocene dichlorides.J. Biol. Inorg. Chem.200712795996710.1007/s00775‑007‑0268‑017566797
    [Google Scholar]
  32. DublerE. BuschmannR. SchmalleH.W. Isomer abundance of bis(β-diketonato) complexes of titanium(IV). Crystal structures of the antitumor compound budotitane [TiIV(bzac)2(OEt)2] and of its dichloro-derivative [TiIV(bzac)2Cl2] (bzac=1-phenylbutane-1,3-dionate).J. Inorg. Biochem.2003952-39710410.1016/S0162‑0134(03)00091‑612763653
    [Google Scholar]
  33. TackeM. AllenL.T. CuffeL. GallagherW.M. LouY. MendozaO. Müller-BunzH. RehmannF.J.K. SweeneyN. Novel titanocene anti-cancer drugs derived from fulvenes and titanium dichloride.J. Organomet. Chem.2004689132242224910.1016/j.jorganchem.2004.04.015
    [Google Scholar]
  34. O’ConnorK. GillC. TackeM. RehmannF.J.K. StrohfeldtK. SweeneyN. FitzpatrickJ.M. WatsonR.W.G. Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells.Apoptosis20061171205121410.1007/s10495‑006‑6796‑116699961
    [Google Scholar]
  35. PampillónC. ClaffeyJ. HoganM. TackeM. Novel achiral titanocene anti-cancer drugs synthesised from bis-N,N-dimethylamino fulvene and lithiated heterocyclic compounds.Biometals200821219720410.1007/s10534‑007‑9108‑517665139
    [Google Scholar]
  36. ClaffeyJ. DeallyA. GleesonB. HoganM. MéndezL.M.M. Müller-BunzH. PatilS. WallisD. TackeM. Pseudo-halide derivatives of titanocene Y: Synthesis and cytotoxicity studies.Metallomics20091651151710.1039/b911753a21305159
    [Google Scholar]
  37. GaoL.M. MattaJ. RheingoldA.L. MeléndezE. Synthesis, structure and biological activity of amide-functionalized titanocenyls: Improving their cytotoxic properties.J. Organomet. Chem.2009694264134413910.1016/j.jorganchem.2009.09.01620177431
    [Google Scholar]
  38. GaoL.M. MeléndezE. Cytotoxic properties of titanocenyl amides on breast cancer cell line mcf-7.Met. Based Drugs201020101610.1155/2010/28629820454639
    [Google Scholar]
  39. HernándezR. MéndezJ. LamboyJ. TorresM. RománF.R. MeléndezE. Titanium(IV) complexes: Cytotoxicity and cellular uptake of titanium(IV) complexes on caco-2 cell line.Toxicol. in vitro 201024117818310.1016/j.tiv.2009.09.01019772913
    [Google Scholar]
  40. MekerS. BraitbardO. HallM.D. HochmanJ. TshuvaE.Y. Specific design of titanium(IV) phenolato chelates yields stable and accessible, effective and selective anticancer agents.Chemistry201622299986999510.1002/chem.20160138927320784
    [Google Scholar]
  41. GanotN. BriaitbardO. GammalA. TamJ. HochmanJ. TshuvaE.Y. in vivo anticancer activity of a nontoxic inert phenolato titanium complex: High efficacy on solid tumors alone and combined with platinum drugs.ChemMedChem201813212290229610.1002/cmdc.20180055130203598
    [Google Scholar]
  42. NahariG. BraitbardO. LarushL. HochmanJ. TshuvaE.Y. Effective oral administration of an antitumorigenic nanoformulated titanium complex.ChemMedChem202116110811210.1002/cmdc.20200038432657024
    [Google Scholar]
  43. MannaC.M. BraitbardO. WeissE. HochmanJ. TshuvaE.Y. Cytotoxic salan-titanium(IV) complexes: High activity toward a range of sensitive and drug-resistant cell lines, and mechanistic insights.ChemMedChem20127470370810.1002/cmdc.20110059322262543
    [Google Scholar]
  44. MekerS. MannaC.M. PeriD. TshuvaE.Y. Major impact of N-methylation on cytotoxicity and hydrolysis of salan Ti(IV) complexes: Sterics and electronics are intertwined.Dalton Trans.201140389802980910.1039/c1dt11108f21874187
    [Google Scholar]
  45. PeriD. MekerS. ShavitM. TshuvaE.Y. Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C 2- and C 1-symmetrical Ti(IV) complexes of tetradentate diamine bis(phenolato) ligands: A new class of antitumor agents.Chemistry200915102403241510.1002/chem.20080131019156656
    [Google Scholar]
  46. MillerM. TshuvaE.Y. Cytotoxic Titanium(IV) Complexes of Chiral Diaminobis(phenolato) Ligands: Better combination of activity and stability by the bipyrrolidine moiety.Eur. J. Inorg. Chem.2014201491485149110.1002/ejic.201301463
    [Google Scholar]
  47. MekerS. Margulis-GoshenK. WeissE. MagdassiS. TshuvaE.Y. High antitumor activity of highly resistant salan-titanium(IV) complexes in nanoparticles: An identified active species.Angew. Chem. Int. Ed.20125142105151051710.1002/anie.20120597322961758
    [Google Scholar]
  48. ImmelT.A. GrothU. HuhnT. ÖhlschlägerP. Titanium salan complexes displays strong antitumor properties in vitro and in vivo in mice.PLoS One201163e1786910.1371/journal.pone.001786921445304
    [Google Scholar]
  49. PedkoA. RubanovichE. TshuvaE.Y. ShurkiA. Hydrolytically stable and cytotoxic [ONON]2Ti(IV)-type octahedral complexes.Inorg. Chem.20226144176531766110.1021/acs.inorgchem.2c0273736273341
    [Google Scholar]
  50. TzuberyA. TshuvaE.Y. Cytotoxicity and hydrolysis of trans-Ti(IV) complexes of salen ligands: Structure-activity relationship studies.Inorg. Chem.20125131796180410.1021/ic202092u22220885
    [Google Scholar]
  51. TzuberyA. TshuvaE.Y. Cytotoxic Titanium(IV) complexes of salalen-based ligands.Eur. J. Inorg. Chem.20172017121695170510.1002/ejic.201601200
    [Google Scholar]
  52. ShavitM. PeriD. MannaC.M. AlexanderJ.S. TshuvaE.Y. Active cytotoxic reagents based on non-metallocene non-diketonato well-defined C2-symmetrical titanium complexes of tetradentate bis(phenolato) ligands.J. Am. Chem. Soc.200712940120981209910.1021/ja075308617877357
    [Google Scholar]
  53. TzuberyA. Melamed-BookN. TshuvaE.Y. Fluorescent antitumor titanium( iv ) salen complexes for cell imaging.Dalton Trans.201847113669367310.1039/C7DT04828A29451281
    [Google Scholar]
  54. MillerM. MellulA. BraunM. Sherill-RofeD. CohenE. ShpiltZ. UntermanI. BraitbardO. HochmanJ. TshuvaE.Y. TabachY. Titanium tackles the endoplasmic reticulum: A first genomic study on a titanium anticancer metallodrug.iScience202023710126210.1016/j.isci.2020.10126232585595
    [Google Scholar]
  55. NahariG. HoffmanR.E. TshuvaE.Y. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection.J. Inorg. Biochem.202122111149210.1016/j.jinorgbio.2021.11149234051630
    [Google Scholar]
  56. ShpiltZ. TshuvaE.Y. Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects.J. Inorg. Biochem.202223211181710.1016/j.jinorgbio.2022.11181735421765
    [Google Scholar]
  57. TinocoA.D. EamesE.V. ValentineA.M. Reconsideration of serum Ti(IV) transport: Albumin and transferrin trafficking of Ti(IV) and its complexes.J. Am. Chem. Soc.200813072262227010.1021/ja076364+18225897
    [Google Scholar]
  58. TinocoA.D. EamesE.V. IncarvitoC.D. ValentineA.M. Hydrolytic metal with a hydrophobic periphery: Titanium(IV) complexes of naphthalene-2,3-diolate and interactions with serum albumin.Inorg. Chem.200847188380839010.1021/ic800529v18710217
    [Google Scholar]
  59. ShavitM. PeriD. MelmanA. TshuvaE.Y. Antitumor reactivity of non-metallocene titanium complexes of oxygen-based ligands: Is ligand lability essential?J. Biol. Inorg. Chem.200712682583010.1007/s00775‑007‑0236‑817483967
    [Google Scholar]
  60. WilliamsonE.A. BoyleT.J. RaymondR. FarringtonJ. VerschraegenC. ShaheenM. HromasR. Cytotoxic activity of the titanium alkoxide (OPy)2Ti(4AP)2 against cancer colony forming cells.Invest. New Drugs201230111412010.1007/s10637‑010‑9530‑320820908
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266317770240718080512
Loading
/content/journals/ctmc/10.2174/0115680266317770240718080512
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Albumin; Budotitane; Cytotoxicity; Titanium; Titanocene dichloride; Transferrin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test