Skip to content
2000
image of Unveiling the Potential of Bergenia Phenolics: Vitexin's Role in Allosteric Modulation of PBP2a as a Strategy against MRSA Resistance

Abstract

Background

For cell wall biosynthesis, drug-resistant uses a special protein called PBP2a, even when antibiotics are present and stop its natural processes from working. To combat this, novel therapies are required to specifically target PBP2a with greater efficacy.

Methods

Using computational approaches, we screened nine phenolic compounds from other Bergenia species, including , against the PBP2a allosteric site to explore the potential interaction between phenolic compounds and a specific region of PBP2a known as the allosteric site.

Results

Based on interaction patterns and estimated affinity, vitexin has been found to be the most prominent phenolic compound. We performed MD simulations on vitexin and ceftazidime as control molecules based on the docking results. The binding free energy estimates of vitexin

(-94.48 +/- 17.92 kJ/mol) using MM/PBSA were lower than those of the control (-67.61 +/- 12.29 kJ/mol), which suggests that vitexin may be able to inhibit PBP2a activity in MRSA.

Conclusion

It has been intriguing to observe a correlation between the affinity of the lead compounds at the allosteric site and the modification of Tyr446, the active site gatekeeper residue in PBP2a. Our findings have implied that lead compounds can either directly or indirectly decrease PBP2a activity by inducing allosteric site change in conventional medicine.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266312143240805191718
2024-08-19
2024-10-13
Loading full text...

Full text loading...

References

  1. Kalalo M.J. Fatimawali F. Kalalo T. Rambi C.I.J. Tea bioactive compounds as inhibitor of mrsa penicillin binding protein 2a (pbp2a): a molecular docking study. Pharm. Med. J. (PMJ) 2021 3 2 70 10.35799/pmj.3.2.2020.32878
    [Google Scholar]
  2. Rahman M.M. Amin K.B. Rahman S.M.M. Khair A. Rahman M. Hossain A. Rahman A.K.M.A. Parvez M.S. Miura N. Alam M.M. Investigation of methicillin-resistant Staphylococcus aureus among clinical isolates from humans and animals by culture methods and multiplex PCR. BMC Vet. Res. 2018 14 1 300 10.1186/s12917‑018‑1611‑0 30285752
    [Google Scholar]
  3. Abdel-Moein K.A. Zaher H.M. Occurrence of multidrug-resistant methicillin-resistant Staphylococcus aureus among healthy farm animals: a public health concern. Int. J. Vet. Sci. Med. 2019 7 1 55 60 10.1080/23144599.2019.1689630 31819891
    [Google Scholar]
  4. Stryjewski M.E. Corey G.R. Methicillin-resistant Staphylococcus aureus: An evolving pathogen. Clin. Infect. Dis. 2013 58 S10 S19
    [Google Scholar]
  5. Malik B. Bhattacharyya S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019 2019 9
    [Google Scholar]
  6. Verma A.K. Ahmed S.F. Hossain M.S. Bhojiya A.A. Mathur A. Upadhyay S.K. Srivastava A.K. Vishvakarma N.K. Barik M. Rahaman M.M. Bahadur N.M. Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin‐resistant Staphylococcus aureus. J. Biomol. Struct. Dyn. 2022 40 21 10561 10577 10.1080/07391102.2021.1944911 34243699
    [Google Scholar]
  7. Larsson D.G.J. Flach C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022 20 5 257 269 10.1038/s41579‑021‑00649‑x 34737424
    [Google Scholar]
  8. Josephine H.R. Charlier P. Davies C. Nicholas R.A. Pratt R.F. Reactivity of penicillin-binding proteins with peptidoglycan-mimetic β-lactams: what’s wrong with these enzymes? Biochemistry 2006 45 51 15873 15883 10.1021/bi061804f 17176110
    [Google Scholar]
  9. Zapun A. Contreras-Martel C. Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev. 2008 32 2 361 385 10.1111/j.1574‑6976.2007.00095.x 18248419
    [Google Scholar]
  10. Sauvage E. Kerff F. Terrak M. Ayala J.A. Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008 32 2 234 258 10.1111/j.1574‑6976.2008.00105.x 18266856
    [Google Scholar]
  11. Scheffers D.J. Pinho M.G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 2005 69 4 585 607 10.1128/MMBR.69.4.585‑607.2005 16339737
    [Google Scholar]
  12. Meisel J.E. Fisher J.F. Chang M. Mobashery S. Allosteric Inhibition of Bacterial Targets: An Opportunity for Discovery of Novel Antibacterial Classes. Topics in medicinal chemistry. Springer 2017
    [Google Scholar]
  13. Otero L.H. Rojas-Altuve A. Llarrull L.I. Carrasco-López C. Kumarasiri M. Lastochkin E. Fishovitz J. Dawley M. Hesek D. Lee M. Johnson J.W. Fisher J.F. Chang M. Mobashery S. Hermoso J.A. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl. Acad. Sci. USA 2013 110 42 16808 16813 10.1073/pnas.1300118110 24085846
    [Google Scholar]
  14. Dundas J. Ouyang Z. Tseng J. Binkowski A. Turpaz Y. Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006 34 Web Server W116 W118 10.1093/nar/gkl282 16844972
    [Google Scholar]
  15. Fisher J.F. Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 2016 6 5 a025221 10.1101/cshperspect.a025221 27091943
    [Google Scholar]
  16. Alhadrami H.A. Hamed A.A. Hassan H.M. Belbahri L. Rateb M.E. Sayed A.M. Flavonoids as Potential anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study. Antibiotics (Basel) 2020 9 9 562 10.3390/antibiotics9090562 32878266
    [Google Scholar]
  17. Newman D.J. Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  18. Shen B. A New Golden Age of Natural Products Drug Discovery. Cell 2015 163 6 1297 1300 10.1016/j.cell.2015.11.031 26638061
    [Google Scholar]
  19. Zhao J. Liu J. Zhang X. Liu Z. Tsering T. Zhong Y. Nan P. Chemical composition of the volatiles of three wild Bergenia species from western China. Flavour Fragrance J. 2006 21 3 431 434 10.1002/ffj.1689
    [Google Scholar]
  20. Singh D.P. Srivastava S.K. Govindarajan R. Rawat A.K.S. High-Performance Liquid Chromatographic Determination of Bergenin in Different Bergenia Species. Acta Chromatogr. 2007 246 252
    [Google Scholar]
  21. Chitme H.R. Alok S. Jain S.K. Sabharwal M. Herbal Treatment for Urinary Stones. 2010 1 24 31
    [Google Scholar]
  22. Chauhan R. Sharma S. Polypharmacological activities of bergenia species Review Article. Int. J. Pharmaceut. Sci. Rev. Res. 2012 13 1 11
    [Google Scholar]
  23. Chauhan V. Rawat P. Chauhan N. REVIEW ON COMPILATION OF ETHNOPHARMACOLOGICAL PROPERTIES OF BERGENIA CILIATA: THE MEDICINAL HERB OF HIMALAYAS. Plant Archives. Plant Arch. 2021 21 10.51470/PLANTARCHIVES.2021.v21.no2.063
    [Google Scholar]
  24. Reddy U.D.C. Chawla A.S. Deepak M. Singh D. Handa S.S. High pressure liquid chromatographic determination of bergenin and (+) -afzelechin from different parts of Paashaanbhed (Bergenia ligulata yeo). Phytochem. Anal. 1999 10 1 44 47 10.1002/(SICI)1099‑1565(199901/02)10:1<44:AID‑PCA424>3.0.CO;2‑4
    [Google Scholar]
  25. Bagul M.S. Ravishankara M.N. Padh H. Rajani M. Phytochemical Evaluation and Free Radical Scavenging Properties of Rhizome of Bergenia Ciliata (Haw.). Sternb. Forma Ligulata Yeo. J. Nat. Rem. 2003 3 83 89
    [Google Scholar]
  26. Nirumand M. Hajialyani M. Rahimi R. Farzaei M. Zingue S. Nabavi S. Bishayee A. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int. J. Mol. Sci. 2018 19 3 765 10.3390/ijms19030765 29518971
    [Google Scholar]
  27. Kumar V. Tyagi D. Review on phytochemical, ethnomedical and biological studies of medically useful genus Bergenia. Int. J. Curr. Microbiol. Appl. Sci. 2013 2 5 328 334
    [Google Scholar]
  28. Kraujalienė V. Pukalskas A. Kraujalis P. Venskutonis P.R. Biorefining of Bergenia crassifolia L. roots and leaves by high pressure extraction methods and evaluation of antioxidant properties and main phytochemicals in extracts and plant material. Ind. Crops Prod. 2016 89 390 398 10.1016/j.indcrop.2016.05.034
    [Google Scholar]
  29. Kader Mohiuddin A. Traditional System of Medicine and Nutritional Supplementation: Use vs. Regulation. Botany Research Journal 2019 12 1-4 1 30 10.36478/brj.2019.1.30
    [Google Scholar]
  30. Chauhan R. Dwivedi J. Secondary metabolites found in Bergenia species: A compendious review. Int. J. Pharm. Pharmaceut. Sci. 2013 5 1 9 16
    [Google Scholar]
  31. Patel D.K. Patel K. Kumar R. Gadewar M. Tahilyani V. Pharmacological and analytical aspects of bergenin: a concise report. Asian Pac. J. Trop. Dis. 2012 2 2 163 167 10.1016/S2222‑1808(12)60037‑1
    [Google Scholar]
  32. Aggarwal D. Kaushal R. Kaur T. Bijarnia R.K. Puri S. Singla S.K. The most potent antilithiatic agent ameliorating renal dysfunction and oxidative stress from Bergenia ligulata rhizome. J. Ethnopharmacol. 2014 158 Pt A 85 93 10.1016/j.jep.2014.10.013 25456425
    [Google Scholar]
  33. Uddin G. Sadat A. Siddiqui B.S. Comparative antioxidant and antiplasmodial activities of 11-O-galloylbergenin and bergenin isolated from Bergenia ligulata. PubMed 2014 31 1 143 148 24862054
    [Google Scholar]
  34. Sethi A. Joshi K. Sasikala K. Alvala M. Molecular Docking in Modern Drug Discovery: Principles and Recent Applications; IntechOpen eBooks 2020
    [Google Scholar]
  35. Lade H. Kim J.S. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021 10 4 398 10.3390/antibiotics10040398 33917043
    [Google Scholar]
  36. Pandey R. Kumar B. Meena B. Srivastava M. Mishra T. Tiwari V. Pal M. Nair N.K. Upreti D.K. Rana T.S. Major bioactive phenolics in Bergenia species from the Indian Himalayan region: Method development, validation and quantitative estimation using UHPLC-QqQLIT-MS/MS. PLoS One 2017 12 7 e0180950 10.1371/journal.pone.0180950 28749965
    [Google Scholar]
  37. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  38. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Christie C.H. Dalenberg K. Di Costanzo L. Duarte J.M. Dutta S. Feng Z. Ganesan S. Goodsell D.S. Ghosh S. Green R.K. Guranović V. Guzenko D. Hudson B.P. Lawson C.L. Liang Y. Lowe R. Namkoong H. Peisach E. Persikova I. Randle C. Rose A. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Tao Y.P. Voigt M. Westbrook J.D. Young J.Y. Zardecki C. Zhuravleva M. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  39. Mahasenan K.V. Molina R. Bouley R. Batuecas M.T. Fisher J.F. Hermoso J.A. Chang M. Mobashery S. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. J. Am. Chem. Soc. 2017 139 5 2102 2110 10.1021/jacs.6b12565 28099001
    [Google Scholar]
  40. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Gaussian 09, Revision B.01. Gaussian Inc., Wallingford. 2009 Available from: https://www.scirp.org/reference/referencespapers?referenceid=1989943 (accessed on 15-7-2024)
    [Google Scholar]
  41. GaussView Version 6. Shawnee Mission, KS Semichem Inc. 2016
    [Google Scholar]
  42. Yusof I. Segall M.D. Considering the impact drug-like properties have on the chance of success. Drug Discov. Today 2013 18 13-14 659 666 10.1016/j.drudis.2013.02.008 23458995
    [Google Scholar]
  43. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  44. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  45. Delano W.L. The PyMOL Molecular Graphics System. 2002 Available from: https://www.scirp.org/reference/References Papers?ReferenceID=1958992 (accessed on 15-7-2024)]
    [Google Scholar]
  46. Jejurikar B.L. Rohane S.H. Drug Designing in Discovery Studio. Asian J. Res. Chem 2021 14 135 138
    [Google Scholar]
  47. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  48. Xue W. Yang F. Wang P. Zheng G. Chen Y. Yao X. Zhu F. What Contributes to Serotonin-Norepinephrine Reuptake Inhibitors’ Dual-Targeting Mechanism? The Key Role of Transmembrane Domain 6 in Human Serotonin and Norepinephrine Transporters Revealed by Molecular Dynamics Simulation. ACS Chem. Neurosci. 2018 9 5 1128 1140 10.1021/acschemneuro.7b00490 29300091
    [Google Scholar]
  49. Schüttelkopf A.W. van Aalten D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004 60 8 1355 1363 10.1107/S0907444904011679 15272157
    [Google Scholar]
  50. Lemkul J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package. [Article v1.0]. Living J. Comput. Mol. Sci. 2019 1 1 1 [Article v1.0]. 10.33011/livecoms.1.1.5068
    [Google Scholar]
  51. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. DiNola A. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81 8 3684 3690 10.1063/1.448118
    [Google Scholar]
  52. Zhang Y. Zheng G. Fu T. Hong J. Li F. Yao X. Xue W. Zhu F. The binding mode of vilazodone in the human serotonin transporter elucidated by ligand docking and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2020 22 9 5132 5144 10.1039/C9CP05764A 32073004
    [Google Scholar]
  53. Parrinello M. Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981 52 12 7182 7190 10.1063/1.328693
    [Google Scholar]
  54. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  55. Roweis S.T. EM Algorithms for PCA and SPCA. Neural Information Processing Systems 1997 10 626 632
    [Google Scholar]
  56. Kitao A. Principal component analysis and related methods for investigating the dynamics of biological macromolecules. J 2022 5 298 317
    [Google Scholar]
  57. Verma A.K. Dubey S. Srivastava S.K. Identification of alkaloid compounds as potent inhibitors of Mycobacterium tuberculosis NadD using computational strategies. Comput. Biol. Med. 2023 158 106863 10.1016/j.compbiomed.2023.106863 37030267
    [Google Scholar]
  58. Jencks W.P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 1981 78 7 4046 4050 10.1073/pnas.78.7.4046 16593049
    [Google Scholar]
  59. Kumari R. Kumar R. Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  60. Xue W. Fu T. Deng S. Yang F. Yang J. Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem. Neurosci. 2022 13 3 340 351 10.1021/acschemneuro.1c00694 35041375
    [Google Scholar]
  61. Cousins K.R. Computer Review of ChemDraw Ultra 12.0. J. Am. Chem. Soc. 2011 133 21 8388 10.1021/ja204075s 21561109
    [Google Scholar]
  62. Guan L. Yang H. Cai Y. Sun L. Di P. Li W. Liu G. Tang Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm 2019 10 1 148 157 10.1039/C8MD00472B 30774861
    [Google Scholar]
  63. Lu L. Qiang M. Li F. Zhang H. Zhang S. Theoretical investigation on the antioxidative activity of anthocyanidins: A DFT/B3LYP study. Dyes Pigments 2014 103 175 182 10.1016/j.dyepig.2013.12.015
    [Google Scholar]
  64. Gültekin Z. Demircioğlu Z. Frey W. Büyükgüngör O. A combined experimental (XRD, FT-IR, UV-VIS and NMR) and theoretical (NBO, NLO, local & global chemical activity) studies of methyl 2-((3R,4R)-3-(naphthalen-1-yl)-4-(phenylsulfonyl) isoxazolidin-2-yl) acetate. J. Mol. Struct. 2020 1199 126970 10.1016/j.molstruc.2019.126970
    [Google Scholar]
  65. Rodríguezmorales S. Compadre R. Castillo R. Breen P. Compadre C. 3D-QSAR, synthesis, and antimicrobial activity of 1-alkylpyridinium compounds as potential agents to improve food safety. Eur. J. Med. Chem. 2005 40 9 840 849 10.1016/j.ejmech.2005.02.012 16194718
    [Google Scholar]
  66. Kabsch W. Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983 22 12 2577 2637 10.1002/bip.360221211 6667333
    [Google Scholar]
  67. Yang J. Chen Y. Yao G. Wang Z. Fu X. Tian Y. Li Y. Key factors selection on adolescents with non-suicidal self-injury: A support vector machine based approach. Front. Public Health 2022 10 1049069 10.3389/fpubh.2022.1049069 36438278
    [Google Scholar]
  68. Hotelling H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933 24 6 417 441 10.1037/h0071325
    [Google Scholar]
  69. Kollman P.A. Massova I. Reyes C. Kuhn B. Huo S. Chong L. Lee M. Lee T. Duan Y. Wang W. Donini O. Cieplak P. Srinivasan J. Case D.A. Cheatham T.E. III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  70. Singh E. Jha R.K. Khan R.J. Kumar A. Jain M. Muthukumaran J. Singh A.K. A computational essential dynamics approach to investigate structural influences of ligand binding on Papain like protease from SARS-CoV-2. Comput. Biol. Chem. 2022 99 107721 10.1016/j.compbiolchem.2022.107721 35835027
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266312143240805191718
Loading
/content/journals/ctmc/10.2174/0115680266312143240805191718
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test