Skip to content
2000
Volume 24, Issue 24
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266316032240718050055
2024-10-01
2025-01-22
Loading full text...

Full text loading...

References

  1. FardounM.M. MaalikiD. HalabiN. IratniR. BittoA. BaydounE. EidA.H. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets.Clin. Sci. (Lond.)2020134121403143210.1042/CS20200356 32556180
    [Google Scholar]
  2. FerrerJ.L. AustinM.B. StewartC.Jr NoelJ.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.Plant Physiol. Biochem.200846335637010.1016/j.plaphy.2007.12.009 18272377
    [Google Scholar]
  3. AokiT. AkashiT. AyabeS. Ayabe S ichi. Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis.J. Plant Res.2000113447548810.1007/PL00013958
    [Google Scholar]
  4. MolJ. GrotewoldE. KoesR. How genes paint flowers and seeds.Trends Plant Sci.19983621221710.1016/S1360‑1385(98)01242‑4
    [Google Scholar]
  5. Winkel-ShirleyB. Biosynthesis of flavonoids and effects of stress.Curr. Opin. Plant Biol.20025321822310.1016/S1369‑5266(02)00256‑X 11960739
    [Google Scholar]
  6. FeildT.S. LeeD.W. HolbrookN.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood.Plant Physiol.2001127256657410.1104/pp.010063 11598230
    [Google Scholar]
  7. StaffordH.A. Flavonoid evolution: An enzymic approach.Plant Physiol.199196368068510.1104/pp.96.3.680 16668242
    [Google Scholar]
  8. BurakM. ImenY. Flavonoids and their antioxidant properties.Turk. Klin. Tip Bilim. Derg.1999191296304
    [Google Scholar]
  9. Castañeda-OvandoA. Pacheco-HernándezM.L. Páez-HernándezM.E. RodríguezJ.A. Galán-VidalC.A. Chemical studies of anthocyanins: A review.Food Chem.2009113485987110.1016/j.foodchem.2008.09.001
    [Google Scholar]
  10. LeeY.K. YukD.Y. LeeJ.W. LeeS.Y. HaT.Y. OhK.W. YunY.P. HongJ.T. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency.Brain Res.2009125016417410.1016/j.brainres.2008.10.012 18992719
    [Google Scholar]
  11. MetodiewaD. KochmanA. KarolczakS. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: A comparison with natural polyphenolic flavonoid (rutin) action.Biochem. Mol. Biol. Int.199741510671075 9137839
    [Google Scholar]
  12. HayashiT. SawaK. KawasakiM. ArisawaM. ShimizuM. MoritaN. Inhibition of cow’s milk xanthine oxidase by flavonoids.J. Nat. Prod.198851234534810.1021/np50056a030 3379415
    [Google Scholar]
  13. Chávez-GonzálezM.L. SepúlvedaL. VermaD.K. Luna-GarcíaH.A. Rodríguez-DuránL.V. IlinaA. AguilarC.N. Conventional and emerging extraction processes of flavonoids.Processes (Basel)20208443410.3390/pr8040434
    [Google Scholar]
  14. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.ScientificWorldJournal201320131627510.1155/2013/162750
    [Google Scholar]
  15. BondonnoN.P. LewisJ.R. BlekkenhorstL.C. BondonnoC.P. ShinJ.H.C. CroftK.D. WoodmanR.J. WongG. LimW.H. GopinathB. FloodV.M. RussellJ. MitchellP. HodgsonJ.M. Association of flavonoids and flavonoid-rich foods with all-cause mortality: The blue mountains eye study.Clin. Nutr.202039114115010.1016/j.clnu.2019.01.004 30718096
    [Google Scholar]
  16. KhalifaI. ZhuW. LiK. LiC. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review.J. Funct. Foods201840284310.1016/j.jff.2017.10.041
    [Google Scholar]
  17. AdetunjiJ.A. FasaeK.D. AweA.I. PaimoO.K. AdegokeA.M. AkintundeJ.K. SekhoachaM.P. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases.Heliyon202396e1716610.1016/j.heliyon.2023.e17166 37484296
    [Google Scholar]
  18. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  19. IwashinaT. Flavonoid properties of five families newly incorporated into the order Caryophyllales.Bull Natl Mus Nat Sci.20133912551
    [Google Scholar]
  20. GiustiM.M. WrolstadR.E. Acylated anthocyanins from edible sources and their applications in food systems.Biochem. Eng. J.200314321722510.1016/S1369‑703X(02)00221‑8
    [Google Scholar]
  21. DixonR. FerreiraD. Genistein.Phytochemistry200260320521110.1016/S0031‑9422(02)00116‑4 12031439
    [Google Scholar]
  22. SzkudelskaK. NogowskiL. Genistein—A dietary compound inducing hormonal and metabolic changes.J. Steroid Biochem. Mol. Biol.20071051-5374510.1016/j.jsbmb.2007.01.005 17588743
    [Google Scholar]
  23. CorcoranM.P. McKayD.L. BlumbergJ.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety.J. Nutr. Gerontol. Geriatr.201231317618910.1080/21551197.2012.698219 22888837
    [Google Scholar]
  24. SkibolaC.F. SmithM.T. Potential health impacts of excessive flavonoid intake.Free Radic. Biol. Med.2000293-437538310.1016/S0891‑5849(00)00304‑X 11035267
    [Google Scholar]
  25. Rodríguez-FragosoL. Reyes-EsparzaJ. Fruit/vegetable-drug interactions: Effects on drug metabolizing enzymes and drug transporters.Drug DiscoveryInTechOpenLondon2013526
    [Google Scholar]
  26. AlbiniA. RosanoC. AngeliniG. AmaroA. EspositoA.I. MaramottiS. NoonanD.M. PfefferU. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors.Curr. Med. Chem.20142191129114510.2174/0929867321666131129124640 24304271
    [Google Scholar]
  27. MensahM.L. KomlagaG. ForkuoA.D. FirempongC. AnningA.K. DicksonR.A. Toxicity and safety implications of herbal medicines used in Africa.Herb Med.20196358491992
    [Google Scholar]
  28. KoesR. VerweijW. QuattrocchioF. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways.Trends Plant Sci.200510523624210.1016/j.tplants.2005.03.002 15882656
    [Google Scholar]
  29. YaoL.H. JiangY.M. ShiJ. Tomás-BarberánF.A. DattaN. SinganusongR. ChenS.S. Flavonoids in food and their health benefits.Plant Foods Hum. Nutr.200459311312210.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  30. ArtsI.C.W. van de PutteB. HollmanP.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods.J. Agric. Food Chem.20004851746175110.1021/jf000025h 10820089
    [Google Scholar]
  31. Gil-IzquierdoA. GilM.I. FerreresF. Tomás-BarberánF.A. In vitro availability of flavonoids and other phenolics in orange juice.J. Agric. Food Chem.20014921035104110.1021/jf0000528 11262068
    [Google Scholar]
  32. Tomás‐BarberánF.A. CliffordM.N. Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden.J. Sci. Food Agric.20008071073108010.1002/(SICI)1097‑0010(20000515)80:7<1073::AID‑JSFA568>3.0.CO;2‑B
    [Google Scholar]
  33. RathmellW.G. BendallD.S. Phenolic compounds in relation to phytoalexin biosynthesis in hypocotyls of Phaseolus vulgaris.Physiol. Plant Pathol.19711335136210.1016/0048‑4059(71)90055‑5
    [Google Scholar]
  34. MedjakovicS. JungbauerA. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor.J. Steroid Biochem. Mol. Biol.20081081-217117710.1016/j.jsbmb.2007.10.001 18060767
    [Google Scholar]
  35. ZhangY. WangG.J. SongT.T. MurphyP.A. HendrichS. Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity.J. Nutr.1999129595796210.1093/jn/129.5.957 10222386
    [Google Scholar]
  36. KrennL. UnterriederI. RuprechterR. Quantification of isoflavones in red clover by high-performance liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20027771-212312810.1016/S1570‑0232(02)00079‑X 12270205
    [Google Scholar]
  37. SahuB.D. KalvalaA.K. KoneruM. Mahesh KumarJ. KunchaM. RachamallaS.S. SistlaR. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.PLoS One201499e10507010.1371/journal.pone.0105070 25184746
    [Google Scholar]
  38. LiuR.H. Health-promoting components of fruits and vegetables in the diet.Adv. Nutr.201343384S392S10.3945/an.112.003517 23674808
    [Google Scholar]
  39. RossJ.A. KasumC.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety.Annu. Rev. Nutr.2002221193410.1146/annurev.nutr.22.111401.144957 12055336
    [Google Scholar]
  40. JustesenU. KnuthsenP. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes.Food Chem.200173224525010.1016/S0308‑8146(01)00114‑5
    [Google Scholar]
  41. AtanassovaM. BagdassarianV. Rutin content in plant products.J Univ Chem Technol Metall.2009442201203
    [Google Scholar]
  42. ShimoiK. OkadaH. FurugoriM. GodaT. TakaseS. SuzukiM. HaraY. YamamotoH. KinaeN. Intestinal absorption of luteolin and luteolin 7‐ O ‐β‐glucoside in rats and humans.FEBS Lett.1998438322022410.1016/S0014‑5793(98)01304‑0 9827549
    [Google Scholar]
  43. FelginesC. TexierO. MorandC. ManachC. ScalbertA. RégeratF. RémésyC. Bioavailability of the flavanone naringenin and its glycosides in rats.Am. J. Physiol. Gastrointest. Liver Physiol.20002796G1148G115410.1152/ajpgi.2000.279.6.G1148 11093936
    [Google Scholar]
  44. TruongV.D. DeightonN. ThompsonR.T. McFeetersR.F. DeanL.O. PecotaK.V. YenchoG.C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS.J. Agric. Food Chem.201058140441010.1021/jf902799a 20017481
    [Google Scholar]
  45. GálvezM.C. García BarrosoC. Pérez-BustamanteJ.A. Analysis of polyphenolic compounds of different vinegar samples.Zeitschrift für Leb Und-forsch.19941991293110.1007/BF01192948
    [Google Scholar]
  46. LeungL.K. SuY. ZhangZ. ChenZ-Y. HuangY. ChenR. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.J. Nutr.200113192248225110.1093/jn/131.9.2248 11533262
    [Google Scholar]
  47. PourmoradF. HosseinimehrS.J. ShahabimajdN. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants.Afr. J. Biotechnol.2006511
    [Google Scholar]
  48. KumarS. PandeyA.K. Antioxidant, lipo-protective and antibacterial activities of phytoconstituents present in Solanum xanthocarpum root.Int Rev Biophys Chem.2012334247
    [Google Scholar]
  49. WangL. HuangS. LiangX. ZhouJ. HanY. HeJ. XuD. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: Current scenario and future directions.Front. Immunol.202415137747010.3389/fimmu.2024.1377470 38698839
    [Google Scholar]
  50. FuhrmanB. BuchS. VayaJ. BelinkyP.A. ColemanR. HayekT. AviramM. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice.Am. J. Clin. Nutr.199766226727510.1093/ajcn/66.2.267 9250104
    [Google Scholar]
  51. CraigW.J. Health-promoting properties of common herbs.Am. J. Clin. Nutr.1999703Suppl.491S499S10.1093/ajcn/70.3.491s 10479221
    [Google Scholar]
  52. LiJ.X. XueB. ChaiQ. LiuZ.X. ZhaoA.P. ChenL.B. Antihypertensive effect of total flavonoid fraction of Astragalus complanatus in hypertensive rats.Chin. J. Physiol.2005482101106 16201455
    [Google Scholar]
  53. CommengesD. ScotetV. RenaudS. Jacqmin-GaddaH. Barberger-GateauP. DartiguesJ.F. Intake of flavonoids and risk of dementia.Eur. J. Epidemiol.200016435736310.1023/A:1007614613771 10959944
    [Google Scholar]
  54. HavsteenB.H. The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.2002962-36720210.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  55. HarahapU. SyahputraR.A. AhmedA. NasutionA. WiselyW. SiraitM.L. DalimuntheA. ZainalabidinS. TaslimN.A. NurkolisF. Current insights and future perspectives of flavonoids: A promising antihypertensive approach.Phytother. Res.202438631463169
    [Google Scholar]
  56. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/138955709787001712 19149659
    [Google Scholar]
  57. GuptaK.K. TanejaS.C. DharK.L. AtalC.K. Flavonoids of andrographis paniculata.Phytochemistry198322131431510.1016/S0031‑9422(00)80122‑3
    [Google Scholar]
  58. TripoliE. GuardiaM.L. GiammancoS. MajoD.D. GiammancoM. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review.Food Chem.2007104246647910.1016/j.foodchem.2006.11.054
    [Google Scholar]
  59. MurlidharA. BabuK.S. SankarT.R. RedennaP. ReddyG.V. LathaJ. Antiinflammatory activity of flavonoid fraction isolated from stem bark of Butea monosperma (Lam): A mechanism based study.Int J Phytopharm.201012124132
    [Google Scholar]
  60. AderogbaM.A. OgundainiA.O. EloffJ.N. Isolation of two flavonoids from Bauhinia Monandra (KURZ) leaves and their antioxidative effects.Afr. J. Tradit. Complement. Altern. Med.200634596510.4314/ajtcam.v3i4.31177
    [Google Scholar]
  61. SankaranarayananS. BamaP. RamachandranJ. KalaichelvanP.T. DeccaramanM. VijayalakshimiM. DhamotharanR. DananjeyanB. Sathya BamaS. Ethnobotanical study of medicinal plants used by traditional users in Villupuram district of Tamil Nadu, India.J. Med. Plants Res.201041210891101
    [Google Scholar]
  62. SannomiyaM. FonsecaV.B. da SilvaM.A. RochaL.R.M. dos SantosL.C. Hiruma-LimaC.A. Souza BritoA.R.M. VilegasW. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts.J. Ethnopharmacol.20059711610.1016/j.jep.2004.09.053 15652267
    [Google Scholar]
  63. KogawaK. KazumaK. KatoN. NodaN. SuzukiM. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea.J. Plant Physiol.2007164788689410.1016/j.jplph.2006.05.006 16887235
    [Google Scholar]
  64. GhoulamiS. Il IdrissiA. Fkih-TetouaniS. Phytochemical study of Mentha longifolia of Morocco.Fitoterapia200172559659810.1016/S0367‑326X(01)00279‑9 11429267
    [Google Scholar]
  65. WalleT. Absorption and metabolism of flavonoids.Free Radic. Biol. Med.200436782983710.1016/j.freeradbiomed.2004.01.002 15019968
    [Google Scholar]
  66. HollmanPCH Absorption, bioavailability, and metabolism of flavonoids.Pharmaceut Biol.200442sup17483
    [Google Scholar]
  67. StewartA.J. BozonnetS. MullenW. JenkinsG.I. LeanM.E.J. CrozierA. Occurrence of flavonols in tomatoes and tomato-based products.J. Agric. Food Chem.20004872663266910.1021/jf000070p 10898604
    [Google Scholar]
  68. MierziakJ. KostynK. KulmaA. Flavonoids as important molecules of plant interactions with the environment.Molecules20141910162401626510.3390/molecules191016240 25310150
    [Google Scholar]
  69. RoyA. DattaS. BhatiaK.S. Bhumika; Jha, P.; Prasad, R. Role of plant derived bioactive compounds against cancer.S. Afr. J. Bot.20221491017102810.1016/j.sajb.2021.10.015
    [Google Scholar]
  70. DengZ. HassanS. RafiqM. LiH. HeY. CaiY. KangX. LiuZ. YanT. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone.Evid-Based Compl Altern Med202020201352
    [Google Scholar]
  71. YaoL. LiuW. BashirM. NisarM.F. WanC.C. Eriocitrin: A review of pharmacological effects.Biomed. Pharmacother.202215411356310.1016/j.biopha.2022.113563 35987162
    [Google Scholar]
  72. LiW. DuQ. LiX. ZhengX. LvF. XiX. HuangG. YangJ. LiuS. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-κB signaling pathway.Front. Pharmacol.20201111410.3389/fphar.2020.00114 32158391
    [Google Scholar]
  73. PyrzynskaK. Hesperidin: A review on extraction methods, stability and biological activities.Nutrients20221412238710.3390/nu14122387 35745117
    [Google Scholar]
  74. ShamsudinN.F. AhmedQ.U. MahmoodS. Ali ShahS.A. KhatibA. MukhtarS. AlsharifM.A. ParveenH. ZakariaZ.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules2022274114910.3390/molecules27041149 35208939
    [Google Scholar]
  75. PandeyP. KhanF. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits.Nutr. Res.202192213110.1016/j.nutres.2021.05.011 34273640
    [Google Scholar]
  76. TestaiL. PiragineE. PianoI. FloriL. Da PozzoE. MiragliottaV. PironeA. CitiV. Di Cesare MannelliL. BrogiS. The citrus flavonoid naringenin protects the myocardium from ageing-dependent dysfunction: Potential role of SIRT1.Oxid. Med. Cell. Longev.202020204650207
    [Google Scholar]
  77. ZhangJ. LiuZ. LuoY. LiX. HuangG. ChenH. LiA. QinS. The role of flavonoids in the osteogenic differentiation of mesenchymal stem cells.Front. Pharmacol.20221384951310.3389/fphar.2022.849513 35462886
    [Google Scholar]
  78. ChtourouY. FetouiH. JemaiR. Ben SlimaA. MakniM. GdouraR. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway.Eur. J. Pharmacol.20157469610510.1016/j.ejphar.2014.10.027 25446569
    [Google Scholar]
  79. Gumushan AktasH. AkgunT. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels.Biomed. Pharmacother.201810677077510.1016/j.biopha.2018.07.008 29990870
    [Google Scholar]
  80. KoushkiM. Farrokhi YektaR. Amiri-DashatanN. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid.J. Funct. Foods202310410550210.1016/j.jff.2023.105502
    [Google Scholar]
  81. SemwalR.B. SemwalD.K. CombrinckS. TrillJ. GibbonsS. ViljoenA. Acacetin—A simple flavone exhibiting diverse pharmacological activities.Phytochem. Lett.201932566510.1016/j.phytol.2019.04.021
    [Google Scholar]
  82. LiuR. ZhangT. YangH. LanX. YingJ. DuG. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25−35-induced toxicity in mice.J. Alzheimers Dis.20112418510010.3233/JAD‑2010‑101593 21297270
    [Google Scholar]
  83. CatarinoM. Alves-SilvaJ. PereiraO. CardosoS. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases.Curr. Top. Med. Chem.201515210511910.2174/1568026615666141209144506 25547095
    [Google Scholar]
  84. ShangJ. JiaoJ. YanM. WangJ. LiQ. ShabuerjiangL. LuY. SongQ. BiL. HuangG. ZhangX. WenY. CuiY. WuK. LiG. WangP. LiuX. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements.Biomed. Pharmacother.202316111453410.1016/j.biopha.2023.114534 36933376
    [Google Scholar]
  85. KhalidA. NaseemI. Antidiabetic and antiglycating potential of chrysin is enhanced after nano formulation: An in vitro approach.J. Mol. Struct.2022126113290610.1016/j.molstruc.2022.132906
    [Google Scholar]
  86. DingH. DingH. MuP. LuX. XuZ. Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model.Chem. Biol. Interact.202337011031110.1016/j.cbi.2022.110311 36563736
    [Google Scholar]
  87. BalagaV.K.R. PradhanA. ThapaR. PatelN. MishraR. SinglaN. Morin: A comprehensive review on its versatile biological activity and associated therapeutic potential in treating cancers.Pharmacol. Res.20237100264
    [Google Scholar]
  88. GuL. LiZ. ZhangX. ChenM. ZhangX. Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells.Biomed. Pharmacother.202316111446010.1016/j.biopha.2023.114460 36870282
    [Google Scholar]
  89. PanH. HeJ. YangZ. YaoX. ZhangH. LiR. XiaoY. ZhaoC. JiangH. LiuY. LiZ. GuoB. ZhangC. LiR.Z. LiuL. Myricetin possesses the potency against SARS-CoV-2 infection through blocking viral-entry facilitators and suppressing inflammation in rats and mice.Phytomedicine202311615485810.1016/j.phymed.2023.154858 37224774
    [Google Scholar]
  90. SatiP. DhyaniP. BhattI.D. PandeyA. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method.J. Tradit. Complement. Med.201991152310.1016/j.jtcme.2017.10.003 30671362
    [Google Scholar]
  91. SayedA.M.E. OmarF.A. EmamM.M.A.A. FaragM.A. UPLC-MS/MS and GC-MS based metabolites profiling of Moringa oleifera seed with its anti- Helicobacter pylori and anti-inflammatory activities.Nat. Prod. Res.202236246433643810.1080/14786419.2022.2037088 35133224
    [Google Scholar]
  92. SuiC. WuY. ZhangR. ZhangT. ZhangY. XiJ. DingY. WenJ. HuY. Rutin inhibits the progression of osteoarthritis through CBS-mediated RhoA/ROCK signaling.DNA Cell Biol.202241661763010.1089/dna.2021.1182 35588172
    [Google Scholar]
  93. LiB. JiY. YiC. WangX. LiuC. WangC. LuX. XuX. WangX. Rutin Inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling.Molecules20222713420110.3390/molecules27134201 35807447
    [Google Scholar]
  94. DakoraF.D. PhillipsD.A. Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins.Physiol. Mol. Plant Pathol.199649112010.1006/pmpp.1996.0035
    [Google Scholar]
  95. KurzerM.S. XuX. Dietary phytoestrogens.Annu. Rev. Nutr.199717135338110.1146/annurev.nutr.17.1.353 9240932
    [Google Scholar]
  96. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules24061076 30893792
    [Google Scholar]
  97. LuoY. JianY. LiuY. JiangS. MuhammadD. WangW. Flavanols from nature: A phytochemistry and biological activity review.Molecules202227371910.3390/molecules27030719 35163984
    [Google Scholar]
  98. Al-DashtiY.A. HoltR.R. StebbinsC.L. KeenC.L. HackmanR.M. Dietary flavanols: A review of select effects on vascular function, blood pressure, and exercise performance.J. Am. Coll. Nutr.201837755356710.1080/07315724.2018.1451788 29718795
    [Google Scholar]
  99. MartinM.Á. RamosS. Impact of cocoa flavanols on human health.Food Chem. Toxicol.202115111212110.1016/j.fct.2021.112121 33722594
    [Google Scholar]
  100. Khazeei TabariM.A. IranpanahA. BahramsoltaniR. RahimiR. Flavonoids as promising antiviral agents against SARS-CoV-2 infection: A mechanistic review.Molecules20212613390010.3390/molecules26133900 34202374
    [Google Scholar]
  101. HasanS. MansourH. WehbeN. NasserS.A. IratniR. NasrallahG. ShaitoA. GhaddarT. KobeissyF. EidA.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms.Biomed. Pharmacother.2022146112442
    [Google Scholar]
  102. WeiQ. ZhangY. Flavonoids with Anti-Angiogenesis Function in Cancer.Molecules2024297157010.3390/molecules29071570 38611849
    [Google Scholar]
  103. WagnerC.E. JurutkaP.W. MarshallP.A. GroyT.L. van der VaartA. ZillerJ.W. FurmickJ.K. GraeberM.E. MatroE. MiguelB.V. TranI.T. KwonJ. TedeschiJ.N. MoosaviS. DanishyarA. PhilpJ.S. KhameesR.O. JacksonJ.N. GrupeD.K. BadshahS.L. HartJ.W. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: Novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene).J. Med. Chem.200952195950596610.1021/jm900496b 19791803
    [Google Scholar]
  104. NiuC. ZhangJ. OkoloP.I. III Harnessing Plant Flavonoids to Fight Pancreatic Cancer.Curr. Nutr. Rep.20241356658110.1007/s13668‑024‑00545‑9 38700837
    [Google Scholar]
  105. WangT. LiQ. BiK. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate.Asian J. Pharmaceut Sci.2018131122310.1016/j.ajps.2017.08.004 32104374
    [Google Scholar]
  106. PatilV.M. MasandN. AnticancerAnticancer potential of flavonoids: Chemistry, biological activities, and future perspectives.Stud Nat Prod Chem20185940143010.1016/B978‑0‑444‑64179‑3.00012‑8
    [Google Scholar]
  107. DeviK.P. RajavelT. NabaviS.F. SetzerW.N. AhmadiA. MansouriK. NabaviS.M. Hesperidin: A promising anticancer agent from nature.Ind. Crops Prod.20157658258910.1016/j.indcrop.2015.07.051
    [Google Scholar]
  108. ErsozM. ErdemirA. DuranogluD. UzunogluD. ArasogluT. DermanS. MansurogluB. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells.Artif. Cells Nanomed. Biotechnol.201947131932910.1080/21691401.2018.1556213 30688095
    [Google Scholar]
  109. FangW. DuJ. NieM. WangX. Recent advances in flavonoid compounds for the treatment of prostate cancer.Mol. Biol. Rep.202451165310.1007/s11033‑024‑09567‑6 38734766
    [Google Scholar]
  110. PourakbariR. TaherS.M. MosayyebiB. Ayoubi-JoshaghaniM.H. AhmadiH. Aghebati-MalekiL. Implications for glycosylated compounds and their anti-cancer effects.Int. J. Biol. Macromol.20201631323133210.1016/j.ijbiomac.2020.06.281 32622770
    [Google Scholar]
  111. LiangT. GuanR. WangZ. ShenH. XiaQ. LiuM. Comparison of anticancer activity and antioxidant activity between cyanidin-3-O-glucoside liposomes and cyanidin-3-O-glucoside in Caco-2 cells in vitro. RSC Advances2017759373593736810.1039/C7RA06387C
    [Google Scholar]
  112. AlsayariA. MuhsinahA. Aurone: A biologically attractive scaffold as anticanceranticancer agent.Eur. J. Med. Chem.201916641743110.1016/j.ejmech.2019.01.078 30739824
    [Google Scholar]
  113. D’MelloP. GadhwalM.K. JoshiU. ShetgiriP. Modeling of COX-2 inhibitory activity of flavonoids.Int. J. Pharm. Pharm. Sci.2011343340
    [Google Scholar]
  114. MedirattaK. El-SahliS. MarotelM. AwanM.Z. KirkbyM. SalkiniA. KurdiehR. AbdisalamS. ShresthaA. Di CensoC. SulaimanA. McGarryS. LavoieJ.R. LiuZ. LeeS.H. LiX. SciumèG. D’CostaV.M. ArdolinoM. WangL. Targeting CD73 with flavonoids inhibits cancer stem cells and increases lymphocyte infiltration in a triple-negative breast cancer mouse model.Front. Immunol.202415136619710.3389/fimmu.2024.1366197 38601156
    [Google Scholar]
  115. TarunG. AjayB. BhawanaK. SunilK. Jr Organogels: Advanced and novel drug delivery system.Int Res J Pharm.20112121521
    [Google Scholar]
  116. ZhengD. WangY. ZhangD. LiuZ. DuanC. JiaL. WangF. LiuY. LiuG. HaoL. ZhangQ. In vitro antitumor activity of silybin nanosuspension in PC-3 cells.Cancer Lett.2011307215816410.1016/j.canlet.2011.03.028 21507570
    [Google Scholar]
  117. LinC.J. SukariehR. PelletierJ. Silibinin inhibits translation initiation: Implications for anticancer therapy.Mol. Cancer Ther.2009861606161210.1158/1535‑7163.MCT‑08‑1152 19509268
    [Google Scholar]
  118. JúniorR.G.O. FerrazC.A.A. PereiraE.C.V. SampaioP.A. SilvaM.F.S. PessoaC.O. RolimL.A. da Silva AlmeidaJ.R.G. Phytochemical analysis and cytotoxic activity of Cnidoscolus quercifolius Pohl (Euphorbiaceae) against prostate (PC3 and PC3-M) and breast (MCF-7) cancer cells.Pharmacogn. Mag.20191560242810.4103/pm.pm_6_18
    [Google Scholar]
  119. TeekaramanD. ElayapillaiS.P. ViswanathanM.P. JagadeesanA. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line.Chem. Biol. Interact.20193009110010.1016/j.cbi.2019.01.008 30639267
    [Google Scholar]
  120. WangB. ZhangX. Inhibitory effects of Broccolini leaf flavonoids on human cancer cells.Scanning20123411510.1002/sca.20278 22532078
    [Google Scholar]
  121. BrunettiC. Di FerdinandoM. FiniA. PollastriS. TattiniM. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans.Int. J. Mol. Sci.20131423540355510.3390/ijms14023540 23434657
    [Google Scholar]
  122. NijveldtR.J. van NoodE. van HoornD.E.C. BoelensP.G. van NorrenK. van LeeuwenP.A.M. Flavonoids: A review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr.200174441842510.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  123. ZhengY.Z. DengG. ChenD.F. LiangQ. GuoR. FuZ.M. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent.Food Chem.201824032332910.1016/j.foodchem.2017.07.133 28946279
    [Google Scholar]
  124. ZhengY.Z. DengG. GuoR. FuZ.M. ChenD.F. The influence of the H5⋯O C4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.Phytochemistry2019160192410.1016/j.phytochem.2019.01.011 30669059
    [Google Scholar]
  125. ProcházkováD. BoušováI. WilhelmováN. Antioxidant and prooxidant properties of flavonoids.Fitoterapia201182451352310.1016/j.fitote.2011.01.018 21277359
    [Google Scholar]
  126. AramouniK. AssafR. ShaitoA. FardounM. Al-AsmakhM. SahebkarA. EidA.H. Biochemical and cellular basis of oxidative stress: Implications for disease onset.J. Cell. Physiol.202323891951196310.1002/jcp.31071 37436042
    [Google Scholar]
  127. Preethi SoundaryaS. SanjayV. Haritha MenonA. DhivyaS. SelvamuruganN. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering.Int. J. Biol. Macromol.2018110748710.1016/j.ijbiomac.2017.09.014 28893682
    [Google Scholar]
  128. TeraoJ. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function.Biochem. Pharmacol.2017139152310.1016/j.bcp.2017.03.021 28377278
    [Google Scholar]
  129. EbrahimiF. GhazimoradiM.M. FatimaG. BahramsoltaniR. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis.Heliyon2023911e2184910.1016/j.heliyon.2023.e21849 38028000
    [Google Scholar]
  130. HwangI.W. ChungS.K. Isolation and identification of myricitrin, an antioxidant flavonoid, from daebong persimmon peel.Prev. Nutr. Food Sci.201823434134610.3746/pnf.2018.23.4.341 30675464
    [Google Scholar]
  131. KumarS. GuptaA. PandeyA.K. Calotropis procera root extract has the capability to combat free radical-mediated damage.ISRN Pharmacol.20132013691372
    [Google Scholar]
  132. MahmoodW. SaleemH. ShahidW. AhmadI. ZenginG. MahomoodallyM.F. AshrafM. AhemadN. Clinical enzymes inhibitory activities, antioxidant potential and phytochemical profile of Vernonia oligocephala (DC.) Sch.Bip. ex Walp roots.Biocatal. Agric. Biotechnol.20191810103910.1016/j.bcab.2019.101039
    [Google Scholar]
  133. MishraA. SharmaA.K. KumarS. SaxenaA.K. PandeyA.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.BioMed Res. Int.20132013915436
    [Google Scholar]
  134. SariN.M. KuspradiniH. AmirtaR. KusumaI.W. Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product.IOP Conference Series: Earth and Environmental Science20181202910.1088/1755‑1315/144/1/012029
    [Google Scholar]
  135. BurnsA. PerryE.K. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.Int. J. Geriatr. Psychiatry199611976577110.1002/(SICI)1099‑1166(199609)11:9<765::AID‑GPS378>3.0.CO;2‑5
    [Google Scholar]
  136. KhanM.T.H. OrhanI. ŞenolF.S. KartalM. ŞenerB. DvorskáM. ŠmejkalK. ŠlapetováT. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies.Chem. Biol. Interact.2009181338338910.1016/j.cbi.2009.06.024 19596285
    [Google Scholar]
  137. KadiI. EltaybW.A. BoufissiouA. BenaceurF. BoucharebA. SoltanW.B. BaladehiM.H. KhenicheA. AbdallaM. Molecular interactions, binding stability, and synergistic inhibition on Acetylcholinesterase activity of Safranin O in combination with Quercetin and Gallic acid: In vitro and in silico study.J. Mol. Struct.2023128613556210.1016/j.molstruc.2023.135562
    [Google Scholar]
  138. DongX. ZhouS. NaoJ. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies.Ageing Res. Rev.20238710191010.1016/j.arr.2023.101910 36924572
    [Google Scholar]
  139. HeoH.J. KimM.J. LeeJ.M. ChoiS.J. ChoH.Y. HongB. KimH.K. KimE. ShinD.H. Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia.Dement. Geriatr. Cogn. Disord.200417315115710.1159/000076349 14739537
    [Google Scholar]
  140. KimJ.H. LeeS.H. LeeH.W. SunY.N. JangW.H. YangS.Y. JangH.D. KimY.H. (⿿)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase.Int. J. Biol. Macromol.2016911033103910.1016/j.ijbiomac.2016.06.069 27341781
    [Google Scholar]
  141. KwonY. Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease.Exp. Gerontol.201795394310.1016/j.exger.2017.05.014 28528007
    [Google Scholar]
  142. SiddiqueY.H. Rahul; Ara, G.; Afzal, M.; Varshney, H.; Gaur, K.; Subhan, I.; Mantasha, I.; Shahid, M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease.Chem. Biol. Interact.202236611012010.1016/j.cbi.2022.110120 36027948
    [Google Scholar]
  143. DeviK.P. ShanmuganathanB. ManayiA. NabaviS.F. NabaviS.M. Molecular and therapeutic targets of genistein in Alzheimer’s disease.Mol. Neurobiol.20175497028704110.1007/s12035‑016‑0215‑6 27796744
    [Google Scholar]
  144. ChoyK.W. MuruganD. LeongX.F. AbasR. AliasA. MustafaM.R. Flavonoids as natural antiinflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini-review.Front. Pharmacol.201910129510.3389/fphar.2019.01295 31749703
    [Google Scholar]
  145. SmithW.L. DeWittD.L. GaravitoR.M. Cyclooxygenases: Structural, cellular, and molecular biology.Annu. Rev. Biochem.200069114518210.1146/annurev.biochem.69.1.145 10966456
    [Google Scholar]
  146. KujubuD.A. FletcherB.S. VarnumB.C. LimR.W. HerschmanH.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue.J. Biol. Chem.199126620128661287210.1016/S0021‑9258(18)98774‑0 1712772
    [Google Scholar]
  147. MaQ. JiangJ.G. YuanX. QiuK. ZhuW. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC.Food Chem. Toxicol.201912542242910.1016/j.fct.2019.01.020 30703393
    [Google Scholar]
  148. AbubakarS. Al-MansoubM.A. MurugaiyahV. ChanK.L. The phytochemical and anti‐inflammatory studies ofDILLENIA SUFFRUTICOSA leaves.Phytother. Res.201933366067510.1002/ptr.6255 30653753
    [Google Scholar]
  149. TruongD.H. NguyenD.H. TaN.T.A. BuiA.V. DoT.H. NguyenH.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro antiinflammatory activities of Severinia buxifolia.J. Food Qual.201920198178294
    [Google Scholar]
  150. MuthauraC.N. KerikoJ.M. DereseS. YenesewA. RukungaG.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs.Exp. Parasitol.2011127360962610.1016/j.exppara.2010.11.004 21095187
    [Google Scholar]
  151. BadshahS. UllahA. AhmadN. AlmarhoonZ. MabkhotY. Increasing the strength and production of artemisinin and its derivatives.Molecules201823110010.3390/molecules23010100 29301383
    [Google Scholar]
  152. KhanH. AminH. UllahA. SabaS. RafiqueJ. KhanK. AhmadN. BadshahS.L. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis.Oxid. Med. Cell. Longev.201620161051925
    [Google Scholar]
  153. MemvangaP.B. TonaG.L. MesiaG.K. LusakibanzaM.M. CimangaR.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review.J. Ethnopharmacol.2015169769810.1016/j.jep.2015.03.075 25862959
    [Google Scholar]
  154. GrafB.A. MilburyP.E. BlumbergJ.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence.J. Med. Food20058328129010.1089/jmf.2005.8.281 16176136
    [Google Scholar]
  155. AL-IshaqR.K. AbotalebM. KubatkaP. KajoK. BüsselbergD. Flavonoids and their antidiabetic effects: Cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom9090430 31480505
    [Google Scholar]
  156. BuleM. AbdurahmanA. NikfarS. AbdollahiM. AminiM. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies.Food Chem. Toxicol.201912549450210.1016/j.fct.2019.01.037 30735748
    [Google Scholar]
  157. Calderón-MontañoJ.M. Burgos-MorónE. Pérez-GuerreroC. López-LázaroM. A review on the dietary flavonoid kaempferol.Mini Rev. Med. Chem.201111429834410.2174/138955711795305335 21428901
    [Google Scholar]
  158. KaurJ. VyasM. SinghJ. PrasadR. GuptaJ. Therapeutic applications of naringenin, a flavanone enriched in citrus fruits, for disorders beyond diabetes.Phyton-Int J Exp Botany202089479580310.32604/phyton.2020.09420
    [Google Scholar]
  159. MechchateH. Es-safiI. HaddadH. BekkariH. GrafovA. BoustaD. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach.J. Nutr. Biochem.20218810852010.1016/j.jnutbio.2020.108520 33017607
    [Google Scholar]
  160. MuruganathanN. DhanapalA.R. BaskarV. MuthuramalingamP. SelvarajD. AaraH. Shiek AbdullahM.Z. SivanesanI. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: A review.Metabolites20221211114510.3390/metabo12111145 36422285
    [Google Scholar]
  161. YangH. WangY. XuS. RenJ. TangL. GongJ. LinY. FangH. SuD. Hesperetin, a promising treatment option for diabetes and related complications: A literature review.J. Agric. Food Chem.202270288582859210.1021/acs.jafc.2c03257 35801973
    [Google Scholar]
  162. MushtaqZ. SadeerN.B. HussainM. Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; Tufail, T.; Al Jbawi, E.; Mahomoodally, M.F. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms.Int. J. Food Prop.20232611914193910.1080/10942912.2023.2236329
    [Google Scholar]
  163. WengL. ZhangF. WangR. MaW. SongY. A review on protective role of genistein against oxidative stress in diabetes and related complications.Chem. Biol. Interact.201931010866510.1016/j.cbi.2019.05.031 31125535
    [Google Scholar]
  164. PancheA. ChandraS. DiwanA.D. HarkeS. Alzheimer’s and current therapeutics: A review.Asian J. Pharm. Clin. Res.2015831419
    [Google Scholar]
  165. JägerA.K. SaabyL. Flavonoids and the CNS.Molecules20111621471148510.3390/molecules16021471 21311414
    [Google Scholar]
  166. ShenY. ZhangJ. ShengR. DongX. HeQ. YangB. HuY. Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors.J. Enzyme Inhib. Med. Chem.200924237238010.1080/14756360802187885 18830885
    [Google Scholar]
  167. LiH. ZhangQ. Research progress of flavonoids regulating endothelial function.Pharmaceuticals2023169120110.3390/ph16091201 37765009
    [Google Scholar]
  168. XuH. YuS. LinC. DongD. XiaoJ. YeY. WangM. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury.Phytomedicine202412615540910.1016/j.phymed.2024.155409 38342018
    [Google Scholar]
  169. MazumderA. SharmaA. AzadM.A.K. A comprehensive review of the pharmacological importance of dietary flavonoids as hepatoprotective agents.Evid-Based Compl Altern Med202320234139117
    [Google Scholar]
  170. GórniakI. BartoszewskiR. KróliczewskiJ. Comprehensive review of antimicrobial activities of plant flavonoids.Phytochem. Rev.201918124127210.1007/s11101‑018‑9591‑z
    [Google Scholar]
  171. JiangM. ZhuM. WangL. YuS. Anti-tumor effects and associated molecular mechanisms of myricetin.Biomed. Pharmacother.201912010950610.1016/j.biopha.2019.109506 31586904
    [Google Scholar]
  172. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu8020090 26891321
    [Google Scholar]
  173. OnoK. LiL. TakamuraY. YoshiikeY. ZhuL. HanF. MaoX. IkedaT. TakasakiJ. NishijoH. TakashimaA. TeplowD.B. ZagorskiM.G. YamadaM. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding.J. Biol. Chem.201228718146311464310.1074/jbc.M111.325456 22393064
    [Google Scholar]
  174. LiM. ChenJ. YuX. XuS. LiD. ZhengQ. YinY. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP.Cells20198435810.3390/cells8040358 30999669
    [Google Scholar]
  175. EssexD.W. WuY. Multiple protein disulfide isomerases support thrombosis.Curr. Opin. Hematol.201825539540210.1097/MOH.0000000000000449 29994898
    [Google Scholar]
  176. GasparR.S. da SilvaS.A. StapletonJ. FontellesJ.L.L. SousaH.R. ChagasV.T. AlsufyaniS. TrostchanskyA. GibbinsJ.M. PaesA.M.A. Myricetin, the main Flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5.Front. Pharmacol.202010167810.3389/fphar.2019.01678 32116678
    [Google Scholar]
  177. FengB.Y. SimeonovA. JadhavA. BabaogluK. IngleseJ. ShoichetB.K. AustinC.P. A high-throughput screen for aggregation-based inhibition in a large compound library.J. Med. Chem.200750102385239010.1021/jm061317y 17447748
    [Google Scholar]
  178. BabaogluK. SimeonovA. IrwinJ.J. NelsonM.E. FengB. ThomasC.J. CancianL. CostiM.P. MaltbyD.A. JadhavA. IngleseJ. AustinC.P. ShoichetB.K. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase.J. Med. Chem.20085182502251110.1021/jm701500e 18333608
    [Google Scholar]
  179. XiaoJ. KaiG. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship.Crit. Rev. Food Sci. Nutr.20125218510110.1080/10408398.2010.499017 21991992
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266316032240718050055
Loading
/content/journals/ctmc/10.2174/0115680266316032240718050055
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antiinflammatory; Bio-activities; Cancer; Flavones; Flavonoids; Medicinal plant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test