Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing -based heterocycles, which are currently available in the market. Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among -based heterocyclic compounds, bioactive heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), ., are important drugs containing heterocycles. The synthesis of heterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent ,-heterocycles with anticancer activities have been presented in this review.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266311149240822111827
2024-09-02
2025-07-10
Loading full text...

Full text loading...

References

  1. PozharskiiA.F. SoldatenkovA.T. KatritzkyA.R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications.New YorkWiley201110.1002/9781119998372
    [Google Scholar]
  2. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results. Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  3. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b25255204
    [Google Scholar]
  4. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances20201072442474431110.1039/D0RA09198G35557843
    [Google Scholar]
  5. AatifM. RazaM.A. JavedK. Nashre-ul-IslamS.M. FarhanM. AlamM.W. Potential nitrogen-based heterocyclic compounds for treating infectious diseases: A literature review.Antibiotics (Basel)20221112175010.3390/antibiotics1112175036551407
    [Google Scholar]
  6. MajhiS. The art of total synthesis of bioactive natural products via microwaves.Curr. Org. Chem.20212591047106910.2174/1385272825666210303112302
    [Google Scholar]
  7. GoraiD. JashS.K. SinghR.K. SarkarA. MajhiS. Chemical and pharmacological aspects of Limnophila rugosa: An update.Int. J. Nat. Prod. Res.20133120124
    [Google Scholar]
  8. BrahmachariG. MandalL.C. RoyR. JashS.K. MondalA. MajhiS. GoraiD. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae).J. Indian Chem. Soc.201188303305
    [Google Scholar]
  9. MajhiS. SahaI. Visible light-promoted synthesis of bioactive N, N-heterocycles.Curr. Green Chem.20229312714410.2174/2213346110666221223141323
    [Google Scholar]
  10. RotellaD.P. Heterocycles in drug discovery: Properties and preparation.Adv. Heterocycl. Chem.202113414918310.1016/bs.aihch.2020.10.002
    [Google Scholar]
  11. BrishtyS.R. HossainM.J. KhandakerM.U. FaruqueM.R.I. OsmanH. RahmanS.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives.Front. Pharmacol.20211276280710.3389/fphar.2021.76280734803707
    [Google Scholar]
  12. AlaqeelS.I. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review.J. Saudi Chem. Soc.201721222923710.1016/j.jscs.2016.08.001
    [Google Scholar]
  13. HaiderK. ShafeequeM. YahyaS. YarM.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents.Eur. J. Med. Chem.20225100042
    [Google Scholar]
  14. NehraB. RulhaniaS. JaswalS. KumarB. SinghG. MongaV. Recent advancements in the development of bioactive pyrazoline derivatives.Eur. J. Med. Chem.202020511266610.1016/j.ejmech.2020.11266632795767
    [Google Scholar]
  15. HavrylyukD. RomanO. LesykR. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids.Eur. J. Med. Chem.201611314516610.1016/j.ejmech.2016.02.03026922234
    [Google Scholar]
  16. CohenJ.A. ComiG. SelmajK.W. Bar-OrA. ArnoldD.L. SteinmanL. HartungH.P. MontalbanX. Kubala HavrdováE. CreeB.A.C. SheffieldJ.K. MintonN. RaghupathiK. HuangV. KapposL. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial.Lancet Neurol.201918111021103310.1016/S1474‑4422(19)30238‑831492652
    [Google Scholar]
  17. SvetelM. TomićA. KresojevićN. KostićV. Pharmacokinetic drug evaluation of opicapone for the treatment of Parkinson’s disease.Expert Opin. Drug Metab. Toxicol.201814335336010.1080/17425255.2018.143013829345156
    [Google Scholar]
  18. BlairH.A. Naldemedine: A review in opioid-induced constipation.Drugs201979111241124710.1007/s40265‑019‑01160‑731267482
    [Google Scholar]
  19. HanB. WuT. Green Chemistry and Chemical Engineering.New YorkSpringer2019Available from: https://www.springerprofessional.de/en/green-chemistry-and-chemical-engineering/17112008
    [Google Scholar]
  20. MajhiS. SivakumarM. Semisynthesis of Bioactive Compounds and their Biological Activities.AmsterdamElsevier2023
    [Google Scholar]
  21. MajhiS. MandalB. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products.SingaporeWorld Scientific202210.1142/13210
    [Google Scholar]
  22. AgarwalN. SolankiV.S. PareB. SinghN. JonnalagaddaS.B. Current trends in nanocatalysis for green chemistry and its applications- A mini-review.Curr. Opin. Green Sustain. Chem.20234110078810.1016/j.cogsc.2023.100788
    [Google Scholar]
  23. MajhiS. JashS.K. Recent developments of nanocatalysts for Stille coupling reaction.Synth. Commun.2023532061208710.1080/00397911.2023.2269585
    [Google Scholar]
  24. MajhiS. Applications of nanoparticles in organic synthesis under ultrasonication.In: Nanoparticles in Green Organic Synthesis202327931510.1016/B978‑0‑323‑95921‑6.00014‑7.
    [Google Scholar]
  25. DasD. MajhiS. Nanoparticles in multicomponent reactions toward green organic synthesis.Nanoparticles in Green Organic Synthesis20237510210.1016/B978‑0‑323‑95921‑6.00002‑0.
    [Google Scholar]
  26. HayashiY. Pot economy and one-pot synthesis.Chem. Sci. (Camb.)20167286688010.1039/C5SC02913A28791118
    [Google Scholar]
  27. ZaraeiS.O. SbenatiR.M. AlachN.N. AnbarH.S. El-GamalR. TaraziH. ShehataM.K. Abdel-MaksoudM.S. OhC.H. El-GamalM.I. Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors.Eur. J. Med. Chem.202122411367410.1016/j.ejmech.2021.11367434237622
    [Google Scholar]
  28. MajhiS. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review.Anticancer. Agents Med. Chem.202222193219323810.2174/187152062166621101514231034779372
    [Google Scholar]
  29. MajhiS. 9 Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules.Phys. Sci. Rev.2022830734210.1515/9783110735772‑009
    [Google Scholar]
  30. MajhiS. MondalP.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities.Curr. Microw. Chem.202310213515410.2174/0122133356264446230925173123
    [Google Scholar]
  31. KusumaS. BawiskarD.B. SinghC. PanneerselvamP. SinhaP. SamalA.K. JadhavA.H. Facile one pot synthesis of 2-substituted benzimidazole derivatives under mild conditions by using engineered MgO@DFNS as heterogeneous catalyst.RSC Advances20231346321103212510.1039/D3RA05761E37920763
    [Google Scholar]
  32. NasseriM.A. RezazadehZ. KazemnejadiM. AllahresaniA. Cu-Mn bimetallic complex immobilized on magnetic nps as an efficient catalyst for domino one-pot preparation of benzimidazole and biginelli reactions from alcohols.Catal. Lett.202115141049106710.1007/s10562‑020‑03371‑0
    [Google Scholar]
  33. SharghiH. RazaviS.F. AberiM. TavakoliF. ShekouhyM. The Co 2+ Complex of [7‐Hydroxy‐4‐methyl‐8‐coumarinyl]glycine as a nanocatalyst for the synthesis and biological evaluation of new mannich bases of benzimidazoles and benzothiazoles.ChemistrySelect2020592662267110.1002/slct.201904700
    [Google Scholar]
  34. ShojaeeS. Mahdavi ShahriM. An efficient synthesis and cytotoxic activity of 2‐(4‐chlorophenyl)‐1 H –benzo[ d ]imidazole obtained using a magnetically recyclable Fe 3 O 4 nanocatalyst‐mediated white tea extract.Appl. Organomet. Chem.2018321e393410.1002/aoc.3934
    [Google Scholar]
  35. DekaminM.G. ArefiE. YaghoubiA. Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): A highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles.RSC Advances2016690869828698810.1039/C6RA14550G
    [Google Scholar]
  36. RajabiF. DeS. LuqueR. An efficient and green synthesis of benzimidazole derivatives using sba-15 supported cobalt nanocatalysts.Catal. Lett.201514581566157010.1007/s10562‑015‑1546‑z
    [Google Scholar]
  37. KohliS. Nisha RatheeG. HoodaS. ChandraR. Exploring the untapped catalytic application of a ZnO/CuI/PPy nanocomposite for the green synthesis of biologically active 2,4,5-trisubstituted imidazole scaffolds.Nanoscale Adv.2023582352236010.1039/D3NA00077J37056623
    [Google Scholar]
  38. Kafi-AhmadiL. KhademiniaS. Poursattar MarjaniA. NozadE. Microwave-assisted preparation of polysubstituted imidazoles using Zingiber extract synthesized green Cr2O3 nanoparticles.Sci. Rep.20221211994210.1038/s41598‑022‑24364‑636402805
    [Google Scholar]
  39. HebishyA.M.S. AbdelfattahM.S. ElmorsyA. ElwahyA.H.M. ZnO nanoparticles catalyzed synthesis of bis - and poly(imidazoles) as potential anticancer agents.Synth. Commun.202050798099610.1080/00397911.2020.1726396
    [Google Scholar]
  40. SinhaD. BiswasS. DasM. GhatakA. An eco-friendly, one pot synthesis of tri-substituted imidazoles in aqueous medium catalyzed by RGO supported Au nano-catalyst and computational studies.J. Mol. Struct.2021124213082310.1016/j.molstruc.2021.130823
    [Google Scholar]
  41. MohammadiM. KhodamoradyM. TahmasbiB. BahramiK. Ghorbani-ChoghamaraniA. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis.J. Ind. Eng. Chem.20219717810.1016/j.jiec.2021.02.001
    [Google Scholar]
  42. KhodamoradyM. GhobadiN. BahramiK. Homoselective synthesis of 5‐substituted 1 H ‐tetrazoles and one‐pot synthesis of 2,4,5‐trisubstuted imidazole compounds using BNPs@SiO 2 ‐TPPTSA as a stable and new reusable nanocatalyst.Appl. Organomet. Chem.2021354e614410.1002/aoc.6144
    [Google Scholar]
  43. Safaei-GhomiJ. Kareem AbbasA. ShahpiriM. Synthesis of imidazoles promoted by H 3 PW 12 O 40 -amino-functionalized CdFe 12 O 19 @SiO 2 nanocomposite.Nanocomposites20206414915710.1080/20550324.2020.1858246
    [Google Scholar]
  44. NematiF. ElhampourA. NatanziM.B. Synthesis and characterization of nano-copper ferrite as a magnetically separable catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles under solvent-free condition.Inorg. Nano-Met. Chem.201747566667110.1080/15533174.2016.1212223
    [Google Scholar]
  45. AlaviniaS. Ghorbani-VagheiR. Synthesis of 3-oxadiazole-substituted imidazo[1,2- a ]pyridines by nickel immobilized on multifunctional amphiphilic porous polysulfonamide–melamine.New J. Chem.20204430130621307310.1039/D0NJ02215B
    [Google Scholar]
  46. SaadatiF. KaboudinB. HasanloeiR. NamazifarZ. MarsetX. GuillenaG. Manganese oxide nanoparticles supported on graphene oxide as an efficient nanocatalyst for the synthesis of 1,2,4‐oxadiazoles from aldehydes.Appl. Organomet. Chem.20203410e583810.1002/aoc.5838
    [Google Scholar]
  47. MurtyM.S.R. PenthalaR. BuddanaS.K. PrakashamR.S. DasP. PolepalliS. JainN. BojjaS. Recyclable CuO nanoparticles-catalyzed synthesis of novel-2,5-disubstituted 1,3,4-oxadiazoles as antiproliferative, antibacterial, and antifungal agents.Med. Chem. Res.201423104579459410.1007/s00044‑014‑1025‑x
    [Google Scholar]
  48. ZarghiA. TabatabaiS.A. FaiziM. AhadianA. NavabiP. ZanganehV. ShafieeA. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles.Bioorg. Med. Chem. Lett.20051571863186510.1016/j.bmcl.2005.02.01415780622
    [Google Scholar]
  49. PrakashO. KumarM. KumarR. SharmaC. AnejaK.R. Hypervalent iodine(III) mediated synthesis of novel unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles as antibacterial and antifungal agents.Eur. J. Med. Chem.20104594252425710.1016/j.ejmech.2010.06.02320630627
    [Google Scholar]
  50. DarehkordiA. RamezaniM. RahmaniF. TiO 2 ‐nanoparticles catalyzed synthesis of new trifluoromethyl‐4,5‐dihydro‐1,2,4‐oxadiazoles and trifluoromethyl‐1,2,4‐oxadiazoles.J. Heterocycl. Chem.20185571702170810.1002/jhet.3207
    [Google Scholar]
  51. Shafe-MehrabadiS.R. SadeghiB. HassanabadiA. SiO 2 –H 2 SO 4 nanoparticles: A solid phase acidic catalyst and an efficient for one-pot synthesis of 3,9-diamino-5,10-dioxo-1-aryl-5,10-dihydropyrazolo[1,2- b ]phthalazine-2-carbonitrile derivatives.Polycycl. Aromat. Compd.202242257458110.1080/10406638.2020.1747094
    [Google Scholar]
  52. ChegeniM.M.F. BamoniriA. TaherpourA.A. One‐pot synthesis of 2H‐indazolo[2,1‐b]phthalazine‐triones via nano γ‐Al2O3/BF3/Fe3O4 as an efficient catalyst and theoretical DFT study on them.J. Heterocycl. Chem.202057710.1002/jhet.3989.
    [Google Scholar]
  53. HamidinasabM. BodaghifardM.A. MobinikhalediA. Green synthesis of 1 H ‐pyrazolo[1,2‐ b ]phthalazine‐2‐carbonitrile derivatives using a new bifunctional base–ionic liquid hybrid magnetic nanocatalyst.Appl. Organomet. Chem.2020342e538610.1002/aoc.5386
    [Google Scholar]
  54. AlbadiJ. JalaliM. MomeniA. Cobalt-based nanocatalyst catalyzed one-pot four-component synthesis 2H-indazolo[2,1-b]phthalazine-triones under solvent-free condition.Res. Chem. Intermed.20184442395240410.1007/s11164‑017‑3236‑5
    [Google Scholar]
  55. NaiduB.R. SruthiT. MittyR. VenkateswarluK. Catalyst-free mechanochemistry as a versatile tool in synthetic chemistry: A review.Green Chem.202325166120614810.1039/D3GC01229H
    [Google Scholar]
  56. DoJ.L. FriščićT. Mechanochemistry: A force of synthesis.ACS Cent. Sci.201731131910.1021/acscentsci.6b0027728149948
    [Google Scholar]
  57. MallahD. MirjaliliB.B.F. A green protocol ball milling synthesis of dihydropyrano[2,3-c]pyrazole using nano-silica/aminoethylpiperazine as a metal-free catalyst.BMC Chem.20231711010.1186/s13065‑023‑00934‑136870991
    [Google Scholar]
  58. SameriF. MobinikhalediA. BodaghifardM.A. Preparation of core/shell cao@sio2-so3h as a novel and recyclable nanocatalyst for one-pot synthesize of dihydropyrano[2,3-c]pyrazoles and tetrahydrobenzo[b]pyrans.Silicon20221441395140610.1007/s12633‑021‑00942‑7
    [Google Scholar]
  59. AmirnejatS. NosratiA. JavanshirS. Superparamagnetic Fe 3 O 4 @Alginate supported L‐arginine as a powerful hybrid inorganic–organic nanocatalyst for the one‐pot synthesis of pyrazole derivatives.Appl. Organomet. Chem.20203410e588810.1002/aoc.5888
    [Google Scholar]
  60. AyatiA. HeraviM.M. DaraieM. TanhaeiB. BamoharramF.F. SillanpaaM. H3PMo12O40 immobilized chitosan/Fe3O4 as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives.J. Indian Chem. Soc.201613122301230810.1007/s13738‑016‑0949‑0
    [Google Scholar]
  61. EmtiaziH. AmrollahiM.A. MirjaliliB.B.F. Nano-silica sulfuric acid as an efficient catalyst for the synthesis of substituted pyrazoles.Arab. J. Chem.20158679379710.1016/j.arabjc.2013.06.008
    [Google Scholar]
  62. SedighiniaE. BadriR. KiasatA.R. Application of yttrium iron garnet as a powerful and recyclable nanocatalyst for one-pot synthesis of pyrano[2,3-c]pyrazole derivatives under solvent-free conditions.Russ. J. Org. Chem.201955111755176310.1134/S1070428019110186
    [Google Scholar]
  63. ZakeriM. Abouzari-lotfE. MiyakeM. Mehdipour-AtaeiS. ShameliK. Phosphoric acid functionalized graphene oxide: A highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles.Arab. J. Chem.201912218819710.1016/j.arabjc.2017.11.006
    [Google Scholar]
  64. SameriF. BodaghifardM.A. MobinikhalediA. Ionic liquid coated nanoparticles (CaO@SiO 2 @BAIL): A bi-functional and environmentally benign catalyst for green synthesis of pyridine, pyrimidine, and pyrazoline derivatives.Polycycl. Aromat. Compd.20224274700471610.1080/10406638.2021.1903954
    [Google Scholar]
  65. KukadeM.G. KagneR. ChandaneW.B. BodakeA.J. Cobalt Ferrite MNPs: An efficient and robust catalyst for synthesis of 1,3,5‐trisubstituted pyrazolines.Macromol. Symp.20214001210006210.1002/masy.202100062
    [Google Scholar]
  66. GuravR.P. NalawadeR.D. SawantS.D. SatyanarayanN.D. SankpalS.A. HangirgekarS.P. Biosynthesis of ZrO 2 for ZrO 2 @Ag‐S‐CH 2 COOH as the retrievable catalyst for the one‐pot green synthesis of pyrazoline derivatives and their anticancer evaluation.Appl. Organomet. Chem.2022365e666610.1002/aoc.6666
    [Google Scholar]
  67. PatkiA.S. MuleyD.B. KagneR.P. MathapatiS.R. One-Pot room-temperature protocol for the synthesis of pyrazolines using SnO2 nanocomposite as heterogeneous catalyst.Russ. J. Org. Chem.202258101455146510.1134/S1070428022100116
    [Google Scholar]
  68. GhorbaniP. Nasr-EsfahaniM. Eftekhari FarB. Synthesis of chalcones and pyrazolines using NB-Fe3O4@SiO2@CPTMO@DEA-SO3H as an efficient and reusable nanocatalyst.Russ. J. Org. Chem.202258121812182010.1134/S1070428022120107
    [Google Scholar]
  69. PoormirzaeiN. MazaheriA. Synthesis and characterization of a novel supported N-piperidine sulfamic acid on magnetic nanoparticles as a nanocatalyst for synthesis of pyrimido[4,5-c]pyridazines derivatives under ambient conditions and theoretical study on the mechanism using a DFT method.Res. Chem. Intermed.20204652859288010.1007/s11164‑020‑04125‑8
    [Google Scholar]
  70. Ghorbani-VagheiR. MahmoodiJ. MaghbooliY. Preparation and characterization of nanomagnetic piperidinium benzene‐1,3‐disulfonate ionic liquid as a novel, green and heterogeneous catalyst and its use in the synthesis of 1 H –pyrazolo[1,2‐ b ]phthalazine‐5,10‐diones and 1 H –pyrazolo[1,2‐ a ] pyridazine‐5,8‐diones under solvent‐free conditions.Appl. Organomet. Chem.20173110e371710.1002/aoc.3717
    [Google Scholar]
  71. MajediS. HussainF.H.S. BarzinjyA.A. TehraniM.H. HawaizF.E. Catalytic application of green-synthesized ZnO nanoparticles in the synthesis of 1 H -pyrazolo[1,2- a ]pyridazine-5,8-diones and evaluation of their anti-cancer properties.New J. Chem.20234736168091681810.1039/D3NJ00479A
    [Google Scholar]
  72. HootifardG. SheikhhosseiniE. AhmadiS.A. YahyazadehfarM. Synthesis and characterization of Co-MOF@Ag2O nanocomposite and its application as a nano-organic catalyst for one-pot synthesis of pyrazolopyranopyrimidines.Sci. Rep.20231311750010.1038/s41598‑023‑44667‑637840041
    [Google Scholar]
  73. SaberikhahE. MamaghaniM. MahmoodiN.O. Fallah ShojaeiA. Magnetic Fe 3 O 4 @TiO 2 @NH 2 @PMo 12 O 40 nanoparticles: A recyclable and efficient catalyst for convergent one-pot synthesis of pyrido[2,3- d ]pyrimidine derivatives.Polycycl. Aromat. Compd.202242129731510.1080/10406638.2020.1729821
    [Google Scholar]
  74. Safaei-GhomiJ. SamadiZ. Synthesis of pyrimidines by Fe 3 O 4 @SiO 2 -L-proline nanoparticles.Main Group Met. Chem.202043111712410.1515/mgmc‑2020‑0014
    [Google Scholar]
  75. FarokhianP. MamaghaniM. MahmoodiN.O. TabatabaeianK. ShojaieA.F. An expeditious one-pot synthesis of pyrido[2,3- d ]pyrimidines using Fe 3 O 4 –ZnO–NH 2 –PW 12 O 40 nanocatalyst.J. Chem. Res.2019433-413513910.1177/1747519819856978
    [Google Scholar]
  76. PirhayatiM. KakanejadifardA. VeisiH. A new nano‐Fe 3 O 4 ‐supported organocatalyst based on 3,4‐dihydroxypyridine: An efficient heterogeneous nanocatalyst for one‐pot synthesis of pyrazolo[3,4‐ b ]pyridines and pyrano[2,3‐d]pyrimidines.Appl. Organomet. Chem.201630121004100810.1002/aoc.3534
    [Google Scholar]
  77. OthmanD.I.A. HamdiA. TawfikS.S. ElgazarA.A. MostafaA.S. Identification of new benzimidazole-triazole hybrids as anticancer agents: Multi-target recognition, in vitro and in silico studies.J. Enzyme Inhib. Med. Chem.2023381216603710.1080/14756366.2023.216603736651111
    [Google Scholar]
  78. PhamE.C. Thi LeT.V. TruongT.N. Design, synthesis, bio-evaluation, and in silico studies of some N-substituted 6-(chloro/nitro)-1 H -benzimidazole derivatives as antimicrobial and anticancer agents.RSC Advances20221233216212164610.1039/D2RA03491C35975065
    [Google Scholar]
  79. DiaconuD. AntociV. MangalagiuV. Amariucai-MantuD. MangalagiuI.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity.Sci. Rep.20221211698810.1038/s41598‑022‑21435‑636216981
    [Google Scholar]
  80. SiddigL.A. KhasawnehM.A. SamadiA. SaadehH. AbutahaN. WadaanM.A. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents.Open Chem.20211911062107310.1515/chem‑2021‑0093
    [Google Scholar]
  81. ÇevikU.A. OsmaniyeD. ÇavuşoğluB.K. SağlikB.N. LeventS. IlginS. CanN.Ö. ÖzkayY. KaplancikliZ.A. Synthesis of novel benzimidazole–oxadiazole derivatives as potent anticancer activity.Med. Chem. Res.201928122252226110.1007/s00044‑019‑02451‑0
    [Google Scholar]
  82. KumarA. BanerjeeS. RoyP. SondhiS.M. SharmaA. Solvent-free synthesis and anticancer activity evaluation of benzimidazole and perimidine derivatives.Mol. Divers.201822111312710.1007/s11030‑017‑9790‑329143160
    [Google Scholar]
  83. AruchamyB. DragoC. RussoV. PitariG.M. RamaniP. AneeshT.P. BennyS. VishnuV.R. Imidazole-pyridine hybrids as potent anti-cancer agents.Eur. J. Pharm. Sci.202318010632310.1016/j.ejps.2022.10632336336277
    [Google Scholar]
  84. TheodoreC.E. SivaiahG. PrasadS.B.B. KumarK.Y. RaghuM.S. AlharethyF. PrashanthM.K. JeonB.H. Design, synthesis, anticancer activity and molecular docking of novel 1H-benzo[d]imidazole derivatives as potential EGFR inhibitors.J. Mol. Struct.2023129413634110.1016/j.molstruc.2023.136341
    [Google Scholar]
  85. GryniukovaA. BoryskoP. MyziukI. AlieksieievaD. HodynaD. SemenyutaI. KovalishynV. MetelytsiaL. RogalskyS. TcherniukS. Anticancer activity features of imidazole-based ionic liquids and lysosomotropic detergents: In silico and in vitro studies.Mol. Divers.202410.1007/s11030‑023‑10779‑438246950
    [Google Scholar]
  86. MalikM.S. AlsantaliR.I. JamalQ.M.S. SeddigiZ.S. MoradM. AlsharifM.A. HusseinE.M. JassasR.S. Al-RooqiM.M. AbduljaleelZ. BabalgithA.O. AltassH.M. MoussaZ. AhmedS.A. New imidazole-based N-phenylbenzamide derivatives as potential anticancer agents: Key computational insights.Front Chem.2022980855610.3389/fchem.2021.80855635155379
    [Google Scholar]
  87. Rahimzadeh OskueiS. MirzaeiS. Reza Jafari-NikM. HadizadehF. EisvandF. MosaffaF. GhodsiR. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors.Bioorg. Chem.202111210490410.1016/j.bioorg.2021.10490433933802
    [Google Scholar]
  88. RuziZ. NieL. BozorovK. ZhaoJ. AisaH.A. Synthesis and anticancer activity of ethyl 5‐amino‐1‐ N ‐substituted‐imidazole‐4‐carboxylate building blocks.Arch. Pharm. (Weinheim)20213549200047010.1002/ardp.20200047034032312
    [Google Scholar]
  89. MeenakshisundaramS. ManickamM. PillaiyarT. Exploration of imidazole and imidazopyridine dimers as anticancer agents: Design, synthesis, and structure–activity relationship study.Arch. Pharm. (Weinheim)201935212190001110.1002/ardp.20190001131596021
    [Google Scholar]
  90. XiaoZ. LeiF. ChenX. WangX. CaoL. YeK. ZhuW. XuS. Design, synthesis, and antitumor evaluation of quinoline‐imidazole derivatives.Arch. Pharm. (Weinheim)20183516170040710.1002/ardp.20170040729732607
    [Google Scholar]
  91. YousefT.A. AlhamzaniA.G. Abou-KrishaM.M. KanthimathiG. RaghuM.S. KumarK.Y. PrashanthM.K. JeonB.H. Synthesis, molecular docking study and anticancer activity of novel 1,3,4-oxadiazole derivatives as potential tubulin inhibitors.Heliyon202392e1346010.1016/j.heliyon.2023.e1346036846693
    [Google Scholar]
  92. YurttaşL. EvrenA.E. KubilayA. AksoyM.O. TemelH.E. Akalın ÇiftçiG. Synthesis of some new 1,3,4-oxadiazole derivatives and evaluation of their anticancer activity.ACS Omega2023851493114932610.1021/acsomega.3c0777638162760
    [Google Scholar]
  93. StrzeleckaM. GlombT. Drąg-ZalesińskaM. KulbackaJ. SzewczykA. SaczkoJ. Kasperkiewicz-WasilewskaP. RembiałkowskaN. WojtkowiakK. JezierskaA. ŚwiątekP. Synthesis, anticancer activity and molecular docking studies of novel N-Mannich bases of 1,3,4-oxadiazole based on 4,6-dimethylpyridine scaffold.Int. J. Mol. Sci.202223191117310.3390/ijms23191117336232475
    [Google Scholar]
  94. BommeraR.K. KethireddyS. GovindapurR.R. EppakayalaL. Synthesis, biological evaluation and docking studies of 1,2,4-oxadiazole linked 5-fluorouracil derivatives as anticancer agents.BMC Chem.20211513010.1186/s13065‑021‑00757‑y33947440
    [Google Scholar]
  95. ShahzadiI. ZahoorA.F. RasulA. RasoolN. RazaZ. FaisalS. ParveenB. KamalS. Zia-ur-RehmanM. ZahidF.M. Synthesis, anticancer, and computational studies of 1, 3, 4‐oxadiazole‐purine derivatives.J. Heterocycl. Chem.20205772782279410.1002/jhet.3987
    [Google Scholar]
  96. MamathaS.V. BelagaliS.L. BhatM. Synthesis, characterisation and evaluation of oxadiazole as promising anticancer agent.SN Appl Sci20202588210.1007/s42452‑020‑2511‑z
    [Google Scholar]
  97. GuW. JinX.Y. LiD.D. WangS.F. TaoX.B. ChenH. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid.Bioorg. Med. Chem. Lett.201727174128413210.1016/j.bmcl.2017.07.03328733083
    [Google Scholar]
  98. LuoY. LiuZ-J. ChenG. ShiJ. Ran LiJ. Liang ZhuH. 1,3,4-Oxadiazole derivatives as potential antitumor agents: Discovery, optimization and biological activity valuation.MedChemComm2016726327110.1039/C5MD00371G
    [Google Scholar]
  99. EmamS.M. RayesS.M.E. AliI.A.I. SolimanH.A. NafieM.S. Synthesis of phthalazine-based derivatives as selective anti-breast cancer agents through EGFR-mediated apoptosis: In vitro and in silico studies.BMC Chem.20231719010.1186/s13065‑023‑00995‑237501139
    [Google Scholar]
  100. AklL. Abd El-HafeezA.A. IbrahimT.M. SalemR. MarzoukH.M.M. El-DomanyR.A. GhoshP. EldehnaW.M. Abou-SeriS.M. Identification of novel piperazine-tethered phthalazines as selective CDK1 inhibitors endowed with in vitro anticancer activity toward the pancreatic cancer.Eur. J. Med. Chem.202224311470410.1016/j.ejmech.2022.11470436095992
    [Google Scholar]
  101. KhedrF. IbrahimM.K. EissaI.H. AbulkhairH.S. El-AdlK. Phthalazine‐based VEGFR‐2 inhibitors: Rationale, design, synthesis, in silico , ADMET profile, docking, and anticancer evaluations.Arch. Pharm. (Weinheim)202135411210020110.1002/ardp.20210020134411344
    [Google Scholar]
  102. El-HelbyA.G.A. SakrH. AyyadR.R. MahdyH.A. KhalifaM.M. BelalA. RashedM. El-SharkawyA. MetwalyA.M. ElhendawyM.A. RadwanM.M. ElSohlyM.A. EissaI.H. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors.Bioorg. Chem.202010310423310.1016/j.bioorg.2020.10423332882440
    [Google Scholar]
  103. ElmeligieS. Aboul-MagdA.M. LasheenD.S. IbrahimT.M. AbdelghanyT.M. KhojahS.M. AbouzidK.A.M. Design and synthesis of phthalazine-based compounds as potent anticancer agents with potential antiangiogenic activity via VEGFR-2 inhibition.J. Enzyme Inhib. Med. Chem.20193411347136710.1080/14756366.2019.164288331322015
    [Google Scholar]
  104. EldehnaW.M. AlmahliH. Al-AnsaryG.H. GhabbourH.A. AlyM.H. IsmaelO.E. Al-DhfyanA. Abdel-AzizH.A. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents.J. Enzyme Inhib. Med. Chem.201732160061310.1080/14756366.2017.127915528173708
    [Google Scholar]
  105. BarenM.H. IbrahimS.A. Al-RooqiM.M. AhmedS.A. El-GamilM.M. HekalH.A. A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety.Sci. Rep.20231311468010.1038/s41598‑023‑40265‑837673913
    [Google Scholar]
  106. MohammedE.Z. MahmoudW.R. GeorgeR.F. HassanG.S. OmarF.A. GeorgeyH.H. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs).Bioorg. Chem.202111610534710.1016/j.bioorg.2021.10534734555628
    [Google Scholar]
  107. Abdel-MotaalM. El-SendunyF.F. ShaabanS. One‐Pot synthesis and anticancer activity of novel pyrazole hybrids.ChemistrySelect20216297306731610.1002/slct.202101649
    [Google Scholar]
  108. HassanA.Y. MohamedM.A. Abdel-AziemA. HussainA.O. Synthesis and anticancer activity of some fused heterocyclic compounds containing pyrazole ring.Polycycl. Aromat. Compd.20204041280129010.1080/10406638.2020.1764984
    [Google Scholar]
  109. El-GabyM.S.A. GhorabM.M. IsmailZ.H. Abdel-GawadS.M. AlyH.M. Synthesis, structural characterization and anticancer evaluation of pyrazole derivatives.Med. Chem. Res.2018271727910.1007/s00044‑017‑2035‑2
    [Google Scholar]
  110. SauM.C. RajeshY. MandalM. BhattacharjeeM. Copper catalyzed regioselective N – alkynylation of pyrazoles and evaluation of the anticancer activity of ethynyl‐ pyrazoles.ChemistrySelect20183123511351510.1002/slct.201800177
    [Google Scholar]
  111. FahmyH. KhalifaN. IsmailM. El-SahrawyH. NossierE. Biological validation of novel polysubstituted pyrazole candidates with in vitro anticancer activities.Molecules201621327110.3390/molecules2103027126927048
    [Google Scholar]
  112. AlamR. WahiD. SinghR. SinhaD. TandonV. GroverA. Rahisuddin Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents.Bioorg. Chem.201669779010.1016/j.bioorg.2016.10.00127744115
    [Google Scholar]
  113. FakhryM.M. MattarA.A. AlsulaimanyM. Al-OlayanE.M. Al-RashoodS.T. Abdel-AzizH.A. New thiazolyl-pyrazoline derivatives as potential dual EGFR/HER2 inhibitors: Design, synthesis, anticancer activity evaluation and in silico study.Molecules20232821745510.3390/molecules2821745537959874
    [Google Scholar]
  114. Hosseini NasabN. AzimianF. ShimR.S. EomY.S. ShahF.H. KimS.J. Synthesis, anticancer evaluation, and molecular docking studies of thiazolyl-pyrazoline derivatives.Bioorg. Med. Chem. Lett.20238012910510.1016/j.bmcl.2022.12910536513215
    [Google Scholar]
  115. HassanR.A. EmamS.H. HwangD. KimG.D. HassaninS.O. KhalilM.G. AbdouA.M. SonousiA. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity.Bioorg. Chem.202211810548710.1016/j.bioorg.2021.10548734798455
    [Google Scholar]
  116. RanaM. ArifR. KhanF.I. MauryaV. SinghR. FaizanM.I. YasmeenS. DarS.H. AlamR. SahuA. AhmadT. Rahisuddin Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies.Bioorg. Chem.202110810466510.1016/j.bioorg.2021.10466533571809
    [Google Scholar]
  117. AlkamalyO.M. AltwaijryN. SabourR. HarrasM.F. Dual EGFR/VEGFR2 inhibitors and apoptosis inducers: Synthesis and antitumor activity of novel pyrazoline derivatives.Arch. Pharm. (Weinheim)20213544200035110.1002/ardp.20200035133252142
    [Google Scholar]
  118. TokF. İrem AbasB. ÇevikÖ. Koçyiğit-KaymakçıoğluB. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents.Bioorg. Chem.202010210406310.1016/j.bioorg.2020.10406332663669
    [Google Scholar]
  119. SongY. FengS. FengJ. DongJ. YangK. LiuZ. QiaoX. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II.Eur. J. Med. Chem.202020011245910.1016/j.ejmech.2020.11245932502865
    [Google Scholar]
  120. ShringareS.N. ChavanH.V. BhaleP.S. DongareS.B. MuleY.B. PatilS.B. BandgarB.P. Synthesis and pharmacological evaluation of combretastatin-A4 analogs of pyrazoline and pyridine derivatives as anticancer, anti-inflammatory and antioxidant agents.Med. Chem. Res.20182741226123710.1007/s00044‑018‑2142‑8
    [Google Scholar]
  121. GanaiA.M. PathanT.K. MohiteS.B. VojáčkováV. ŘezníčkováE. KozlanskáK. KryštofV. GovenderK. MokoenaS. MeruguS.R. PalkarM. MoodleyK. KarpoormathR. Design and synthesis of novel 1,2,4-triazolo[4,3-b]pyridazine derivatives with anti-cancer activity.J. Mol. Struct.2023129113593810.1016/j.molstruc.2023.135938
    [Google Scholar]
  122. BourzikatO. El AbbouchiA. GhammazH. El BrahmiN. El FahimeE. ParisA. DaniellouR. SuzenetF. GuillaumetG. El KazzouliS. Synthesis, anticancer activities and molecular docking studies of a novel class of 2-phenyl-5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine derivatives bearing sulfonamides.Molecules20222716523810.3390/molecules2716523836014478
    [Google Scholar]
  123. AhmedM.F. SantaliE.Y. Mohi El-DeenE.M. NaguibI.A. El-HaggarR. Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies.Bioorg. Chem.202110610447310.1016/j.bioorg.2020.10447333243490
    [Google Scholar]
  124. SabtA. EldehnaW.M. Al-WarhiT. AlotaibiO.J. ElaasserM.M. SulimanH. Abdel-AzizH.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: Synthesis, biological evaluation and in silico insights.J. Enzyme Inhib. Med. Chem.20203511616163010.1080/14756366.2020.180625932781872
    [Google Scholar]
  125. AliY.M. IsmailM.F. Abu El-AzmF.S.M. MarzoukM.I. Design, synthesis, and pharmacological assay of novel compounds based on pyridazine moiety as potential antitumor agents.J. Chem.20195625802591
    [Google Scholar]
  126. MaoB. GaoS. WengY. ZhangL. ZhangL. Design, synthesis, and biological evaluation of imidazo[1,2- b ]pyridazine derivatives as mTOR inhibitors.Eur. J. Med. Chem.201712913515010.1016/j.ejmech.2017.02.01528235701
    [Google Scholar]
  127. AbdelhamedA.M. HassanR.A. KadryH.H. HelwaA.A. Novel pyrazolo[3,4- d ]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity.RSC Med. Chem.202314122640265710.1039/D3MD00476G38107182
    [Google Scholar]
  128. SayedM.T.M. HalimP.A. El-AnsaryA.K. HassanR.A. Design, synthesis, anticancer evaluation, and in silico studies of some thieno[2,3‐ d ]pyrimidine derivatives as EGFR inhibitors.Drug Dev. Res.20238461299131910.1002/ddr.2208837357422
    [Google Scholar]
  129. Kilic-KurtZ. OzmenN. Bakar-AtesF. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents.Bioorg. Chem.202010110402810.1016/j.bioorg.2020.10402832645482
    [Google Scholar]
  130. NemrM.T.M. AboulMagdA.M. New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study.Bioorg. Chem.202010310413410.1016/j.bioorg.2020.10413432750610
    [Google Scholar]
  131. PhiloppesJ.N. KhedrM.A. HassanM.H.A. KamelG. LamieP.F. New pyrazolopyrimidine derivatives with anticancer activity: Design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics.Bioorg. Chem.202010010394410.1016/j.bioorg.2020.10394432450389
    [Google Scholar]
  132. ElmetwallyS.A. SaiedK.F. EissaI.H. ElkaeedE.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers.Bioorg. Chem.20198810294410.1016/j.bioorg.2019.10294431051400
    [Google Scholar]
  133. AhmedN.M. YounsM. SoltanM.K. SaidA.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma.J. Enzyme Inhib. Med. Chem.20193411110112010.1080/14756366.2019.161288931117890
    [Google Scholar]
  134. HossamM. LasheenD.S. IsmailN.S.M. EsmatA. MansourA.M. SingabA.N.B. AbouzidK.A.M. Discovery of anilino-furo[2,3- d ]pyrimidine derivatives as dual inhibitors of EGFR/HER2 tyrosine kinase and their anticancer activity.Eur. J. Med. Chem.201814433034810.1016/j.ejmech.2017.12.02229275232
    [Google Scholar]
  135. SunC. ChenC. XuS. WangJ. ZhuY. KongD. TaoH. JinM. ZhengP. ZhuW. Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety.Bioorg. Med. Chem.201624163862386910.1016/j.bmc.2016.06.03227353887
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266311149240822111827
Loading
/content/journals/ctmc/10.2174/0115680266311149240822111827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test